1
|
Pi X, Sun Y, Liu J, Peng Z, Liang S, Cheng J, Jiang Y. The alteration of composition, conformation, IgE-reactivity and functional attributes in proanthocyanidins-soy protein 7S conjugates formed by alkali-heating treatment: Multi-spectroscopic and proteomic analyses. Int J Biol Macromol 2023; 234:123672. [PMID: 36801228 DOI: 10.1016/j.ijbiomac.2023.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
This study assessed the alteration of IgE-reactivity and functional attribute in soy protein 7S-proanthocyanidins conjugates (7S-80PC) formed by alkali-heating treatment (pH 9.0, 80 °C, 20 min). SDS-PAGE demonstrated that 7S-80PC exhibited the formation of >180 kDa polymers, although the heated 7S (7S-80) had no changes. Multispectral experiments revealed more protein unfolding in 7S-80PC than in 7S-80. Heatmap analysis showed that 7S-80PC showed more alteration of protein, peptide and epitope profiles than 7S-80. LC/MS-MS demonstrated that the content of total dominant linear epitopes was increased by 11.4 % in 7S-80, but decreased by 47.4 % in 7S-80PC. As a result, Western-blot and ELISA showed that 7S-80PC exhibited lower IgE-reactivity than 7S-80, probably because 7S-80PC exhibited more protein-unfolding to increase the accessibility of proanthocyanidins to mask and destroy the exposed conformational epitopes and dominant linear epitopes induced by heating treatment. Furthermore, the successful attachment of PC to soy 7S protein significantly increased antioxidant activity in 7S-80PC. 7S-80PC also showed higher emulsion activity than 7S-80 owing to its high protein flexibility and protein unfolding. However, 7S-80PC exhibited lower foaming properties than 7S-80. Therefore, the addition of proanthocyanidins could decrease IgE-reactivity and alter the functional attribute of the heated soy 7S protein.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Soy Biology of Chinese Education Ministry, Harbin 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zeyu Peng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuxia Liang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Jiangsu DAISY FSMP Co., Ltd, Nantong, Jiangsu 226133, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yunqing Jiang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Pi X, Liu J, Sun Y, Sun X, Sun Z, Cheng J, Guo M. Investigation of the differences in the effect of (-)-epigallocatechin gallate and proanthocyanidins on the functionality and allergenicity of soybean protein isolate. Food Chem X 2023; 17:100566. [PMID: 36845520 PMCID: PMC9945447 DOI: 10.1016/j.fochx.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, the differences in effects of (-)-epigallocatechin gallate (EGCG) and proanthocyanidins (PC) on the functionality and allergenicity of soybean protein isolate (SPI) were studied. SDS-PAGE demonstrated that SPI-PC conjugates exhibited more high-molecular-weight polymers (>180 kDa) than SPI-EGCG conjugates. Structural analysis showed that SPI-PC conjugates exhibited more disordered structures and protein-unfolding, improving the accessibility of PC to modify SPI, compared to SPI-EGCG conjugates. LC/MS-MS demonstrated that PC caused more modification of SPI and major soybean allergens than EGCG, resulting in a lower abundance of epitopes. The successful attachment of EGCG and PC to SPI significantly increased antioxidant capacity in conjugates. Furthermore, SPI-PC conjugates exhibited greater emulsifying activity and lower immunoglobulin E (IgE) binding capacity than SPI-EGCG conjugates, which was attributed to more disordered structure and protein-unfolding in SPI-PC conjugates. It is implied that proanthocyanidins may be promising compounds to interact with soybean proteins to produce functional and hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiafei Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhigang Sun
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianjun Cheng
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Corresponding authors at: Northeast Agricultural University, No. 600, Changjiang Road, Harbin, China.
| | - Mingruo Guo
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China,Department of Nutrition and Food Science, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405, United States,Corresponding authors at: Northeast Agricultural University, No. 600, Changjiang Road, Harbin, China.
