1
|
Yang X, Chang M, Yang N, Zhang Q, Ge Y, Zhou H, Li G, Yang Q. ABA exerts a promotive effect on the early process of somatic embryogenesis in Quercus aliena Bl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108969. [PMID: 39068877 DOI: 10.1016/j.plaphy.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Quercus aliena, a native Chinese tree species, is significant in industry and landscaping. However, it is traditionally propagated by seeds with many limitations, such as pest infestations, seed yield and quality. Thus, this study firstly introduces a somatic embryogenesis (SE) system for Q. aliena, enhancing its cultivation prospects. Thereinto, the development stage of zygotic embryo had a significant effect on SE, only immature embryos in 10-11 weeks after full bloom (WAF), rich in endogenous abscisic acid (ABA), could induce SE. Exogenous application ABA had positive roles in the early development process of both primary and secondary SE, while its antagonist had opposite roles. Transcriptome analysis showed that transcription regulation occupied the major position. Mfuzz cluster and WGCNA co-expression analysis showed that 24 candidate genes were involved in the SE process. The expression of the 24 genes were also affected by exogenous ABA signals, among which QaLEC2, QaCALS11 and QaSSRP1 occupied the important roles. Additionally, the callose content were also affected by exogenous ABA signals, which had significantly positive correlations with the expression of QaLEC2 and QaCALS11. This study not only established an efficient reproduction system for Q. aliena, but also revealed the difference in embryogenic ability of zygotic embryos from the aspects of transcriptome and endogenous hormone content, and lay a foundation for clarifying the molecular mechanism of SE, and provided a reference for exploring the vital roles of ABA in SE.
Collapse
Affiliation(s)
- Xiong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Muxi Chang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Ning Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Yaoyao Ge
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Huirong Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Guolei Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Qinsong Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Deciduous Oak Improvement and Regeneration Innovation Team of National Forestry and Grassland Administration State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS. Advances in research on the carrot, an important root vegetable in the Apiaceae family. HORTICULTURE RESEARCH 2019; 6:69. [PMID: 31231527 PMCID: PMC6544626 DOI: 10.1038/s41438-019-0150-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 05/11/2023]
Abstract
Carrots (Daucus carota L.), among the most important root vegetables in the Apiaceae family, are cultivated worldwide. The storage root is widely utilized due to its richness in carotenoids, anthocyanins, dietary fiber, vitamins and other nutrients. Carrot extracts, which serve as sources of antioxidants, have important functions in preventing many diseases. The biosynthesis, metabolism, and medicinal properties of carotenoids in carrots have been widely studied. Research on hormone regulation in the growth and development of carrots has also been widely performed. Recently, with the development of high-throughput sequencing technology, many efficient tools have been adopted in carrot research. A large amount of sequence data has been produced and applied to improve carrot breeding. A genome editing system based on CRISPR/Cas9 was also constructed for carrot research. In this review, we will briefly summarize the origins, genetic breeding, resistance breeding, genome editing, omics research, hormone regulation, and nutritional composition of carrots. Perspectives about future research work on carrots are also briefly provided.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, 223003 Huaian, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
- Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China
| |
Collapse
|
3
|
Cipriano JLD, Cruz ACF, Mancini KC, Schmildt ER, Lopes JC, Otoni WC, Alexandre RS. Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects. AN ACAD BRAS CIENC 2018; 90:385-400. [PMID: 29424391 DOI: 10.1590/0001-3765201820160252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/12/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate somatic embryogenesis in juvenile explants of the THB papaya cultivar. Apical shoots and cotyledonary leaves were inoculated in an induction medium composed of different concentrations of 2,4-D (6, 9, 12, 15 and 18 µM) or 4-CPA (19, 22, 25, 28 and 31 µM). The embryogenic calluses were transferred to a maturation medium for 30 days. Histological analysis were done during the induction and scanning electron microscopy after maturing. For both types of auxin, embryogenesis was achieved at higher frequencies with cotyledonary leaves incubated in induction medium than with apical shoots; except for callogenesis. The early-stage embryos (e.g., globular or heart-shape) predominated. Among the auxins, best results were observed in cotyledonary leaves induced with 4-CPA (25 µM). Histological analyses of the cotyledonary leaf-derived calluses confirmed that the somatic embryos (SEs) formed from parenchyma cells, predominantly differentiated via indirect and multicellular origin and infrequently via synchronized embryogenesis. The secondary embryogenesis was observed during induction and maturation phases in papaya THB cultivar. The combination of ABA (0.5 µM) and AC (15 g L-1) in maturation medium resulted in the highest somatic embryogenesis induction frequency (70 SEs callus-1) and the lowest percentage of early germination (4%).
