1
|
Biotechnological and endophytic-mediated production of centellosides in Centella asiatica. Appl Microbiol Biotechnol 2023; 107:473-489. [PMID: 36481800 DOI: 10.1007/s00253-022-12316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
In vitro culture of a plant cell, tissue and organ is a marvellous, eco-friendly biotechnological strategy for the production of phytochemicals. With the emergence of recent biotechnological tools, genetic engineering is now widely practiced enhancing the quality and quantity of plant metabolites. Triterpenoid saponins especially asiaticoside and madecassoside of Centella asiatica (L.) Urb. are popularly known for their neuroprotective activity. It has become necessary to increase the production of asiaticoside and madecassoside because of their high pharmaceutical and industrial demand. Thus, the review aims to provide efficient biotechnological tools along with proper strategies. This review also included a comparative analysis of various carbon sources and biotic and abiotic elicitors. The vital roles of a variety of plant growth regulators and their combinations have also been evaluated at different in vitro growth stages of Centella asiatica. Selection of explants, direct and callus-mediated organogenesis, root organogenesis, somatic embryogenesis, synthetic seed production etc. are also highlighted in this study. In a nutshell, this review will present the research outcomes of different biotechnological interventions used to increase the yield of triterpenoid saponins in C. asiatica. KEY POINTS: • Critical and updated assessment on in vitro biotechnology in C. asiatica. • In vitro propagation of C. asiatica and elicitation of triterpenoid saponins production. • Methods for mass producing C. asiatica.
Collapse
|
2
|
Wagay NA, Rafiq S, Rather MA, Tantray YR, Lin F, Wani SH, El-Sabrout AM, Elansary HO, Mahmoud EA. Secondary Metabolite Profiling, Anti-Inflammatory and Hepatoprotective Activity of Neptunia triquetra (Vahl) Benth. Molecules 2021; 26:molecules26237353. [PMID: 34885934 PMCID: PMC8659018 DOI: 10.3390/molecules26237353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to analyze the phytoconstituents of Neptunia triquetra (Vahl) Benth. Anti-inflammatory and hepatoprotective activities of ethanol (EE), chloroform (CE) and dichloromethane (DCME) of stem extracts were evaluated using in vivo experimental models. The extracts were analyzed for phytoconstituents using GC-HRMS. Anti-inflammatory activity of CE, EE and DCME was accessed using carrageenan-induced paw oedema, cotton pellet-induced granuloma and the carrageenan-induced air-pouch model in Wistar albino rats. The hepatotoxicity-induced animal models were investigated for the biochemical markers in serum (AST, ALT, ALP, GGT, total lipids and total protein) and liver (total protein, total lipids, GSH and wet liver weight). In the in vivo study, animals were divided into different groups (six in each group) for accessing the anti-inflammatory and hepatoprotective activity, respectively. GC-HRMS analysis revealed the presence of 102 compounds, among which 24 were active secondary metabolites. In vivo anti-inflammatory activity of stem extracts was found in the order: indomethacin > chloroform extract (CE) > dichloromethane extract (DCME) > ethanolic extract (EE), and hepatoprotective activity of stem extracts in the order: CE > silymarin > EE > DCME. The results indicate that N. triquetra stem has a higher hepatoprotective effect than silymarin, however the anti-inflammatory response was in accordance with or lower than indomethacin.