| |
Collapse
|
3
|
Characterization of the improved functionality in soybean protein-proanthocyanidins conjugates prepared by the alkali treatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Heat-induced changes in epitopes and IgE binding capacity of soybean protein isolate. Food Chem 2022; 405:134830. [DOI: 10.1016/j.foodchem.2022.134830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
5
|
Effect of proanthocyanidins on protein composition, conformational structure, IgE binding capacities and functional properties in soybean protein. Int J Biol Macromol 2022; 224:881-892. [DOI: 10.1016/j.ijbiomac.2022.10.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
6
|
Chen S, Downs ML. Proteomic Analysis of Oil-Roasted Cashews Using a Customized Allergen-Focused Protein Database. J Proteome Res 2022; 21:1694-1706. [PMID: 35658452 DOI: 10.1021/acs.jproteome.2c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cashews are one of the most prevalent causes of tree nut allergies. However, the cashew proteome is far from complete, which limits the quality of peptide identification in mass spectrometric analyses. In this study, bioinformatics tools were utilized to construct a customized cashew protein database and improve sequence quality for proteins of interest, based on a publicly available cashew genome database. As a result, two additional isoforms for cashew 2S albumins and five other isoforms for cashew 11S proteins were identified, along with several other potential allergens. Using the optimized protein database, the protein profiles of cashew nuts subjected to different oil-roasting conditions (139 and 166 °C for 2-10 min) were analyzed using discovery LC-MS/MS analysis. The results showed that the cashew 2S protein is most heat-stable, followed by 11S and 7S proteins, though protein isoforms might be affected differently. Preliminary target peptide selection indicated that out of the 29 potential targets, 18 peptides were derived from the newly developed database. In the evaluation of thermal processing effects on cashew proteins, several Maillard reaction adducts were also identified. The cashew protein database developed in this study allows for comprehensive analyses of cashew proteins and development of high-quality allergen detection methods.
Collapse
Affiliation(s)
- Shimin Chen
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Pi X, Sun Y, Fu G, Wu Z, Cheng J. Effect of processing on soybean allergens and their allergenicity. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Saha B, Karmakar B, Bhattacharya SG. Cloning, expression and immunological characterisation of Coc n 1, the first major allergen from Coconut pollen. Mol Immunol 2021; 131:33-43. [PMID: 33486354 DOI: 10.1016/j.molimm.2020.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Coconut pollen has been documented to be a major contributor to the aeroallergen load in India, causing respiratory allergy in a large cohort of susceptible individuals. Here, we report the identification of the first major allergen from Coconut pollen, Coc n 1. The full-length sequence of the allergen was determined from previously identified peptides and overexpressed in E. coli. Recombinant Coc n 1 folded into a trimer and was found to possess allergenicity equivalent to its natural counterpart. Proteolytic processing of Coc n 1 led to the formation of an immunodominant ∼20 kDa C-terminal subunit and the site of cleavage was determined by amino acid microsequencing. Five linear IgE binding epitopes were predicted and mapped on the homology modelled structure of Coc n 1. Amongst three immunodominant epitopes, two were present towards the C-terminal end. Coc n 1 was found to belong to the highly diverse cupin superfamily and mimics its structure with known 7S globulin or vicilin allergens but lacks sequence similarity. Using sequence similarity networks, Coc n 1 clustered as a separate group containing unannotated cupin domain proteins and did not include known vicilin allergens except Gly m Bd 28 kDa, a Soybean major allergen. 7S globulins are major storage proteins and food allergens, but presence of such protein in pollen grains is reported for the first time. Further study on Coc n 1 may provide insights into its function in pollen grains and also in the development of immunotherapy to Coconut pollen allergy.
Collapse
Affiliation(s)
- Bodhisattwa Saha
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India; Chemistry Research Laboratory, 12 Mansfield Road, OX4 4TG, Oxford, United Kingdom.
| | - Bijoya Karmakar
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Swati Gupta Bhattacharya
- Division of Plant Biology, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India.
| |
Collapse
|
9
|
Huang X, Zhu Z, Feng H, Zhang Q, Zhang H. Simultaneous determination of multi-allergens in surimi products by LC-MS/MS with a stable isotope-labeled peptide. Food Chem 2020; 320:126580. [DOI: 10.1016/j.foodchem.2020.126580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/30/2019] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
|
10
|
Kern K, Havenith H, Delaroque N, Rautenberger P, Lehmann J, Fischer M, Spiegel H, Schillberg S, Ehrentreich-Foerster E, Aurich S, Treudler R, Szardenings M. The immunome of soy bean allergy: Comprehensive identification and characterization of epitopes. Clin Exp Allergy 2019; 49:239-251. [PMID: 30267550 DOI: 10.1111/cea.13285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND The precise mapping of multiple antibody epitopes recognized by patients' sera allows a more detailed and differentiated understanding of immunological diseases. It may lead to the development of novel therapies and diagnostic tools. OBJECTIVE Mapping soy bean specific epitopes relevant for soy bean allergy patients and persons sensitized to soy bean, and analysis of their IgE/IgG binding spectrum. METHODS Identification of epitopes using sera, applying an optimized peptide phage display library followed by next-generation sequencing, specially designed in silico data analysis and subsequent peptide microarray analysis. RESULTS We were able to identify more than 400 potential epitope motifs in soy bean proteins. More than 60% of them have not yet been described as potential epitopes. Eighty-three peptides, representing the 42 most frequently found epitope candidates, were validated by microarray analysis using 50 sera from people who have been tested positive in skin prick test (SPT). Of these peptides, 56 were bound by antibodies, 55 by serum IgE, 43 by serum IgG and 30 by both. Person-specific epitope patterns were found for each individual and protein. CONCLUSIONS For individuals with clinical symptoms, epitope resolved analyses reveal a high prevalence of IgE binding to a few soy bean specific epitopes. Evaluation of individual immune profiles of patients with soy bean sensitization allows the identification of peptides that do facilitate studying individual IgE/IgG epitope binding patterns. This enables discrimination of sensitization from disease, such assay test has the potential to replace SPT assays.