Collapse
Affiliation(s)
- Jamile L D Cipriano
- Instituto Federal de Minas Gerais, Campus Sabará, Avenida Serra da Piedade, 299, Morada da Serra, 34515-640 Sabará, MG, Brazil
| | - Ana Cláudia F Cruz
- Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Avenida Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Karina C Mancini
- Universidade Federal do Espírito Santo, Centro Universitário Norte do Espírito Santo, Rodovia BR 101, Km 60, 29932-540 São Mateus, ES, Brazil
| | - Edilson R Schmildt
- Universidade Federal do Espírito Santo, Centro Universitário Norte do Espírito Santo, Rodovia BR 101, Km 60, 29932-540 São Mateus, ES, Brazil
| | - José Carlos Lopes
- Universidade Federal do Espírito Santo, Departamento de Produção Vegetal, Alto Universitário, s/n, Guararema, 29500-000 Alegre, ES, Brazil
| | - Wagner C Otoni
- Universidade Federal de Viçosa, Departamento de Biologia Vegetal, Avenida Peter Henry Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Rodrigo S Alexandre
- Universidade Federal do Espírito Santo, Departamento de Ciências Florestais e da Madeira, Avenida Governador Lindemberg, 360, Centro, 29550-000 Jerônimo Monteiro, ES, Brazil
| |
Collapse
|
4
|
Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E. Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 10:66-74. [PMID: 28352526 PMCID: PMC5040870 DOI: 10.1016/j.btre.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
Callus induction, somatic embryogenesis and plant regeneration were initiated in selected five species of Turkish crocus using three diffrent explants (leaf, stem and corm) cultured on four different media (MS, GB5, LS and CHE). The highest frequencies of callus induction (100%) and shoot regeneration (70%, with 7.2 shoots/callus) were found in the crocus species Crocus oliveri ssp. Oliveri, using the MS medium containing 5% (w/v) sucrose supplemented with (4 mg/L NAA + 4 mg/L TDZ) and (2 mg/L IAA + 2 mg/L TDZ + 2 mg/L BAP). When the embryogenic calli were transferred into the four nutrient media containing (2 mg/L IAA + 2 mg/L TDZ) and 100 mg/L ABA, these further developed into cotyledonary embryos. Maximum number of somatic embryos (2.9 embryos per leaf explant, with a frequency 46.6%) was obtained in C. oliveri ssp. Oliveri. During subculture using the half strength media, cotyledonary embryos gradually developed into plantlets.
Collapse
Key Words
- ABA, abscisic acid
- BAP, 6-benzylaminopurine
- CHE, Chee and Pool medium
- Crocus species
- GB5, Gamborg’s B-5 medium
- IAA, indole-3-acetic acid
- IBA, indole-3-butyric acid
- LS, Linsmaier and Skoog medium
- MS, Murashige and Skoog medium
- NAA, α-naphthalene acetic acid
- Organogeneis
- Plant regeneration
- Somatic embryogenesis
- TDZ, 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea
Collapse
Affiliation(s)
| | - Ashok Kumar Das
- Gyeongsang National University, School of Mechanical Engineering, Jinju, 660701, South Korea, South Korea
| | - Gunce Sahin Cingoz
- Abant Izzet Baysal University, Department of Biology, Bolu 14280, Turkey
| | - Emel Uslu
- Abant Izzet Baysal University, Department of Biology, Bolu 14280, Turkey
| | - Ekrem Gurel
- Abant Izzet Baysal University, Department of Biology, Bolu 14280, Turkey
| |
Collapse
|
5
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
6
|
Prado MJ, Largo A, Domínguez C, González MV, Rey M, Centeno ML. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:852-859. [PMID: 24877677 DOI: 10.1016/j.jplph.2014.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 05/28/2023]
Abstract
The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation.