Collapse
Affiliation(s)
- Nasir Aziz Wagay
- Botany Research Laboratory, Vidya Bharati Mahavidyalya College, Amravati 444602, Maharashtra, India;
- Department of Botany, Government Degree College, Baramulla 193101, Jammu and Kashmir, India
| | - Shah Rafiq
- Plant Tissue Culture Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India;
| | - Mohammad Aslam Rather
- Department of Chemistry, Government Degree College, Doda 182202, Jammu and Kashmir, India;
| | - Younas Rasheed Tantray
- Plant Biotechnology Division, Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, Jammu and Kashmir, India;
| | - Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Anantnag 192101, Jammu and Kashmir, India;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-581216322
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| |
Collapse
|
3
|
Yin X, Hu H, Shen X, Li X, Pei J, Xu J. Ginseng Omics for Ginsenoside Biosynthesis. Curr Pharm Biotechnol 2021; 22:570-578. [PMID: 32767915 DOI: 10.2174/1389201021666200807113723] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Ginseng, also known as the king of herbs, has been regarded as an important traditional medicine for several millennia. Ginsenosides, a group of triterpenoid saponins, have been characterized as bioactive compounds of ginseng. The complexity of ginsenosides hindered ginseng research and development both in cultivation and clinical research. Therefore, deciphering the ginsenoside biosynthesis pathway has been a focus of interest for researchers worldwide. The new emergence of biological research tools consisting of omics and bioinformatic tools or computational biology tools are the research trend in the new century. Ginseng is one of the main subjects analyzed using these new quantification tools, including tools of genomics, transcriptomics, and proteomics. Here, we review the current progress of ginseng omics research and provide results for the ginsenoside biosynthesis pathway. Organization and expression of the entire pathway, including the upstream MVA pathway, the cyclization of ginsenoside precursors, and the glycosylation process, are illustrated. Regulatory gene families such as transcriptional factors and transporters are also discussed in this review.
Collapse
Affiliation(s)
- Xianmei Yin
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Distinctive Chinese Medicine Resources in Southwest China, Chengdu 611137, China
| | - Haoyu Hu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaofeng Shen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangyan Li
- Changchun University of Traditional Chinese Medicine, Changchun 13000, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Distinctive Chinese Medicine Resources in Southwest China, Chengdu 611137, China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
4
|
Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim YJ, Yang DC, Wang Y. Characteristics of Panax ginseng Cultivars in Korea and China. Molecules 2020; 25:E2635. [PMID: 32517049 PMCID: PMC7321059 DOI: 10.3390/molecules25112635] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) is one of the most important medicinal herbs in Asia. Its pharmacological activity comes from ginsenosides, and its roots are produced commercially for traditional and Oriental medicine. Though 17 Panax species are available around the world, there was a need to develop cultivars adapted to different climatic conditions and resistant to various diseases while still producing high-quality, high-yield roots. Thus, 12 and 9 commercial P. ginseng cultivars have been registered in South Korea and China, respectively. Those varieties show superiority to local landraces. For example, Chunpoong is more highly resistant to rusty rot disease than the local Jakyungjong landrace and has a good root shape; it is highly cultivated to produce red ginseng. The Chinese cultivar Jilin Huangguo Renshen has higher ginsenoside content than its local landraces. This review provides information about P. ginseng cultivars and offers directions for future research, such as intra- and interspecific hybridization.
Collapse
Affiliation(s)
- Hao Zhang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Suleman Abid
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Jong Chan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yu-Jin Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (S.A.); (J.C.A.); (R.M.); (Y.-J.K.)
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
5
|
Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, Zhang J, Zhang Y, Zhang X, Wu M, Zhang J, Li G, Zhang L, Chang Z, Zhang Y, Jia Z, Liu Z, Afreh D, Nahurira R, Zhang L, Cheng R, Zhu Y, Zhu G, Rao W, Zhou C, Qiao L, Huang Z, Cheng YC, Chen S. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 2018; 6:1-15. [PMID: 29048480 PMCID: PMC5710592 DOI: 10.1093/gigascience/gix093] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/22/2017] [Indexed: 11/14/2022] Open
Abstract
Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.
Collapse
Affiliation(s)
- Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Qian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingli Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guozheng Li
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhixiang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Daniel Afreh
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Ruth Nahurira
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Lianjuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Rao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Chao Zhou
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Lirui Qiao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
6
|
Rasool S, Mohamed R. Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis. PROTOPLASMA 2016; 253:1197-209. [PMID: 26364028 DOI: 10.1007/s00709-015-0884-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/31/2015] [Indexed: 05/10/2023]
Abstract
Cytochrome P450s constitute the largest family of enzymatic proteins in plants acting on various endogenous and xenobiotic molecules. They are monooxygenases that insert one oxygen atom into inert hydrophobic molecules to make them more reactive and hydro-soluble. Besides for physiological functions, the extremely versatile cytochrome P450 biocatalysts are highly demanded in the fields of biotechnology, medicine, and phytoremediation. The nature of reactions catalyzed by P450s is irreversible, which makes these enzymes attractions in the evolution of plant metabolic pathways. P450s are prime targets in metabolic engineering approaches for improving plant defense against insects and pathogens and for production of secondary metabolites such as the anti-neoplastic drugs taxol or indole alkaloids. The emerging examples of P450 involvement in natural product synthesis in traditional medicinal plant species are becoming increasingly interesting, as they provide new alternatives to modern medicines. In view of the divergent roles of P450s, we review their classification and nomenclature, functions and evolution, role in biosynthesis of secondary metabolites, and use as tools in pharmacology.