Collapse
Affiliation(s)
- Karolin Kern
- Ligand Development Unit, Fraunhofer IZI, Leipzig, Germany
| | - Heide Havenith
- Molecular Biotechnology Division, Fraunhofer IME, Aachen, Germany
| | | | | | - Jörg Lehmann
- Department Therapy Validation, Fraunhofer IZI, Leipzig, Germany
| | | | - Holger Spiegel
- Molecular Biotechnology Division, Fraunhofer IME, Aachen, Germany
| | | | | | - Stefanie Aurich
- Department of Dermatology, Venereology and Allergology, Comprehensive Allergy Centre, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Regina Treudler
- Department of Dermatology, Venereology and Allergology, Comprehensive Allergy Centre, Universitätsklinikum Leipzig, Leipzig, Germany
| | | |
Collapse
|
11
|
Luthria DL, Maria John KM, Marupaka R, Natarajan S. Recent update on methodologies for extraction and analysis of soybean seed proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5572-5580. [PMID: 29971799 DOI: 10.1002/jsfa.9235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Soybean is one of the best sources of plant protein. Development of improved soybean cultivars through classical breeding and new biotech approaches is important to meet the growing global demand for soybeans. There is a critical need to investigate changes in protein content and profiles to ensure the safety and nutritional quality of new soybean varieties and their food products. A proteomics study begins with an optimal combination of extraction, separation and detection approaches. This review attempts to provide a summary of current updates in the methodologies used for extraction, separation and detection of protein from soybean, the basic foundations for good proteomic research. This information can be effectively used to investigate modifications in protein content and profiles in new varieties of soybeans and other crops. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Devanand L Luthria
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | | - Ramesh Marupaka
- Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | | |
Collapse
|
12
|
Zhu Y, Liang X, Zhang H, Feng W, Liu Y, Zhang F, Linhardt RJ. A comparative secretome analysis of industrial Aspergillus oryzae and its spontaneous mutant ZJGS-LZ-21. Int J Food Microbiol 2017; 248:1-9. [PMID: 28237882 DOI: 10.1016/j.ijfoodmicro.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Aspergillus oryzae koji plays a crucial role in fermented food products due to the hydrolytic activities of secreted enzymes. In the present study, we performed a comparative secretome analysis of the industrial strain of Aspergillus oryzae 3.042 and its spontaneous mutantZJGS-LZ-21. One hundred and fifty two (152) differential protein spots were excised (p<0.05), and 25 proteins were identified. Of the identified proteins, 91.3% belonged to hydrolytic enzymes acting on carbohydrates or proteins. Consistent with their enzyme activities, the expression of 14 proteins involved in the degradation of cellulose, hemicellulose, starch and proteins, increased in the ZJGS-LZ-21isolate. In particular, increased levels of acid protease (Pep) may favor the degradation of soy proteins in acidic environments and promote the cleavage of allergenic soybean proteins in fermentation, resulting in improvements of product safety and quality. The ZJGS-LZ-21 isolate showed higher protein secretion and increased hydrolytic activities than did strain 3.042, indicating its promising application in soybean paste fermentation.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Xinle Liang
- Department of Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China.
