1
|
Ran F, Xiang C, Wang C, Zang Y, Liu L, Wu S, Wang C, Cai J, Wang D, Min Y. Identification of the 4CL family in cassava (Manihot esculenta Crantz) and expression pattern analysis of the Me4CL32 gene. Biochem Biophys Res Commun 2024; 735:150731. [PMID: 39423574 DOI: 10.1016/j.bbrc.2024.150731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
The 4-coumarate coenzyme A ligase (4CL) plays a critical role in the phenylpropane metabolic pathway and is a key enzyme in plant growth metabolism and stress responses. Using bioinformatics methods, 50 Me4CL gene were identified within the cassava genome u, and a comprehensive analysis of the cassava 4CL gene family was conducted. The results showed that these 50 4CL proteins are divided into four subfamilies, with members within the same subfamily sharing similar or identical gene structures. Co-linearity analysis revealed that cassava and rubber trees have the highest number of homologous genes, indicating a close homologous relationship between them. Analysis of 20 cis-acting elements in the promoter region of Me4CL32 revealed the presence of hormone-responsive elements such as gibberellin, auxin, abscisic acid, and as well as elements related to meristematic tissue regulation. results Quantitative real-time PCR (qRT-PCR) results showed that Me4CL32 gene expression changes in response to abiotic stressors (drought, salt, cold, heat) and hormonal stimuli(GA3 and ABA), indicating that Me4CL32 can respond to both environmental pressures and hormone signals. RNA-seq transcriptome and single-cell transcriptome analyses were used to examine the expression patterns of Me4CLs. Additionally, subcellular localization studies demonstrated that the Me4CL32 protein is confined to the chloroplasts of cassava leaves.Investigating the functionality of this gene family aids in comprehending plant growth, development, and stress resistance mechanisms. Furthermore, it furnishes a theoretical basis for future research on developing resilient cassava germplasm and the enhancing cassava's environmental tolerance.
Collapse
Affiliation(s)
- Fangfang Ran
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Chunyu Xiang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Changyi Wang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Yuwei Zang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Liangwang Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Shuwen Wu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Congcong Wang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Cai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Key Laboratory of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Haikou, 571101, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Yi Min
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
2
|
Wu Y, Jin X, Wang L, Lei J, Chai S, Wang C, Zhang W, Yang X. Integrated Transcriptional and Metabolomic Analysis of Factors Influencing Root Tuber Enlargement during Early Sweet Potato Development. Genes (Basel) 2024; 15:1319. [PMID: 39457443 PMCID: PMC11507034 DOI: 10.3390/genes15101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sweet potato (Ipomoea batatas (L.) Lam.) is widely cultivated as an important food crop. However, the molecular regulatory mechanisms affecting root tuber development are not well understood. METHODS The aim of this study was to systematically reveal the regulatory network of sweet potato root enlargement through transcriptomic and metabolomic analysis in different early stages of sweet potato root development, combined with phenotypic and anatomical observations. RESULTS Using RNA-seq, we found that the differential genes of the S1 vs. S2, S3 vs. S4, and S4 vs. S5 comparison groups were enriched in the phenylpropane biosynthesis pathway during five developmental stages and identified 67 differentially expressed transcription factors, including AP2, NAC, bHLH, MYB, and C2H2 families. Based on the metabolome, K-means cluster analysis showed that lipids, organic acids, organic oxides, and other substances accumulated differentially in different growth stages. Transcriptome, metabolome, and prophetypic data indicate that the S3-S4 stage is the key stage of root development of sweet potato. Weighted gene co-expression network analysis (WGCNA) showed that transcriptome differential genes were mainly enriched in fructose and mannose metabolism, pentose phosphate, selenium compound metabolism, glycolysis/gluconogenesis, carbon metabolism, and other pathways. The metabolites of different metabolites are mainly concentrated in amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis, alkaloid biosynthesis, pantothenic acid, and coenzyme A biosynthesis. Based on WGCNA analysis of gene-metabolite correlation, 44 differential genes and 31 differential metabolites with high correlation were identified. CONCLUSIONS This study revealed key gene and metabolite changes in early development of sweet potato root tuber and pointed out potential regulatory networks, providing new insights into sweet potato root tuber development and valuable reference for future genetic improvement.