Collapse
Affiliation(s)
- Saiema Rasool
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rozi Mohamed
- Forest Biotech Laboratory, Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Oluyori AP, Shaw AK, Preeti R, Reddy S, Atolani O, Olatunji GA, Fabiyi OA. Natural antifungal compounds from the peels of Ipomoea batatas Lam. Nat Prod Res 2015; 30:2125-9. [DOI: 10.1080/14786419.2015.1113413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Arun Kumar Shaw
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India
| | - Rastogi Preeti
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India
| | - Sammajay Reddy
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
8
|
Wang X, Chen D, Wang Y, Xie J. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita. PLoS One 2015; 10:e0124560. [PMID: 25860891 PMCID: PMC4393236 DOI: 10.1371/journal.pone.0124560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs) and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24) indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1) were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized.
Collapse
Affiliation(s)
- Xia Wang
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Dijia Chen
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Yuqi Wang
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Jun Xie
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| |
Collapse
|
9
|
Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015; 5:129-151. [PMID: 28324581 PMCID: PMC4362742 DOI: 10.1007/s13205-014-0220-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, NH-11C, Kant Kalwar, Jaipur, 303 002, India.
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur, 302 055, India
| |
Collapse
|
10
|
Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Medicinal plants are essential for improving human health, and around 75% of the population in developing countries relies mainly on herb-based medicines for health care. As the king of herb plants, ginseng has been used for nearly 5,000 years in the oriental and recently in western medicines. Among the compounds studied in ginseng plants, ginsenosides have been shown to have multiple medical effects such as anti-oxidative, anti-aging, anti-cancer, adaptogenic and other health-improving activities. Ginsenosides belong to a group of triterpene saponins (also called ginseng saponins) that are found almost exclusively in Panax species and accumulated especially in the plant roots. In this review, we update the conserved and diversified pathway/enzyme biosynthesizing ginsenosides which have been presented. Particularly, we highlight recent milestone works on functional characterization of key genes dedicated to the production of ginsenosides, and their application in engineering plants and yeast cells for large-scale production of ginsenosides.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| |
Collapse
|
11
|
Kumar V, Kumar CS, Hari G, Venugopal NK, Vijendra PD, B GB. Homology modeling and docking studies on oxidosqualene cyclases associated with primary and secondary metabolism of Centella asiatica. SPRINGERPLUS 2013; 2:189. [PMID: 25247142 PMCID: PMC4169231 DOI: 10.1186/2193-1801-2-189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/19/2013] [Indexed: 11/10/2022]
Abstract
Centella asiatica is a well-known medicinal plant, produces large amount of triterpenoid saponins, collectively known as centelloids, with a wide-spectrum of pharmacological applications. Various strategies have been developed for the production of plant secondary metabolites in cell and tissue cultures; one of these is modular metabolic engineering, in which one of the competitive metabolic pathways is selectively suppressed to channelize precursor molecules for the production of desired molecules by another route. In plants the precursor 2,3-oxidosqualene is shared in between two competitive pathways involved with two isoforms of oxidosqualene cyclases. One is primary metabolic route for the synthesis of phytosterol like cycloartenol by cycloartenol synthase; another is secondary metabolic route for the synthesis of triterpenoid like β-amyrin by β-amyrin synthase. The present work is envisaged to evaluate specific negative modulators for cycloartenol synthase, to channelize the precursor molecule for the production of triterpenoids. As there are no experimentally determined structures for these enzymes reported in the literature, we have modeled the protein structures and were docked with a panel of ligands. Of the various modulators tested, ketoconazole has been evaluated as the negative modulator of primary metabolism that inhibits cycloartenol synthase specifically, while showing no interaction with β-amyrin synthase. Amino acid substitution studies confirmed that, ketoconazole is specific modulator for cycloartenol synthase, LYS728 is the key amino acid for the interaction. Our present study is a novel approach for identifying a suitable specific positive modulator for the over production of desired triterpenoid secondary metabolites in the cell cultures of plants.