| | - Hong Zhang
- Department of Biochemical Engineering, Zhejiang Gongshang University, Hangzhou 310025, China
| | - Wei Feng
- Zhejiang Wuweihe Food Co. Ltd, Huzhou 313213, China
| | - Ye Liu
- Zhejiang Wuweihe Food Co. Ltd, Huzhou 313213, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
13
|
Xi J, Yan H. Epitope mapping and identification of amino acids critical for mouse IgG-binding to linear epitopes on Gly m Bd 28K. Biosci Biotechnol Biochem 2016; 80:1973-9. [PMID: 27033966 DOI: 10.1080/09168451.2016.1165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gly m Bd 28K is one of the major allergens in soybeans, but there is limited information on its IgG-binding epitopes. Thirty-four overlapping peptides that covered the entire sequence of Gly m Bd 28K were synthesized, and 3 monoclonal antibodies against Gly m Bd 28K were utilized to identify the IgG-binding regions of Gly m Bd 28K. Three dominant peptides corresponding to (28)GDKKSPKSLFLMSNS(42)(G28-S42), (56)LKSHGGRIFYRHMHI(70)(L56-I70), and (154)ETFQSFYIGGGANSH(168)(E154-H168) were recognized. L56-I70 is the most important epitope, and a competitive ELISA indicated that it could inhibit the binding of monoclonal antibody to Gly m Bd 28K protein. Alanine scanning of L56-I70 documented that F64, Y65, and R66 were the critical amino acids of this epitope. Two bioinformatics tools, ABCpred and BepiPred, were used to predict the epitopes of Gly m Bd 28K, and the predictions were compared with the epitopes that we had located by monoclonal antibodies.
Collapse
Affiliation(s)
- Jun Xi
- a College of Food Science and Technology , Henan University of Technology , Zhengzhou , People's Republic of China
| | - Huili Yan
- a College of Food Science and Technology , Henan University of Technology , Zhengzhou , People's Republic of China
| |
Collapse
|
14
|
Candreva ÁM, Smaldini PL, Curciarello R, Fossati CA, Docena GH, Petruccelli S. The Major Soybean Allergen Gly m Bd 28K Induces Hypersensitivity Reactions in Mice Sensitized to Cow's Milk Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1590-9. [PMID: 26859063 DOI: 10.1021/acs.jafc.5b05623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reactions to soy have been reported in a proportion of patients with IgE-mediated cow's milk allergy (CMA). In this work, we analyzed if Gly m Bd 28K/P28, one of the major soybean allergens, is a cross-reactive allergen with cow milk proteins (CMP). We showed that P28 was recognized by IgE sera from CMA patients and activated human peripheral basophils degranulation. Moreover, IgE sera of mice exclusively sensitized to CMP recognized P28. Splenocytes from sensitized animals secreted IL-5 and IL-13 when incubated with CMP or soy proteins, but only IL-13 when treated with P28. In addition, a skin test was strongly positive for CMP and weakly positive for P28. Remarkably, milk-sensitized mice showed hypersensitivity symptoms following sublingual challenge with P28 or CMP. With the use of bioinformatics' tools seven putative cross-reactive epitopes were identified. In conclusion, using in vitro and in vivo tests we demonstrated that P28 is a novel cross-reactive allergen with CMP.
Collapse
Affiliation(s)
- Ángela María Candreva
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| | - Paola Lorena Smaldini
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| | - Renata Curciarello
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| | - Carlos Alberto Fossati
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| | - Guillermo Horacio Docena
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, and ‡Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)- CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , La Plata, 1900, Argentina
| |
Collapse
|
15
|
Gábrišová D, Klubicová K, Danchenko M, Gömöry D, Berezhna VV, Skultety L, Miernyk JA, Rashydov N, Hajduch M. Do Cupins Have a Function Beyond Being Seed Storage Proteins? FRONTIERS IN PLANT SCIENCE 2016; 6:1215. [PMID: 26793203 PMCID: PMC4711306 DOI: 10.3389/fpls.2015.01215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/17/2015] [Indexed: 05/24/2023]
Abstract
Plants continue to flourish around the site of the Chernobyl Nuclear Power Plant disaster. The ability of plants to transcend the radio-contaminated environment was not anticipated and is not well understood. The aim of this study was to evaluate the proteome of flax (Linum usitatissimum L.) during seed filling by plants grown for a third generation near Chernobyl. For this purpose, seeds were harvested at 2, 4, and 6 weeks after flowering and at maturity, from plants grown in either non-radioactive or radio-contaminated experimental fields. Total proteins were extracted and the two-dimensional gel electrophoresis (2-DE) patterns analyzed. This approach established paired abundance profiles for 130 2-DE spots, e.g., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields. Based on Analysis of Variance (ANOVA) followed by sequential Bonferroni correction, eight of the paired abundance profiles were discordant. Results from tandem mass spectrometry show that four 2-DE spots are discordant because they contain fragments of the cupin superfamily-proteins. Most of the fragments were derived from the N-terminal half of native cupins. Revisiting previously published data, it was found that cupin-fragments were also involved with discordance in paired abundance profiles of second generation flax seeds. Based on these observations we present an updated working model for the growth and reproductive success of flax in a radio-contaminated Chernobyl environment. This model suggests that the increased abundance of cupin fragments or isoforms and monomers contributes to the successful growth and reproduction of flax in a radio-contaminated environment.