Collapse
Affiliation(s)
- María Jesús Prado
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310 Vigo, Spain.
| | - Asier Largo
- Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| | - Cristina Domínguez
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310 Vigo, Spain.
| | - María Victoria González
- Departamento de Fisiología Vegetal, Universidad de Santiago de Compostela, Campus Sur, 15872 Santiago de Compostela, Spain.
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Universidad de Vigo, Campus Universitario, 36310 Vigo, Spain.
| | - María Luz Centeno
- Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| |
Collapse
|
7
|
M. Al-Khay J, M. Al-Bahr A. Effect of Abscisic Acid and Polyethylene Glycol on the Synchronization of Somatic Embryo Development in Date Palm (Phoenix dactylifera L.). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/biotech.2012.318.325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Couillerot JP, Windels D, Vazquez F, Michalski JC, Hilbert JL, Blervacq AS. Pretreatments, conditioned medium and co-culture increase the incidence of somatic embryogenesis of different Cichorium species. PLANT SIGNALING & BEHAVIOR 2012; 7:121-31. [PMID: 22301978 PMCID: PMC3357352 DOI: 10.4161/psb.7.1.18637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Somatic embryogenesis (SE) in Cichorium involves dedifferentiation and redifferentiation of single cells and can be induced by specific in vitro culture conditions. We have tested the effect of various treatments on the incidence of SE (ISE) of an interspecific embryogenic hybrid (C. endivia x C. intybus) and of different commercial chicories (C. endivia and C. intybus) that are typically recalcitrant to SE in standard culture conditions. We found that the ISE of the hybrid is significantly increased by pretreatment of tissues by submersion in solutions of glycerol, abscisic acid, spermine, putrescine or of combinations of these compounds. Interestingly, the most efficient of these pretreatments also had an unexpectedly high effect on the ISE of the C. intybus cultivars. The ISE of the hybrid and of the commercial chicories were increased when explants were co-cultured with highly embryogenic chicory explants or when they were cultured in conditioned medium. These observations established that unidentified SE-promoting factors are released in the culture medium. HPLC analyses of secreted Arabino-Galactan Proteins (AGPs), which are known to stimulate SE, did not allow identifying a fraction containing differentially abundant AGP candidates. However, pointing to their role in promoting SE, we found that the hybrid had a drastically higher ISE when amino sugars and L-Proline, the putative precursors of secreted AGPs, were both added to the medium.
Collapse
Affiliation(s)
- Jean-Paul Couillerot
- Université Lille Nord de France; Université Lille1; UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés; Bâtiment SN2; Villeneuve d’Ascq, France
| | - David Windels
- Botanical Institute; University of Basel; Zurich-Basel Plant Science Center; Swiss Plant Science Web; Basel, Switzerland
| | - Franck Vazquez
- Botanical Institute; University of Basel; Zurich-Basel Plant Science Center; Swiss Plant Science Web; Basel, Switzerland
| | - Jean-Claude Michalski
- Université Lille Nord de France; Université Lille1; UMR CNRS 8576 Unité de Glycobiologie Structurale et Fonctionnelle; Bâtiment C9; Villeneuve d’Ascq Cedex, France
| | - Jean-Louis Hilbert
- Université Lille Nord de France; Université Lille1; UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés; Bâtiment SN2; Villeneuve d’Ascq, France
| | - Anne-Sophie Blervacq
- Université Lille Nord de France; Université Lille1; UMR INRA 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés; Bâtiment SN2; Villeneuve d’Ascq, France
| |
Collapse
|
9
|
Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2009; 2:177-90. [PMID: 19763658 PMCID: PMC2763145 DOI: 10.1007/s12154-009-0028-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022] Open
Abstract
Somatic embryogenesis (SE) is a model system for understanding the physiological, biochemical, and molecular biological events occurring during plant embryo development. Plant somatic cells have the ability to undergo sustained divisions and give rise to an entire organism. This remarkable feature is called plant cell totipotency. SE is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Plant growth regularities, especially auxins, are key components as their exogenous application recapitulates the embryogenic potential of the mitotically quiescent somatic cells. It has been observed that there are genetic and also physiological factors that trigger in vitro embryogenesis in various types of plant somatic cells. Analysis of the proteome and transcriptome has led to the identification and characterization of certain genes involved in SE. Most of these genes, however, are upregulated only in the late developmental stages, suggesting that they do not play a direct role in the vegetative-to-embryogenic transition. However, the molecular bases of those triggering factors and the genetic and biochemical mechanisms leading to in vitro embryogenesis are still unknown. Here, we describe the plant factors that participate in the vegetative-to-embryogenic transition and discuss their possible roles in this process.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