Collapse
Affiliation(s)
- Yaqin Wu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| | - Chong Wang
- Crop Institute of Jiangxi Academy of Agricultural Sciences, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Wenying Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (X.J.); (L.W.); (J.L.); (S.C.)
| |
Collapse
|
3
|
Fan J, Chen C, Zhang X, Dong C, Jin M, Zhang X, Xue W, Li J. Effects of Efficient Ethylene Remover on the Lignification of Fresh Faba Bean ( Vicia faba L.) during Storage. Foods 2024; 13:3036. [PMID: 39410071 PMCID: PMC11475918 DOI: 10.3390/foods13193036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Postharvest ethylene accumulation and lignification are significant issues affecting the storage quality of fresh faba beans, resulting in rapid quality decline. However, there is still a lack of effective preservation methods to preserve the quality of faba beans during storage. This study aimed to investigate the regulation of lignification in faba beans during storage using a high-efficiency ethylene remover (HEER), examining physiological responses, key enzyme activities, and transcriptomic changes. Results showed that the HEER treatment inhibited the lignification, reducing it by 45% and lowering the respiratory rate of fresh pods by 32.8% during storage. Additionally, the HEER treatment suppressed respiration rates and the activities of lignin synthesis-related enzymes, including phenylalanine ammonia-lyase (from 353.73 to 246.60 U/g), cinnamic acid-4-hydroxylase (from 635.86 to 125.00 U/g), 4-coumarate: coenzyme A ligase (from 1008.57 to 516.52 U/g), and cinnamyl-alcohol dehydrogenase (from 129.42 to 37.12 U/g), thus slowing lignin accumulation. During storage, the hardness of fresh faba bean increased by 9.79% from the initial period, being 1.44 times higher than that of HEER. On days 8 and 16 of storage, the respiratory rate of the treated beans decreased by 24.38% and 4.12%, respectively. Physiological and enzyme activity analyses indicated that HEER treatment-induced increase in hardness was associated with the phenylpropanoid metabolic pathway. Moreover, the HEER significantly down-regulated the expression of several key genes, namely FaPAL, FaC4H, and FaCAD. This study helps to deepen the understanding of the inhibition of lignification by HEER and provide new insights for the development of preservation technology of faba bean.
Collapse
Affiliation(s)
- Jiaxing Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Product), Tianjin Academy of Agricultural Sciences, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of the People’s Republic of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China; (C.C.); (C.D.)
| | - Xiaojun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Product), Tianjin Academy of Agricultural Sciences, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of the People’s Republic of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China; (C.C.); (C.D.)
| | - Manqin Jin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| | - Xuemei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| | - Jingming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.F.); (X.Z.); (M.J.); (X.Z.); (W.X.)
| |
Collapse
|
4
|
Lavhale SG, Kondhare KR, Sinthadurai VS, Barvkar VT, Kale RS, Joshi RS, Giri AP. Ocimum kilimandscharicum 4CL11 negatively regulates adventitious root development via accumulation of flavonoid glycosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:176-196. [PMID: 38575203 DOI: 10.1111/tpj.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
4-Coumarate-CoA Ligase (4CL) is an important enzyme in the phenylpropanoid biosynthesis pathway. Multiple 4CLs are identified in Ocimum species; however, their in planta functions remain enigmatic. In this study, we independently overexpressed three Ok4CL isoforms from Ocimum kilimandscharicum (Ok4CL7, -11, and -15) in Nicotiana benthamiana. Interestingly, Ok4CL11 overexpression (OE) caused a rootless or reduced root growth phenotype, whereas overexpression of Ok4CL15 produced normal adventitious root (AR) growth. Ok4CL11 overexpression in N. benthamiana resulted in upregulation of genes involved in flavonoid biosynthesis and associated glycosyltransferases accompanied by accumulation of specific flavonoid-glycosides (kaempferol-3-rhamnoside, kaempferol-3,7-O-bis-alpha-l-rhamnoside [K3,7R], and quercetin-3-O-rutinoside) that possibly reduced auxin levels in plants, and such effects were not seen for Ok4CL7 and -15. Docking analysis suggested that auxin transporters (PINs/LAXs) have higher binding affinity to these specific flavonoid-glycosides, and thus could disrupt auxin transport/signaling, which cumulatively resulted in a rootless phenotype. Reduced auxin levels, increased K3,7R in the middle and basal stem sections, and grafting experiments (intra and inter-species) indicated a disruption of auxin transport by K3,7R and its negative effect on AR development. Supplementation of flavonoids and the specific glycosides accumulated by Ok4CL11-OE to the wild-type N. benthamiana explants delayed the AR emergence and also inhibited AR growth. While overexpression of all three Ok4CLs increased lignin accumulation, flavonoids, and their specific glycosides were accumulated only in Ok4CL11-OE lines. In summary, our study reveals unique indirect function of Ok4CL11 to increase specific flavonoids and their glycosides, which are negative regulators of root growth, likely involved in inhibition of auxin transport and signaling.