Collapse
Affiliation(s)
- Daša Gábrišová
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
| | - Katarína Klubicová
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
| | - Maksym Danchenko
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | | | - Valentyna V. Berezhna
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Ludovit Skultety
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Ján A. Miernyk
- United States Department of Agriculture, Agricultural Research Service, University of MissouriColumbia, MO, USA
| | - Namik Rashydov
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of UkraineKyiv, Ukraine
| | - Martin Hajduch
- Department of Developmental and Reproduction Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of SciencesNitra, Slovakia
- Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| |
Collapse
|
16
|
Liu B, Teng D, Wang X, Wang J. Detection of the soybean allergenic protein Gly m Bd 28K by an indirect enzyme-linked immunosorbent assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:822-8. [PMID: 23317377 DOI: 10.1021/jf303076w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The full-length cDNA sequence of Gly m Bd 28K was chemically synthesized and expressed in Escherichia coli (E. coli) BL21 (DE3) as an inclusion body under the induction of 0.2 mmol/L of isopropyl β-D-1-thiogalactopyranoside (IPTG). The purity of the recombinant protein was over 90% following Ni-nitrilotriacetic acid (Ni-NTA) affinity chromatography, and its molecular weight was 29.71 kDa. The polyclonal antibody (pAB) against Gly m Bd 28K was prepared and referred to as pAB-28K, and it exhibited high specificity for the protein in soybean meal. We established an indirect enzyme-linked immunosorbent assay (iELISA) using the pAB-28K and the recombinant Gly m Bd 28K protein to determine the Gly m Bd 28K content in soybean products. The R(2) value of the standard curve was 0.9910, the average relative standard deviation (RSD) was 16.93%, and the average recovery was 95.50%, which indicated that the iELISA was highly reproducible and accurate. Therefore, the pAB-28K and the iELISA provide valuable tools for the rapid and sensitive detection of Gly m Bd 28K in food and feed products from soybeans. This protocol meets the technical requirements for quality control and food safety as related to soybean.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|
17
|
López E, Cuadrado C, Burbano C, Jiménez MA, Rodríguez J, Crespo JF. Effects of autoclaving and high pressure on allergenicity of hazelnut proteins. J Clin Bioinforma 2012; 2:12. [PMID: 22616776 PMCID: PMC3467176 DOI: 10.1186/2043-9113-2-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/08/2012] [Indexed: 12/19/2022] Open
Abstract
Background Hazelnut is reported as a causative agent of allergic reactions. However it is also an edible nut with health benefits. The allergenic characteristics of hazelnut-samples after autoclaving (AC) and high-pressure (HHP) processing have been studied and are also presented here. Previous studies demonstrated that AC treatments were responsible for structural transformation of protein structure motifs. Thus, structural analyses of allergen proteins from hazelnut were carried out to observe what is occurring in relation to the specific-IgE recognition of the related allergenic proteins. The aims of this work are to evaluate the effect of AC and HHP processing on hazelnut in vitro allergenicity using human-sera and to analyse the complexity of hazelnut allergen-protein structures. Methods Hazelnut-samples were subjected to AC and HHP processing. The specific IgE- reactivity was studied in 15 allergic clinic-patients via western blotting analyses. A series of homology-based-bioinformatics 3D-models (Cora 1, Cora 8, Cora 9 and Cora 11) were generated for the antigens included in the study to analyse the co mplexity of their protein structure. This study is supported by the Declaration of Helsinki and subsequent ethical guidelines. Results A severe reduction in vitro in allergenicity to hazelnut after AC processing was observed in the allergic clinic-patients studied. The specific-IgE binding of some of the described immunoreactive hazelnut protein-bands: Cora 1 ~18KDa, Cora 8 ~9KDa, Cora 9 ~35-40KDa and Cora 11 ~47-48 KDa decreases. Furthermore a relevant glycosylation was assigned and visualized via structural analysis of proteins (3D-modelling) for the first time in the protein-allergen Cora 11 showing a new role which could open a new door for allergenicity-unravellings. Conclusion Hazelnut allergenicity-studies in vivo via Prick-Prick and other means using AC processing are crucial to verify the data we observed via in vitro analyses. Glycosylation studies provided us with clues to elucidate, in the near future, mechanisms of the structures that contribute to hazelnut allergenicity, which thus, in turn, help alleviate food allergens.
