1
|
Yamamoto N, Xiang G, Tong W, Lv B, Guo Y, Wu Y, Peng Z, Yang Z. Over-expression of a plant-type phosphoenolpyruvate carboxylase derails Arabidopsis stamen formation. Gene 2024; 927:148749. [PMID: 38969247 DOI: 10.1016/j.gene.2024.148749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We examined whether plant-type phosphoenolpyruvate carboxylase (PEPC) is involved in flower organ formation or not by over-expression in Arabidopsis. A wheat PEPC isogene Tappc3A, belonging to the ppc3 group, was targeted due to its preferential expression pattern in pistils and stamens. Transgenic Arabidopsis over-expressing Tappc3A exhibited irregular stamen formation, i.e., a lesser number of stamens per flower and shorter filaments in T2 and T3 generations. Irregular stamens were frequently observed in homozygous T4 lines, but no morphological change was observed in other floral organs. High-degree gene co-expression of Tappc3 isogenes with wheat SEEDSTICKs but not with other homeotic transcription factor genes for flower formation implicates that Tappc3 is under control by the class D genes of the ABCDE model to flower development. In addition, the conservation of CArG box sequences on the Tappc3 promoters supported the developmentally programmed gene expression of ppc3 in wheat flowering organs. Thus, this study provides the first experimental evidence for the critical regulation of plant-type PEPC for flower formation.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Guili Xiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Wurina Tong
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
| | - Bingbing Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yuhuan Guo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Yichao Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Zhengsong Peng
- School of Agricultural Science, Xichang College, Xichang, China
| | - Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.
| |
Collapse
|
2
|
Zhang C, Li X, He Y, Zhang J, Yan T, Liu X. Physiological investigation of C 4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:328-342. [PMID: 28415033 DOI: 10.1016/j.plaphy.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C4PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C4-PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C4 photosynthesis can be used to increase the yield of rice under drought conditions.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia Li
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yafei He
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Jinfei Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Ting Yan
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaolong Liu
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| |
Collapse
|
3
|
Qian B, Li X, Liu X, Chen P, Ren C, Dai C. Enhanced drought tolerance in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene via NO and Ca(2+). JOURNAL OF PLANT PHYSIOLOGY 2015; 175:9-20. [PMID: 25460871 DOI: 10.1016/j.jplph.2014.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/20/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023]
Abstract
We determined the effects of endogenous nitric oxide and Ca(2+) on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC) under drought. In this study, seedlings were subjected to PEG 6000 treatments using PC and wild type (WT; Kitaake). The results showed that, compared with WT, PC had higher relative water content (RWC) and net photosynthetic rate (Pn) under drought. During a 2-day re-watering treatment, Pn recovered faster in PC than in WT. Further analyses showed that, under the drought treatment, the amount of endogenous hydrogen peroxide (H2O2) increased in WT mainly via NADPH oxidase. While in PC, the endogenous nitric oxide (NO) content increased via nitrate reductase and nitric oxide synthase on day 2 of the drought treatment and day 1 of the re-watering treatment. After 2 days of drought treatment, PC also showed higher PEPC activity, calcium content, phospholipase D (PLD) activity, C4-pepc and NAC6 transcript levels, and protein kinase activity as compared with PC without treatment. These changes did not occur in WT. Correlation analysis also proved NO associated with these indicators in PC. Based on these results, there was a particular molecular mechanism of drought tolerance in PC. The mechanism is related to the signaling processes via NO and Ca(2+) involving the protein kinase and the transcription factor, resulted in up-regulation of PEPC activity and its gene expression, such as C4pepc. Some genes encode antioxidant system, cu/zn-sod as well, which promote antioxidant system to clear MDA and superoxide anion radical, thereby conferring drought tolerance.
Collapse
Affiliation(s)
- Baoyun Qian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China.
