1
|
Sahraei F, Solgi M, Taghizadeh M. The application of methyl jasmonate in combination with ascorbic acid on morphological traits and some biochemical parameters in red willow. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:185-193. [PMID: 36875731 PMCID: PMC9981849 DOI: 10.1007/s12298-023-01284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Red willow, an economically important ornamental shrub in Iran, is characterized mainly by its red stems, making it a valuable ornamental plant in flower markets. This study aimed to investigate the effect of foliar application of methyl jasmonate (MeJA) and ascorbic acid on the morphological and biochemical characteristics of red willow. The experiment was conducted as a completely randomized design with two factors and three replications. Juvenile willow shrubs (3 to 4-year-old red) were cultivated in Hossein Abad village, Markazi province, Iran. The experimental treatments consisted of MeJA (0, 100 and 200 mgL-1) and ascorbic acid (0, 100 and 200 mgL-1). Several traits were evaluated such as the longest branch and two nearest heights, total shrub diameter, the longest branch diameter (at lower, middle and upper parts), total anthocyanin content of the longest branch, salicin content, leaf chlorophyll (a, b and a + b) content, and carotenoid content. In addition, the number, length and width of leaves from the longest branch, fresh and dry weight of branches were analyzed. Results revealed that the application of MeJA and ascorbic acid significantly increased growth characteristics (height, leaf number, total shrub diameter, branch diameter, fresh and dry weight and total anthocyanin content) of red willow shrubs. Furthermore, it was found that 200 mgL-1 treatments of these two substances produced the best results. Red willow shrub growth parameters and yield were also improved by the interaction of these two factors. Additionally, a significant correlation was found between total anthocyanin content and leaf number of the longest branch, total shrub diameter, the height of nearest branch 2 and the plant fresh weight.
Collapse
Affiliation(s)
- Fatemeh Sahraei
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mousa Solgi
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mina Taghizadeh
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| |
Collapse
|
2
|
Kumari A, Ray K, Sadhna S, Pandey AK, Sreelakshmi Y, Sharma R. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS One 2017; 12:e0176978. [PMID: 28481937 PMCID: PMC5421760 DOI: 10.1371/journal.pone.0176978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/20/2017] [Indexed: 11/21/2022] Open
Abstract
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones.
Collapse
Affiliation(s)
- Alka Kumari
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Kamalika Ray
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Sadhna Sadhna
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Arun Kumar Pandey
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. JOURNAL OF PLANT PHYSIOLOGY 2016; 191:101-10. [PMID: 26748373 DOI: 10.1016/j.jplph.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/23/2023]
Abstract
The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Kirill Somov
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450054, Russia
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia
| | - Farida Shakirova
- Institute of Biochemistry and Genetics, Ufa Research Centre, Russian Academy of Sciences, pr. Octyabrya, 71, Ufa 450054, Russia.
| |
Collapse
|
4
|
D'Angeli S, Falasca G, Matteucci M, Altamura MM. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation. THE NEW PHYTOLOGIST 2013; 197:123-138. [PMID: 23078289 DOI: 10.1111/j.1469-8137.2012.04372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities.
Collapse
Affiliation(s)
- S D'Angeli
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - G Falasca
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M Matteucci
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M M Altamura
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
5
|
Maury S, Trap-Gentil MV, Hébrard C, Weyens G, Delaunay A, Barnes S, Lefebvre M, Joseph C. Genic DNA methylation changes during in vitro organogenesis: organ specificity and conservation between parental lines of epialleles. PHYSIOLOGIA PLANTARUM 2012; 146:321-335. [PMID: 22486767 DOI: 10.1111/j.1399-3054.2012.01634.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During differentiation, in vitro organogenesis calls for the adjustment of the gene expression program toward a new fate. The role of epigenetic mechanisms including DNA methylation is suggested but little is known about the loci affected by DNA methylation changes, particularly in agronomic plants for witch in vitro technologies are useful such as sugar beet. Here, three pairs of organogenic and non-organogenic in vitro cell lines originating from different sugar beet (Beta vulgaris altissima) cultivars were used to assess the dynamics of DNA methylation at the global or genic levels during shoot or root regeneration. The restriction landmark genome scanning for methylation approach was applied to provide a direct quantitative epigenetic assessment of several CG methylated genes without prior knowledge of gene sequence that is particularly adapted for studies on crop plants without a fully sequenced genome. The cloned sequences had putative roles in cell proliferation, differentiation or unknown functions and displayed organ-specific DNA polymorphism for methylation and changes in expression during in vitro organogenesis. Among them, a potential ubiquitin extension protein 6 (UBI6) was shown, in different cultivars, to exhibit repeatable variations of DNA methylation and gene expression during shoot regeneration. In addition, abnormal development and callogenesis were observed in a T-DNA insertion mutant (ubi6) for a homologous sequence in Arabidopsis. Our data showed that DNA methylation is changed in an organ-specific way for genes exhibiting variations of expression and playing potential role during organogenesis. These epialleles could be conserved between parental lines opening perspectives for molecular markers.
Collapse
Affiliation(s)
- Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, USC1328 ARCHE INRA, rue de Chartres, BP 6759, Faculté des Sciences, Université d'Orléans, 45067 Orléans cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6125-38. [PMID: 23028017 PMCID: PMC3481204 DOI: 10.1093/jxb/ers261] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs.