Collapse
Affiliation(s)
- Santosh G Lavhale
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Veenothini S Sinthadurai
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
5
|
Im JH, Son S, Kim WC, Kim K, Mitsuda N, Ko JH, Han KH. Jasmonate activates secondary cell wall biosynthesis through MYC2-MYB46 module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1099-1114. [PMID: 37983636 DOI: 10.1111/tpj.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.
Collapse
Affiliation(s)
- Jong Hee Im
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kihwan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, Michigan, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
6
|
Gu L, Cao Y, Chen X, Wang H, Zhu B, Du X, Sun Y. The Genome-Wide Identification, Characterization, and Expression Analysis of the Strictosidine Synthase-like Family in Maize ( Zea mays L.). Int J Mol Sci 2023; 24:14733. [PMID: 37834181 PMCID: PMC10572891 DOI: 10.3390/ijms241914733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Maize is often subjected to various environmental stresses. The strictosidine synthase-like (SSL) family is thought to catalyze the key step in the monoterpene alkaloids synthesis pathway in response to environmental stresses. However, the role of ZmSSL genes in maize growth and development and its response to stresses is unknown. Herein, we undertook the systematic identification and analysis of maize SSL genes. Twenty SSL genes were identified in the maize genome. Except for chromosomes 3, 5, 6, and 10, they were unevenly distributed on the remaining 6 chromosomes. A total of 105 SSL genes from maize, sorghum, rice, Aegilops tauschii, and Arabidopsis were divided into five evolutionary groups, and ZmSSL gene structures and conserved protein motifs in the same group were similar. A collinearity analysis showed that tandem duplication plays an important role in the evolution of the SSL family in maize, and ZmSSL genes share more collinear genes in crops (maize, sorghum, rice, and Ae. tauschii) than in Arabidopsis. Cis-element analysis in the ZmSSL gene promoter region revealed that most genes contained many development and stress response elements. We evaluated the expression levels of ZmSSL genes under normal conditions and stress treatments. ZmSSL4-9 were widely expressed in different tissues and were positively or negatively regulated by heat, cold, and infection stress from Colletotrichum graminicola and Cercospora zeina. Moreover, ZmSSL4 and ZmSSL5 were localized in the chloroplast. Taken together, we provide insight into the evolutionary relationships of the ZmSSL genes, which would be useful to further identify the potential functions of ZmSSLs in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiyue Sun
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.G.); (Y.C.); (X.C.); (H.W.); (B.Z.); (X.D.)
| |
Collapse
|
7
|
Sun N, Bu Y, Wu X, Ma X, Yang H, Du L, Li X, Xiao J, Lin J, Jing Y. Comprehensive analysis of lncRNA-mRNA regulatory network in Populus associated with xylem development. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154055. [PMID: 37506405 DOI: 10.1016/j.jplph.2023.154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Long noncoding RNAs (lncRNAs) play essential roles in numerous biological processes in plants, such as regulating the gene expression. However, only a few studies have looked into their potential functions in xylem development. High-throughput sequencing of P. euramericana 'Zhonglin46' developing and mature xylem was performed in this study. Through sequencing analysis, 14,028 putative lncRNA transcripts were identified, including 4525 differentially expressed lncRNAs (DELs). Additional research revealed that in mature xylem, a total of 2320 DELs were upregulated and 2205 were downregulated compared to developing xylem. Meanwhile, there were a total of 8122 differentially expressed mRNAs (DEMs) that were upregulated and 16,424 that were downregulated in mature xylem compared with developing xylem. The cis- and trans-target genes of DELs were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, which indicated that these DELs participate in controlling the phenylpropanoid and lignin biosynthesis pathway as well as the starch and sucrose metabolism pathway. Among the cis-regulated DELs, LNC_006291, LNC_006292, and LNC_006532 all participate in regulating multiple HCT gene family membranes. As targets, POPTR_001G045900v3 (CCR2) and POPTR_018G063500v3 (SUS) both have only one cis-regulatory lncRNA, referred to as LNC_000057 and LNC_006212, respectively. Moreover, LNC_004484 and two DELs named LNC_008014 and LNC_010781 were revealed to be important nodes in the co-expression network of trans-lncRNAs and mRNAs associated to the lignin biosynthesis pathway and cellulose and xylan biosynthetic pathways, respectively. Finally, quantitative real-time PCR (qRT-PCR) was used to confirme 34 pairs of lncRNA-mRNA. Taken together, these findings may help to clarify the regulatory role that lncRNAs play in xylem development and wood formation.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Xiaocen Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Xiaojuan Li
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Jianwei Xiao
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Jinxing Lin
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China.