| | - Xiaolong Liu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pingbo Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China
| | - Chengang Ren
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R & D Center, Nanjing Branch, China National Center for Rice Improvement, Provincial Key Laboratory of Agrobiology, Nanjing 210014, PR China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
4
|
Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J. Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism. PLANT PHYSIOLOGY 2015; 167:671-81. [PMID: 25588735 PMCID: PMC4348777 DOI: 10.1104/pp.114.254474] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a crucial enzyme that catalyzes an irreversible primary metabolic reaction in plants.Previous studies have used transgenic plants expressing ectopic PEPC forms with diminished feedback inhibition to examine the role of PEPC in carbon and nitrogen metabolism. To date, the in vivo role of PEPC in carbon and nitrogen metabolism has not been analyzed in plants. In this study, we examined the role of PEPC in plants, demonstrating that PPC1 and PPC2 were highly expressed genes encoding PEPC in Arabidopsis (Arabidopsis thaliana) leaves and that PPC1 and PPC2 accounted for approximately 93% of total PEPC activity in the leaves. A double mutant, ppc1/ppc2, was constructed that exhibited a severe growth-arrest phenotype. The ppc1/ppc2 mutant accumulated more starch and sucrose than wild-type plants when seedlings were grown under normal conditions. Physiological and metabolic analysis revealed that decreased PEPC activity in the ppc1/ppc2 mutant greatly reduced the synthesis of malate and citrate and severely suppressed ammonium assimilation. Furthermore, nitrate levels in the ppc1/ppc2 mutant were significantly lower than those in wild-type plants due to the suppression of ammonium assimilation. Interestingly, starch and sucrose accumulation could be prevented and nitrate levels could be maintained by supplying the ppc1/ppc2 mutant with exogenous malate and glutamate, suggesting that low nitrogen status resulted in the alteration of carbon metabolism and prompted the accumulation of starch and sucrose in the ppc1/ppc2 mutant. Our results demonstrate that PEPC in leaves plays a crucial role in modulating the balance of carbon and nitrogen metabolism in Arabidopsis.
Collapse
|
5
|
Jensen PE, Leister D. Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis. Front Bioeng Biotechnol 2014; 2:7. [PMID: 25024050 PMCID: PMC4090889 DOI: 10.3389/fbioe.2014.00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/03/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Poul Erik Jensen
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Dario Leister
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen , Copenhagen , Denmark ; Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University Munich , Munich , Germany
| |
Collapse
|
6
|
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 2012; 162:134-47. [PMID: 22677697 DOI: 10.1016/j.jbiotec.2012.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
Abstract
Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.
Collapse
|
7
|
Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:826-37. [PMID: 21624033 DOI: 10.1111/j.1467-7652.2011.00592.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The excessive application of nitrogen fertilizer to maximize crop yields causes negative environmental effects such as pollution and ecological imbalance. To overcome this problem, researchers have attempted to improve the nitrogen assimilation capacity of crops. Maize Dof1 (ZmDof1) is a plant-specific transcription factor shown to promote nitrogen assimilation in Arabidopsis thaliana (Arabidopsis) even under nitrogen-deficient conditions. The present study examines the effect of the introduction of the ZmDof1 gene on carbon and nitrogen assimilation in rice. ZmDof1 induced the expression of phosphoenolpyruvate carboxylase (PEPC) genes in transgenic rice plants and transactivated the PEPC promoters in protoplast transient assays, showing similar effects in rice as in Arabidopsis. Transgenic rice expressing ZmDof1 and grown in the presence of 360 μm (nitrogen-sufficient) or 90 μm (nitrogen-deficient) of nitrogen concentrations showed modulation of metabolite content and gene expression associated with the anaplerotic pathway for the TCA cycle, suggesting an increased carbon flow towards nitrogen assimilation. Furthermore, increases in carbon and nitrogen amounts per seedling were found in Dof1 rice grown under nitrogen-deficient conditions. Nitrogen deficiency also resulted in the predominant distribution of nitrogen to roots, accompanied by significant increases in root biomass and modification of the shoot-to-root ratio. Measurement of the CO₂ gas exchange rate showed a significant increase in the net photosynthesis rate in Dof1 rice under nitrogen-deficient conditions. Taken these together, the present study displayed that ZmDof1 expression in rice could induce gene expressions such as PEPC genes, modulate carbon and nitrogen metabolites, increase nitrogen assimilation and enhance growth under low-nitrogen conditions.
Collapse
Affiliation(s)
- Tomohiro Kurai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Smith AA, Plazas MC. In silico Characterization and Homology Modeling of Cyanobacterial Phosphoenolpyruvate Carboxylase Enzymes with Computational Tools and Bioinformatics Servers. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajbmb.2011.319.336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 2011; 436:15-34. [DOI: 10.1042/bj20110078] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO2-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.