Collapse
Affiliation(s)
- Vadlapudi Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - Chethan S Kumar
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - Gajula Hari
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - Nayana K Venugopal
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - Poornima D Vijendra
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| | - Giridhara Basappa B
- Department of Biochemistry, Davangere University, Shivagangothri, Davangere, Karnataka 577002 India
| |
Collapse
|
12
|
Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S, May S, Scotti C, Calderini O. Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins. THE PLANT CELL 2011; 23:3070-81. [PMID: 21821776 PMCID: PMC3180811 DOI: 10.1105/tpc.111.087312] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abstract
Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of β-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, β-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis.
Collapse
Affiliation(s)
- Maria Carelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Elisa Biazzi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Francesco Panara
- Consiglio Nazionale delle Ricerche (CNR)-Istituto di Genetica Vegetale (IGV), 06128 Perugia, Italy
| | - Aldo Tava
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Laura Scaramelli
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Andrea Porceddu
- Consiglio Nazionale delle Ricerche (CNR)-Istituto di Genetica Vegetale (IGV), 06128 Perugia, Italy
| | - Neil Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Miriam Odoardi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Efisio Piano
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Sergio Arcioni
- Consiglio Nazionale delle Ricerche (CNR)-Istituto di Genetica Vegetale (IGV), 06128 Perugia, Italy
| | - Sean May
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Carla Scotti
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, 26900 Lodi, Italy
| | - Ornella Calderini
- Consiglio Nazionale delle Ricerche (CNR)-Istituto di Genetica Vegetale (IGV), 06128 Perugia, Italy
| |
Collapse
|
13
|
Tholl D, Lee S. Terpene Specialized Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0143. [PMID: 22303268 PMCID: PMC3268506 DOI: 10.1199/tab.0143] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mechanisms regulating these pathways. The biochemical function of most prenyltransferases, the downstream enzymes that condense the C(5)-precursors into central 10-, 15-, and 20-carbon prenyldiphosphate intermediates, has been described, although the function of several isoforms of C(20)-prenyltranferases is not well understood. Prenyl diphosphates are converted to a variety of C(10)-, C(15)-, and C(20)-terpene products by enzymes of the terpene synthase (TPS) family. Genomic organization of the 32 Arabidopsis TPS genes indicates a species-specific divergence of terpene synthases with tissue- and cell-type specific expression profiles that may have emerged under selection pressures by different organisms. Pseudogenization, differential expression, and subcellular segregation of TPS genes and enzymes contribute to the natural variation of terpene biosynthesis among Arabidopsis accessions (ecotypes) and species. Arabidopsis will remain an important model to investigate the metabolic organization and molecular regulatory networks of terpene specialized metabolism in relation to the biological activities of terpenes.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sungbeom Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
14
|
James JT, Dubery IA. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 2009; 14:3922-41. [PMID: 19924039 PMCID: PMC6255425 DOI: 10.3390/molecules14103922] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Centella asiatica accumulates large quantities of pentacyclic triterpenoid saponins, collectively known as centelloids. These terpenoids include asiaticoside, centelloside, madecassoside, brahmoside, brahminoside, thankuniside, sceffoleoside, centellose, asiatic-, brahmic-, centellic- and madecassic acids. The triterpene saponins are common secondary plant metabolites and are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid structure (aglycone) containing a hydrophilic sugar chain (glycone). The biological activity of saponins has been attributed to these characteristics. In planta, the Centella triterpenoids can be regarded as phytoanticipins due to their antimicrobial activities and protective role against attempted pathogen infections. Preparations of C. asiatica are used in traditional and alternative medicine due to the wide spectrum of pharmacological activities associated with these secondary metabolites. Here, the biosynthesis of the centelloid triterpenoids is reviewed; the range of metabolites found in C. asiatica, together with their known biological activities and the chemotype variation in the production of these metabolites due to growth conditions are summarized. These plant-derived pharmacologically active compounds have complex structures, making chemical synthesis an economically uncompetitive option. Production of secondary metabolites by cultured cells provides a particularly important benefit to manipulate and improve the production of desired compounds; thus biotechnological approaches to increase the concentrations of the metabolites are discussed.