| |
Collapse
|
8
|
Yuan J, Wu N, Cai Z, Chen C, Zhou Y, Chen H, Xue J, Liu X, Wang W, Cheng J, Li L. Metabolite Profiling and Transcriptome Analysis Explain the Difference in Accumulation of Bioactive Constituents in Taxilli Herba from Two Hosts. Genes (Basel) 2023; 14:genes14051040. [PMID: 37239400 DOI: 10.3390/genes14051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Taxilli Herba (TH) is a semi-parasitic herb and the host is a key factor affecting its quality. Flavonoids are the main bioactive constituents in TH. However, studies on the difference in accumulation of flavonoids in TH from different hosts are vacant. In this study, integrated transcriptomic and metabolomic analyses were performed on TH from Morus alba L. (SS) and Liquidambar formosana Hance (FXS) to investigate the relationship between the regulation of gene expression and the accumulation of bioactive constituents. The results showed that a total of 3319 differentially expressed genes (DEGs) were screened in transcriptomic analysis, including 1726 up-regulated genes and 1547 down-regulated genes. In addition, 81 compounds were identified using ultra-fast performance liquid chromatography coupled with triple quadrupole-time of flight ion trap tandem mass spectrometry (UFLC-Triple TOF-MS/MS) analysis, and the relative contents of flavonol aglycones and glycosides were higher in TH from SS group than those from the FXS group. A putative biosynthesis network of flavonoids was created, combined with structural genes, and the expression patterns of genes were mostly consistent with the variation of bioactive constituents. It was noteworthy that the UDP-glycosyltransferase genes might participate in downstream flavonoid glycosides synthesis. The findings of this work will provide a new way to understand the quality formation of TH from the aspects of metabolite changes and molecular mechanism.
Collapse
Affiliation(s)
- Jiahuan Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongyi Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Wenxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530220, China
| |
Collapse
|
9
|
Comprehensive genomic identification and expression analysis 4CL gene family in apple. Gene 2023; 858:147197. [PMID: 36642320 DOI: 10.1016/j.gene.2023.147197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
To clarify the structural characteristics, phylogeny, biological function and regulation of 4-coumarate-CoAligase (4CL) in anthocyanin synthesis, the 4CL gene family members in apples were identified and bioinformatic analysis was performed. qRT-PCR was used to analyze the expression levels of this gene family members in different apple varieties, and the role of the 4CL gene in apple anthocyanin synthesis was preliminaries clarified, which provided a certain theoretical basis for the regulatory network of apple anthocyanin synthesis. The results showed that a total of 69 members of the 4CL gene family were identified in the apple (Malus domestica Brokh.), encoding amino acids ranging from 97 to 2310 with theoretical isoelectric points ranging from 5.28 to 9.84. The 69 4CL family members were distributed on 17 chromosomes in the apple, among which chromosome 17 had the largest distribution (9 members), followed by chromosome 9 (7 members), chromosomes 16 and 14 (6 members each), and chromosomes 15 and 13 (5 members each). The subcellular localization prediction showed that apple 4CL gene family members were mainly expressed in cytoplasm, chloroplast, nucleus and cell membrane, with a small amount of expression in mitochondria, vacuoles, peroxisomes, cytoskeleton, golgi and cell matrix, but not in endoplasmic reticulum. The secondary structures are mainly α-helices and irregular coils. Microarray expression profile analysis showed that the expression levels of each member in apple were related to fruit variety and tissue structure, and the expression levels were mainly higher in fruit, flower and leaf. Real-time PCR analysis showed that the expression level of each member was directly proportional to the degree of fruit coloring and anthocyanin accumulation. The expression levels of Md4CL10 and Md4CL23 in 'Astar' (G4) apple fruit skin with the highest anthocyanin content were 516, 20 and 2 times higher than those in 'Chengji NO.1' (G1), 'Golden Delicious' (G2) and 'Ruixue' (G3), respectively.