10
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
11
|
Huang D, Wu W, Abrams SR, Cutler AJ. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2991-3007. [PMID: 18552355 PMCID: PMC2504347 DOI: 10.1093/jxb/ern155] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/02/2008] [Accepted: 05/07/2008] [Indexed: 05/18/2023]
Abstract
Almost 2000 drought-responsive genes were identified in Arabidopsis thaliana under progressive soil drought stress using whole-genome oligonucleotide microarrays. Most of the drought-regulated genes recovered to normal expression levels by 3 h after rewatering. It has previously been shown that the abscisic acid (ABA) analogue (+)-8'-acetylene-ABA (PBI425) hyperinduces many ABA-like changes in gene expression to reveal a more complete list of ABA-regulated genes, and it is demonstrated here that PBI425 produced a correspondingly increased drought tolerance. About two-thirds of drought-responsive genes (1310 out of 1969) were regulated by ABA and/or the ABA analogue PBI425. Analysis of promoter motifs suggests that many of the remaining drought-responsive genes may be affected by ABA signalling. Concentrations of endogenous ABA and its catabolites significantly increased under drought stress and either completely (ABA) or partially (ABA catabolites) recovered to normal levels by 3 h after rehydration. Detailed analyses of drought transcript profiles and in silico comparisons with other studies revealed that the ABA-dependent pathways are predominant in the drought stress responses. These comparisons also showed that other plant hormones including jasmonic acid, auxin, cytokinin, ethylene, brassinosteroids, and gibberellins also affected drought-related gene expression, of which the most significant was jasmonic acid. There is also extensive cross-talk between responses to drought and other environmental factors including light and biotic stresses. These analyses demonstrate that ABA-related stress responses are modulated by other environmental and developmental factors.
Collapse
Affiliation(s)
- Daiqing Huang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon S7N 0W9, Canada
| | - Weiren Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310027 China
| | - Suzanne R. Abrams
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon S7N 0W9, Canada
| | - Adrian J. Cutler
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon S7N 0W9, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Singla B, Tyagi AK, Khurana JP, Khurana P. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. PLANT MOLECULAR BIOLOGY 2007; 65:677-92. [PMID: 17849219 DOI: 10.1007/s11103-007-9234-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 08/25/2007] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Auxins are key components as their exogenous application recuperates the embryogenic potential of the mitotically quiescent somatic cells. In order to unravel the molecular basis of somatic embryogenesis, cDNA library was made from the regeneration proficient wheat leaf base segments treated with auxin. In total, 1440 clones were sequenced and among these 1,196 good quality sequences were assembled into 270 contigs and 425 were singletons. By reverse northern analysis, a total of 57 clones were found to be upregulated during somatic embryogenesis, 64 during 2,4-D treatment, and 170 were common to 2,4-D treatment and somatic embryogenesis. A substantial number of genes involved in hormone response, signal transduction cascades, defense, anti-oxidation, programmed cell death/senescence and cell division were identified and characterized partially. Analysis of data of select genes suggests that the induction phase of somatic embryogenesis is accompanied by the expression of genes that may also be involved in zygotic embryogenesis. The developmental reprogramming process may in fact involve multiple cellular pathways and unfolding of as yet unknown molecular events. Thus, an interaction network draft using bioinformatics and system biology strategy was constructed. The outcome of a systematic and comprehensive analysis of somatic embryogenesis associated interactome in a monocot leaf base system is presented.
Collapse
Affiliation(s)
- Bhumica Singla
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | | | | | | |
Collapse
|
13
|
Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H. Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. PLANTA 2006; 223:637-45. [PMID: 16160844 DOI: 10.1007/s00425-005-0114-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 07/28/2005] [Indexed: 05/04/2023]
Abstract
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10(-4) M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.
Collapse
Affiliation(s)
- Akira Kikuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|