Collapse
Affiliation(s)
- Jacinda T James
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa.
| | | |
Collapse
|
15
|
Ruhlen RL, Sun GY, Sauter ER. Black Cohosh: Insights into its Mechanism(s) of Action. INTEGRATIVE MEDICINE INSIGHTS 2008. [DOI: 10.4137/117863370800300002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Women's Health Initiative found that combination estrogen and progesterone hormone replacement therapy increases breast cancer and cardiovascular disease risk, which compelled many women to seek herbal alternatives such as black cohosh extract (BCE) to relieve their menopausal symptoms. While several clinical trials document the efficacy of BCE in alleviating menopausal symptoms, preclinical studies to determine how BCE works have yielded conflicting results. Part of this is because there is not a universally accepted method to standardize the dose of black cohosh triterpenes, the presumed active ingredients in the extract. Although the mechanism by which BCE relieves symptoms is unknown, several hypotheses have been proposed: it acts 1) as a selective estrogen receptor modulator, 2) through serotonergic pathways, 3) as an antioxidant, or 4) on inflammatory pathways. We found that while the most prominent triterpene in BCE, 23-epi-26-deoxyactein, suppresses cytokine-induced nitric oxide production in brain microglial cells, the whole BCE extract actually enhanced this pathway. A variety of activities have been reported for black cohosh and its compounds, but the absorption and tissue distribution of these compounds is unknown.
Collapse
Affiliation(s)
- Rachel L. Ruhlen
- From the Departments of Surgery, University of Missouri-Columbia, Columbia, Missouri, U.S.A
| | - Grace Y. Sun
- Biochemistry, University of Missouri-Columbia, Columbia, Missouri, U.S.A
| | - Edward R. Sauter
- From the Departments of Surgery, University of Missouri-Columbia, Columbia, Missouri, U.S.A
| |
Collapse
|
16
|
Mylona P, Owatworakit A, Papadopoulou K, Jenner H, Qin B, Findlay K, Hill L, Qi X, Bakht S, Melton R, Osbourn A. Sad3 and sad4 are required for saponin biosynthesis and root development in oat. THE PLANT CELL 2008; 20:201-12. [PMID: 18203919 PMCID: PMC2254932 DOI: 10.1105/tpc.107.056531] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/20/2007] [Accepted: 01/03/2008] [Indexed: 05/18/2023]
Abstract
Avenacins are antimicrobial triterpene glycosides that are produced by oat (Avena) roots. These compounds confer broad-spectrum resistance to soil pathogens. Avenacin A-1, the major avenacin produced by oats, is strongly UV fluorescent and accumulates in root epidermal cells. We previously defined nine loci required for avenacin synthesis, eight of which are clustered. Mutants affected at seven of these (including Saponin-deficient1 [Sad1], the gene for the first committed enzyme in the pathway) have normal root morphology but reduced root fluorescence. In this study, we focus on mutations at the other two loci, Sad3 (also within the gene cluster) and Sad4 (unlinked), which result in stunted root growth, membrane trafficking defects in the root epidermis, and root hair deficiency. While sad3 and sad4 mutants both accumulate the same intermediate, monodeglucosyl avenacin A-1, the effect on avenacin A-1 glucosylation in sad4 mutants is only partial. sad1/sad1 sad3/sad3 and sad1/sad1 sad4/sad4 double mutants have normal root morphology, implying that the accumulation of incompletely glucosylated avenacin A-1 disrupts membrane trafficking and causes degeneration of the epidermis, with consequential effects on root hair formation. Various lines of evidence indicate that these effects are dosage-dependent. The significance of these data for the evolution and maintenance of the avenacin gene cluster is discussed.
Collapse
|