Collapse
|
10
|
Alariqi M, Ramadan M, Wang Q, Yang Z, Hui X, Nie X, Ahmed A, Chen Q, Wang Y, Zhu L, Zhang X, Jin S. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994650 DOI: 10.1111/tpj.16223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.
Collapse
Affiliation(s)
- Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Pastures, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Mohamed Ramadan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Xi Hui
- Shihezi University, Shihezi, Xinjiang, China
| | - Xinhui Nie
- Shihezi University, Shihezi, Xinjiang, China
| | - Amani Ahmed
- College of Food Science, Huazhong Agricultural University, Wuhan, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yanyin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, 843300, China
| | - Longfu Zhu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Nie T, Sun X, Wang S, Wang D, Ren Y, Chen Q. Genome-Wide Identification and Expression Analysis of the 4-Coumarate: CoA Ligase Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:1642. [PMID: 36675157 PMCID: PMC9866895 DOI: 10.3390/ijms24021642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
4-coumarate: CoA ligase (4CL) is not only involved in the biosynthetic processes of flavonoids and lignin in plants but is also closely related to plant tolerance to abiotic stress. UV irradiation can activate the expression of 4CL genes in plants, and the expression of 4CL genes changed significantly in response to different phytohormone treatments. Although the 4CL gene has been cloned in potatoes, there have been fewer related studies of the 4CL gene family on the potato genome-wide scale. In this study, a total of 10 potato 4CL genes were identified in the potato whole genome. Through multiple sequence alignment, phylogenetic analysis as well as gene structure analysis indicated that the potato 4CL gene family could be divided into two subgroups. Combined with promoter cis-acting element analysis, transcriptome data, and RT-qPCR results indicated that potato 4CL gene family was involved in potato response to white light, UV irradiation, ABA treatment, MeJA treatment, and PEG simulated drought stress. Abiotic stresses such as UV, ABA, MeJA, and PEG could promote the up-regulated expression of St4CL6 and St4CL8 but inhibits the expression of St4CL5. The above results will increase our understanding of the evolution and expression regulation of the potato 4CL gene family and provide reference value for further research on the molecular biological mechanism of 4CL participating in response to diverse environmental signals in potatoes.
Collapse
Affiliation(s)
- Tengkun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinxin Sun
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shenglan Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Dongdong Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yamei Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Li M, Guo L, Wang Y, Li Y, Jiang X, Liu Y, Xie DY, Gao L, Xia T. Molecular and biochemical characterization of two 4-coumarate: CoA ligase genes in tea plant (Camellia sinensis). PLANT MOLECULAR BIOLOGY 2022; 109:579-593. [PMID: 35553312 DOI: 10.1007/s11103-022-01269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Two 4-coumarate: CoA ligase genes in tea plant involved in phenylpropanoids biosynthesis and response to environmental stresses. Tea plant is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, 4-coumaroyl-CoA, which is formed from 4-coumaric acid catalyzed by 4-coumaric acid: CoA ligase (4CL). Herein, we report two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which are a member of class I and II of this gene family, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, nine types of light sensitive (LSE), four types of stress-inducible (SIE), and two types of meristem-specific elements (MSE). The promoter of Cs4CL2 also had AC and nine types of LSEs, but only had two types of SIEs and did not have MSEs. In addition, the LSEs varied in the two promoters. Based on the different features of regulatory elements, three stress treatments were tested to understand their expression responses to different conditions. The resulting data indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assays showed that both recombinant Cs4CL1 and Cs4CL2 transformed 4-coumaric acid (CM), ferulic acid (FR), and caffeic acid (CF) to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze CF, while the recombinant Cs4CL2 favored to catalyze CM. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 consistently increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Mingzhuo Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Lili Guo
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yeru Wang
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yajun Liu