Collapse
Affiliation(s)
- Elena López
- Centro de Investigación (i + 12) del Hospital Universitario 12 de Octubre, Avda de Córdoba, s/n, 28041, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Wu YM, Guan RX, Liu ZX, Li RZ, Chang RZ, Qiu LJ. Synthesis and degradation of the major allergens in developing and germinating soybean seed. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:4-14. [PMID: 22123664 DOI: 10.1111/j.1744-7909.2011.01092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gly m Bd 28K, Gly m Bd 30K and Gly m Bd 60K are the major soybean (Glycine max (L.) Merr.) allergens limiting the consumption of a good protein source for sensitive individuals. However, little is known about their temporal-spatial expression during seed development and upon germination. The present data shows that soy allergens accumulated in both the embryonic axes and cotyledon, but expression patterns differed depending on the specific allergen. Allergens accumulated sooner and to a greater level in cotyledons than in embryonic axes. Gly m Bd 28 began at 14 d after flowering, 7 to 14 d earlier than Gly m Bd 30K and Gly m Bd 60K. Comparatively, their degradation was faster and more profound in embryonic axes than in cotyledons. Gly m Bd 60K began to decline at 36 h after imbibition and remained detectable up to 108 h in cotyledons. In contrast, the Glym Bd 60K protein was reduced at 24 h, and eventually disappeared at 96 h . In cotyledons Gly m Bd 28K first declined at 24 h, then increased from 36 h to 48 h, followed by its large reduction at 72 h after seed germination. These findings provide useful information on soy allergen biosynthesis and will help move forward towards developing a hypoallergenic soybean for safer food.
Collapse
Affiliation(s)
- Yong-Mei Wu
- Center of Agricultural Biotechnology, Shanxi Agricultural University, Taigu 030801, China
| | | | | | | | | | | |
Collapse
|
19
|
Krishnan HB, Jang S, Kim WS, Kerley MS, Oliver MJ, Trick HN. Biofortification of soybean meal: immunological properties of the 27 kDa γ-zein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1223-8. [PMID: 21226519 DOI: 10.1021/jf103613s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Legumes, including soybeans ( Glycine max ), are deficient in sulfur-containing amino acids, which are required for the optimal growth of monogastric animals. This deficiency can be overcome by expressing heterologous proteins rich in sulfur-containing amino acids in soybean seeds. A maize 27 kDa γ-zein, a cysteine-rich protein, has been successfully expressed in several crops including soybean, barley, and alfalfa with the intent to biofortify these crops for animal feed. Previous work has shown that the maize 27 kDa zein can withstand digestion by pepsin and elicit an immunogenic response in young pigs. By use of sera from patients who tested positive by ImmunoCAP assay for elevated IgE to maize proteins, specific IgE binding to the 27 kDa γ-zein is demonstrated. Bioinformatic analysis using the full-length and 80 amino acid sliding window FASTA searches identified significant sequence homology of the 27 kDa γ-zein with several known allergens. Immunoblot analysis using human serum that cross-reacts with maize seed proteins also revealed specific IgE-binding to the 27 kDa γ-zein in soybean seed protein extracts containing the 27 kDa zein. This study demonstrates for the first time the allergenicity potential of the 27 kDa γ-zein and the potential that this protein has to limit livestock performance when used in soybeans that serve as a biofortified feed supplement.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture , Columbia, Missouri 65211, United States.
| | | | | | | | | | | |
Collapse
|
20
|
Natarajan SS. Natural variability in abundance of prevalent soybean proteins. Regul Toxicol Pharmacol 2010; 58:S26-9. [PMID: 20709130 DOI: 10.1016/j.yrtph.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/27/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Soybean is an inexpensive source of protein for humans and animals. Genetic modifications (GMO) to soybean have become inevitable on two fronts, both quality and yield will need to improve to meet increasing global demand. To ensure the safety of the crop for consumers it is important to determine the natural variation in seed protein constituents as well as any unintended changes that may occur in the GMO as a result of genetic modification. Understanding the natural variation of seed proteins in wild and cultivated soybeans that have been used in conventional soybean breeding programs is critical for determining unintended protein expression in GMO soybeans. In recent years, proteomic technologies have been used as an effective analytical tool for examining modifications of protein profiles. We have standardized and applied these technologies to determine and quantify the spectrum of proteins present in soybean seed. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and liquid chromatography mass spectrometry (LC-MS) for the separation, quantification, and identification of different classes of soybean seed proteins. We have observed significant variations in different classes of proteins, including storage, allergen and anti-nutritional protein profiles, between non-GMO cultivated and wild soybean varieties. This information is useful for scientists and regulatory agencies to determine whether the unintended expression of proteins found in transgenic soybean is within the range of natural variation.