Collapse
|
10
|
Hibberd JM, Covshoff S. The regulation of gene expression required for C4 photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:181-207. [PMID: 20192753 DOI: 10.1146/annurev-arplant-042809-112238] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
C(4) photosynthesis is normally associated with the compartmentation of photosynthesis between mesophyll (M) and bundle sheath (BS) cells. The mechanisms regulating the differential accumulation of photosynthesis proteins in these specialized cells are fundamental to our understanding of how C(4) photosynthesis operates. Cell-specific accumulation of proteins in M or BS can be mediated by posttranscriptional processes and translational efficiency as well as by differences in transcription. Individual genes are likely regulated at multiple levels. Although cis-elements have been associated with cell-specific expression in C(4) leaves, there has been little progress in identifying trans-factors. When C(4) photosynthesis genes from C(4) species are placed in closely related C(3) species, they are often expressed in a manner faithful to the C(4) cycle. Next-generation sequencing and comprehensive analysis of the extent to which genes from C(4) species are expressed in M or BS cells of C(3) plants should provide insight into how the C(4) pathway is regulated and evolved.
Collapse
Affiliation(s)
- Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
11
|
Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T, Tomita M, Kawai-Yamada M, Uchimiya H. Evaluation of metabolic alteration in transgenic rice overexpressing dihydroflavonol-4-reductase. ANNALS OF BOTANY 2006; 98:819-25. [PMID: 16849376 PMCID: PMC2806160 DOI: 10.1093/aob/mcl162] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Previous studies have shown that transgenic rice plants overexpressing YK1, which possesses dihydroflavonol-4-reductase (DFR) activity, showed biotic and abiotic stress tolerance. High throughput profiles of metabolites have also been shown in such transgenic plants by Fourier transform ion cyclotron mass spectrometry. In this study, capillary electrophoresis mass spectrometry analysis (CE/MS) was employed to identify precise metabolites such as organic acids, amino acids and sugars. METHODS Using CE/MS, we analysed several metabolites of glycolysis, the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway. In addition, the concentrations of sugars and ion were quantified. KEY RESULTS In YK1 (DFR)-overexpressing plants, the concentrations of cis-aconitate, isocitrate and 2-oxoglutarate were higher in leaves, whereas those of fructose-1,6-bisphosphate and glyceraldehyde-3-phosphate were lower in roots. In seeds, the amounts of free amino acids and metals were altered, whereas sugars in seeds were kept constant. In YK1 calli, an approx. 3-fold increase in glutathione was observed, whereas the activities of glutathione peroxidase and glutathione reductase were concomitantly increased. CONCLUSIONS The overexpression of YK1 (DFR) was associated with slight changes in the amounts of several metabolites analysed in whole plants, whilst glutathione derivatives were substantially increased in suspension-cultured cells.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fukayama H, Tamai T, Taniguchi Y, Sullivan S, Miyao M, Nimmo HG. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:258-68. [PMID: 16762031 DOI: 10.1111/j.1365-313x.2006.02779.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC), a key enzyme of primary metabolism of higher plants, is regulated by reversible phosphorylation, which is catalyzed by PEPC kinase (PPCK). Rice has three functional PPCK genes, OsPPCK1, OsPPCK2 and OsPPCK3, all of which have an intron close to the 3' end of the coding region. A novel control mechanism was found for expression of OsPPCK2, namely alternative transcription initiation, and two different transcripts were detected. The four different transcripts of the OsPPCK genes showed different expression patterns. While OsPPCK1 and OsPPCK3 were highly expressed in roots and at low levels in other organs, the two OsPPCK2 transcripts were expressed in all organs. OsPPCK3 was expressed mostly at night, while the long OsPPCK2 transcripts were present in the leaves only in the daytime. Nitrate supplementation of leaves selectively induced expression of both OsPPCK2 transcripts, while phosphate starvation only induced the shorter one. Such diverse expression patterns of OsPPCK genes suggest the importance and variety of strict activity regulation of PEPC in rice. From the correlation between gene expression and the phosphorylation level of PEPC, which was monitored as that of the maize PEPC expressed in transgenic rice plants, it was concluded that the short OsPPCK2 transcripts were expressed in rice leaf mesophyll cells upon nitrogen supplementation and phosphate starvation, whereas OsPPCK3 participated in the nocturnal phosphorylation of PEPC in these cells. Expression of PPCK proteins in rice leaves was detected by immunoblotting using a specific antiserum, and the expression of two different OsPPCK2 proteins derived from alternative transcription initiation was confirmed.
Collapse
Affiliation(s)
- Hiroshi Fukayama
- Photobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | |
Collapse
|