Collapse
Affiliation(s)
- Irene Stenzel
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Carolin Delker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nils Kirmse
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Diana Schmidt
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Otto Miersch
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Claus Wasternack
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Savona M, Mattioli R, Nigro S, Falasca G, Della Rovere F, Costantino P, De Vries S, Ruffoni B, Trovato M, Altamura MM. Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:471-88. [PMID: 21976770 DOI: 10.1093/jxb/err295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genetic basis of stem cell specification in somatic embryogenesis and organogenesis is still obscure. SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes are involved in embryogenesis and organogenesis in numerous species. In vitro culture of Cyclamen persicum immature ovules provides a system for investigating stem cell formation and maintenance, because lines forming either organs or embryos or callus without organs/embryos are available for the same cultivar and plant growth regulator conditions. The present aim was to exploit this property of cyclamen cultures to understand the role of SERK(s) in stem cell formation and maintenance in somatic embryogenesis and organogenesis in vitro, in comparison with expression in planta. CpSERK1 and CpSERK2 were isolated from embryogenic callus. CpSERK1 and CpSERK2 levels by RT-PCR showed that expression is high in embryogenic, moderate in organogenic, and null in recalcitrant calli. in situ hybridizations showed that the expression of both genes started in clumps of pluripotent stem cells, from which both pre-embryogenic aggregates and organ meristemoids derived, and continued in their trans-amplifying, meristem-like, derivatives. Expression declined in organ meristemoids, in parallel with a partial loss of meristematization. In mature somatic embryos, and in shoot and root primordia, CpSERK1 and CpSERK2 were expressed in meristems, and similar patterns occurred in zygotic embryo and primary meristems in planta. The results point to SERK1 and SERK2 as markers of pluripotency in cyclamen. It is proposed that the high expression of these genes in the trans-amplifying derivatives of the stem cells maintains a pluripotent condition leading to totipotency and, consequently, somatic embryogenesis.
Collapse
Affiliation(s)
- M Savona
- 'Sapienza' University of Rome, Dept. of Environmental Biology, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fattorini L, Falasca G, Kevers C, Rocca LM, Zadra C, Altamura MM. Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers. PLANTA 2009; 231:155-68. [PMID: 19885676 DOI: 10.1007/s00425-009-1035-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/01/2009] [Indexed: 05/04/2023]
Abstract
Adventitious roots (ARs) are induced by auxins. Jasmonic acid (JA) and methyl jasmonate (MeJA) are also plant growth regulators with many effects on development, but their role on ARs needs investigation. To this aim, we analyzed AR formation in tobacco thin cell layers (TCLs) cultured with 0.01-10 microM MeJA, either under root-inductive conditions, i.e., on medium containing 10 microM indole-3-butyric acid (IBA) and 0.1 microM kinetin, or without hormones. The explants were excised from the cultivars Samsun, Xanthii and Petite Havana, and from genotypes with altered AR-forming ability in response to auxin, namely the non-rooting rac mutant and the over-rooting Agrobacterium rhizogenes rolB transgenic line. Results show that NtRNR1 (G1/S) and Ntcyc29 (G2/M) gene activity, cell proliferation and meristemoid formation were stimulated in hormone-cultured TCLs by submicromolar MeJA concentrations. The meristemoids developed either into ARs and xylogenic nodules, or into xylogenic nodules only (rac TCLs). MeJA-induced meristemoid over-production characterized rolB TCLs. No rooting or xylogenesis occurred under hormone-free conditions, independently of MeJA and genotype. Endogenous JA progressively (days 1-4) increased in hormone-cultured TCLs in the absence of MeJA. JA levels were enhanced by 0.1 microM MeJA, on both days 1 and 4. Endogenous IBA was the only auxin detected, both in the free form and as IBA-glucose. Free IBA increased up to day 2, remaining constant thereafter (day 4). Its level was enhanced by 0.1 microM MeJA only on day 1, while IBA conjugation was not affected by MeJA. Taken together, these results show that an interplay between jasmonates and auxins regulates AR formation and xylogenesis in tobacco TCLs.
Collapse
Affiliation(s)
- Laura Fattorini
- Dipartimento di Biologia Vegetale, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Stoynova-Bakalova E, Petrov PI, Gigova L, Baskin TI. Differential effects of methyl jasmonate on growth and division of etiolated zucchini cotyledons. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:476-484. [PMID: 18557907 DOI: 10.1111/j.1438-8677.2008.00034.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The jasmonates are well studied in the context of plant defence but increasingly are also recognised as playing roles in development. In many systems, jasmonates antagonise the effects of cytokinins. The aim of the present work was to elucidate interactions between methyl jasmonate and cytokinin (benzyladenine) in regulating growth of zucchini (Cucurbita pepo L., cv. Cocozelle, var. Tripolis) cotyledons, taking advantage of the ability to simultaneously quantify cell enlargement and division from paradermal sections of the first palisade layer. Growth regulators were applied to cotyledons, excised from dry seeds and grown in darkness. Cytokinin stimulated expansion and division whereas, surprisingly, jasmonate stimulated expansion but inhibited division. Jasmonate antagonised the stimulating effect of cytokinin on division but worked cooperatively with cytokinin in increasing expansion. However, expansion with jasmonate was more isotropic than with cytokinin. Jasmonate also stimulated the loss of cellular inclusions and soluble protein. Soluble proteins revealed a partial antagonism between jasmonate and cytokinin. These results illustrate the complex interplay between jasmonates and cytokinin in the regulatory network of cotyledon development following germination.
Collapse
Affiliation(s)
- E Stoynova-Bakalova
- Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
10
|
Stenzel I, Hause B, Proels R, Miersch O, Oka M, Roitsch T, Wasternack C. The AOC promoter of tomato is regulated by developmental and environmental stimuli. PHYTOCHEMISTRY 2008; 69:1859-1869. [PMID: 18445500 DOI: 10.1016/j.phytochem.2008.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 05/26/2023]
Abstract
The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the beta-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli.
Collapse
Affiliation(s)
- Irene Stenzel
- Leibniz Institute of Plant Biochemistry, Department of Natural Product Biotechnology, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|