Collapse
Affiliation(s)
- Savithiry S Natarajan
- USDA-ARS, Soybean Genomics and Improvement Laboratory, PSI, Beltsville, MD 20705, USA.
| |
Collapse
|
21
|
Natarajan SS, Xu C, Cregan P, Caperna TJ, Garrett WM, Luthria D. Utility of proteomics techniques for assessing protein expression. Regul Toxicol Pharmacol 2009; 54:S32-6. [PMID: 19133307 DOI: 10.1016/j.yrtph.2008.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Proteomic technologies are currently used as an effective analytical tool for examining modifications in protein profiles. Understanding the natural variation of soybean seed proteins is necessary to evaluate potential unintended (collateral) effects due to transgenic modifications in genetically modified (GMO) soybeans. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to separate, identify and quantify the different classes of soybean seed proteins. Sixteen soybean genotypes, including four wild and twelve cultivated genotypes, belonging to four different subgroups were used as models for protein profile evaluation. Significant variations of allergen and anti-nutritional protein profiles were observed between two different groups, cultivated and wild soybean genotypes. However, only minor variations in protein profiles were observed within the soybean samples from the same group (cultivated or wild). These results may be useful to scientists needing to compare GMO and non-GMO soybeans once additional data are generated on additional soybean varieties and the same varieties grown at different geographical locations.
Collapse
Affiliation(s)
- Savithiry S Natarajan
- USDA-ARS, Soybean Genomics and Improvement Laboratory, PSI, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Kim WS, Ho HJ, Nelson RL, Krishnan HB. Identification of several gy4 nulls from the USDA soybean germplasm collection provides new genetic resources for the development of high-quality tofu cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11320-6. [PMID: 18991447 DOI: 10.1021/jf801831w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tofu, a cheese-like food made by curdling soy milk, is a major dietary staple of Asian countries. Consumption of tofu and other soy products is steadily increasing in North America due to its well-known health benefits. Soybean A(5), A(4), and B(3) peptide null lines 'Enrei' and 'Raiden' are commonly utilized in breeding programs to develop high-quality tofu cultivars. To expand the genetic diversity it is desirable to identify and utilize other A(5), A(4), and B(3) null genotypes in the development of improved tofu cultivars that are adapted to North American conditions. In this study were screened diverse soybean accessions from the USDA Soybean Germplasm Collection to identify Gy4 mutants, the locus that controls A(5), A(4), and B(3) peptide production. Analysis of total seed proteins from 485 soybean lines by SDS-PAGE enabled the identification of 38 accessions that lacked the A(5), A(4), and B(3) peptides. These accessions showed marked differences in seed size and seed coat color and represented different maturity groups ranging from 0 to IX. To ascertain the molecular basis for the lack of A(5), A(4), and B(3) peptides in the newly identified Gy4 mutants, the nucleotide sequence of a portion of the Gy4 gene was determined from eight soybean accessions representing different maturity groups. These eight Gy4 mutants revealed a single point mutation that changed the translation initiation codon ATG to ATA, resulting in the A(5), A(4), and B(3) null phenotype. The newly identified Gy4 mutants from this study will enable plant breeders to expand the genetic diversity of North American food-quality soybeans and also aid in the development of hypoallergenic soybeans.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, 65211, USA
| | | | | | | |
Collapse
|
23
|
Palmer NA, Sattler SE, Saathoff AJ, Funnell D, Pedersen JF, Sarath G. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. PLANTA 2008; 229:115-27. [PMID: 18795321 DOI: 10.1007/s00425-008-0814-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 08/30/2008] [Indexed: 05/02/2023]
Abstract
Sorghum (Sorghum bicolor (L.). Moench) BMR-6 and BMR-12 encode cinnamylalcohol dehydrogenase and caffeic acid-O-methyltransferase, respectively. We have evaluated the impact of two bmr alleles, bmr-6 and bmr-12, respectively, on soluble and wall-bound aromatics in near isogenic, wild-type (WT), bmr-6, bmr-12 and double-mutant (DM; bmr-6 and bmr-12) plants in two genetic backgrounds, RTx430 and Wheatland. Immunoblots confirmed that COMT protein was essentially absent in bmr-12 and DM plants, but was present in bmr-6 and WT plants. In contrast, although CAD activity was not detected in bmr-6 and DM plants, proteins crossreacting to anti-CAD sera were found in stem extracts from all genotypes. In both sorghum backgrounds, WT plants had lowest amounts of free aromatics, higher levels of cell wall-bound pCA and FA esters and guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) lignins. Soluble aromatics and cell wall phenolic ester content in Wheatland DM plants resembled that of Wheatland bmr-6 plants, whereas in the RTx430 background, levels of these components in the DM plants more closely resembled those observed in bmr-12 plants. In both backgrounds, bmr-6 plants exhibited reduced levels of G, S, and H lignins relative to WT, and increased incorporation of G-indene into lignin. In bmr-12 plants, there was greater incorporation of G- and 5-hydroxyguaiacyl (5-OHG) lignin into cell walls. Histochemical staining of internode sections from Wheatland plants indicated that apparent lignification of cortical sclerenchyma and vascular bundle fibers was greatest and most uniform in WT plants. Relative staining intensity of these tissues was decreased in bmr-6, followed by bmr-12 plants. DM plants exhibited poor staining of cortical sclerenchyma and vascular bundle fibers.
Collapse
Affiliation(s)
- Nathan A Palmer
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, East Campus, 314 Biochemistry Hall, Lincoln, NE 68583-0737, USA
| | | | | | | | | | | |
Collapse
|
24
|
Xiang P, Baird LM, Jung R, Zeece MG, Markwell J, Sarath G. P39, a novel soybean protein allergen, belongs to a plant-specific protein family and is present in protein storage vacuoles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2266-2272. [PMID: 18284203 DOI: 10.1021/jf073292x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Soybean lecithins are seeing increasing use in industry as an emulsifier and food additive. They are also a growing source of human food allergies, which arise principally from the proteins fractionating with the lecithin fraction during manufacture. A previous study (Gu, X.; Beardslee, T.; Zeece, M.; Sarath, G.; Markwwell, J. Int Arch. Allergy Immunol. 2001, 126, 218-225) identified several allergenic proteins in soybean lecithins and a soybean IgE-binding protein termed P39 was discovered. However, very little was known about this protein except that it was coded by the soybean genome. This paper investigates key biological and immunological properties of this potential soybean lecithin allergen. P39 is encoded by a multigene family in soybeans and in several other higher plants. The soybean P39-1 protein and its essentially indistinguishable homologue, P39-2, have been cloned and studied. These proteins and their homologues belong to a family of plant-specific proteins of unknown function. In soybeans, P39-1 is seed specific, and its transcript levels are highest in developing seeds and decline during seed maturation. In contrast, P39 protein was detectable only in the fully mature, dry seed. Subcellular fractionation revealed that P39 protein was strongly associated with oil bodies; however, immunolocalization indicated P39 was distributed in the matrix of the protein storage vacuoles, suggesting that association with oil bodies was an artifact arising from the extraction procedure. By the use of recombinant techniques it has also been documented that IgE-binding epitopes are present on several different portions of the P39-1 polypeptide.
Collapse
Affiliation(s)
- Ping Xiang
- British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Fu CJ, Jez JM, Kerley MS, Allee GL, Krishnan HB. Identification, characterization, epitope mapping, and three-dimensional modeling of the alpha-subunit of beta-conglycinin of soybean, a potential allergen for young pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4014-20. [PMID: 17439152 DOI: 10.1021/jf070211o] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soybean meal (SBM), the major byproduct of soybean oil extraction, is the main protein source for swine diets globally. In the United States, 8.6 million metric tons of SBM was used in swine rations in 2004. The pathological effect and immunological response of SBM feeding have been demonstrated in swine. In this study, we have utilized plasma collected from piglet feed with SBM in immunoblot analysis to detect proteins that elicited antigenic responses. We have identified soybean beta-conglycinin alpha-subunit as being a potential allergen for young piglets. Characterization of this protein indicated that deglycosylation and pepsin digestion did not eliminate immunoreactivity of this protein. Epitope mapping utilizing planar cellulose supports technology (SPOT) showed that three peptides spanning amino acids S185-R231 were critical for the allergenicity. A computer-generated three-dimensional structure model of the alpha-subunit of beta-conglycinin indicated that the antigenic epitopes were located on the surface of the protein. Information from this study may assist in the construction of recombinant nonallergenic soybean protein useable for both immunotherapy and the potential production of hypoallergenic soybean plants.
Collapse
Affiliation(s)
- Chunjiang J Fu
- Division of Animal Science, and Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|