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Schott J, Fuchs B, Böttcher C, Hilker M. Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. PLANTA 2021; 255:16. [PMID: 34878607 PMCID: PMC8654711 DOI: 10.1007/s00425-021-03803-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 06/10/2023]
Abstract
Elms, which have received insect eggs as a 'warning' of larval herbivory, enhance their anti-herbivore defences by accumulating salicylic acid and amplifying phenylpropanoid-related transcriptional and metabolic responses to hatching larvae. Plant responses to insect eggs can result in intensified defences against hatching larvae. In annual plants, this egg-mediated effect is known to be associated with changes in leaf phenylpropanoid levels. However, little is known about how trees-long-living, perennial plants-improve their egg-mediated, anti-herbivore defences. The role of phytohormones and the phenylpropanoid pathway in egg-primed anti-herbivore defences of a tree species has until now been left unexplored. Using targeted and untargeted metabolome analyses we studied how the phenylpropanoid pathway of Ulmus minor responds to egg-laying by the elm leaf beetle and subsequent larval feeding. We found that when compared to untreated leaves, kaempferol and quercetin concentrations increased in feeding-damaged leaves with prior egg deposition, but not in feeding-damaged leaves without eggs. PCR analyses revealed that prior insect egg deposition intensified feeding-induced expression of phenylalanine ammonia lyase (PAL), encoding the gateway enzyme of the phenylpropanoid pathway. Salicylic acid (SA) concentrations were higher in egg-treated, feeding-damaged leaves than in egg-free, feeding-damaged leaves, but SA levels did not increase in response to egg deposition alone-in contrast to observations made of Arabidopsis thaliana. Our results indicate that prior egg deposition induces a SA-mediated response in elms to feeding damage. Furthermore, egg deposition boosts phenylpropanoid biosynthesis in subsequently feeding-damaged leaves by enhanced PAL expression, which results in the accumulation of phenylpropanoid derivatives. As such, the elm tree shows similar, yet distinct, responses to insect eggs and larval feeding as the annual model plant A. thaliana.
Collapse
Affiliation(s)
- Johanna Schott
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Benjamin Fuchs
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
- Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Königin-Luise-Str. 19, 14195, Berlin, Germany
| | - Monika Hilker
- Department of Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
14
|
Sun X, Zhao F, Liu X. Cellular autofluorescence and browning in trichomes of Chinese cabbage (Brassica campestris) in response to mechanical stimulation and senescence. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1186-1198. [PMID: 34600597 DOI: 10.1071/fp21012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
There is limited information concerning the formation of dot-like browning appearing at the base of trichomes on mature leaves on the Chinese cabbage (Brassica campestris L. ssp. pekinensis). This study confirmed for the first time that enhanced autofluorescence can be induced in the base of trichomes when pressure stimuli is applied to trichomes; the enhanced autofluorescence gradually moves to the top of trichomes and the neighbouring mesophyll tissue within 15min. The excitation of autofluorescence in trichomes was found to be more effective in mature leaves compared to newly emergent leaves. Increased polyphenol oxidase (PPO) activities and reactive oxygen species (ROS) accumulation were also detected in the basal region of trichomes that were subjected to mechanical stimuli. Enhanced fluorescence was observed at the top of the trichomes in senescencing leaves. A browning in the base of the trichomes during leaf senescence was observed. In contrast, no browning occurred at the base of the trichomes in leaves that were subject to pressure stimuli. The blue fluorescence in the trichomes in senescent leaves arises mainly from the condensed cytoplasm. No direct evidence was able to prove that the enhanced autofluorescent substances in the trichomes during leaf senescence are the cause of the browning at the early growth stages.
Collapse
Affiliation(s)
| | - Fanggui Zhao
- Key Lab of Plant Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, SD, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, SD, China
| |
Collapse
|
15
|
Grigoreva E, Tkachenko A, Arkhimandritova S, Beatovic A, Ulianich P, Volkov V, Karzhaev D, Ben C, Gentzbittel L, Potokina E. Identification of Key Metabolic Pathways and Biomarkers Underlying Flowering Time of Guar ( Cyamopsis tetragonoloba (L.) Taub.) via Integrated Transcriptome-Metabolome Analysis. Genes (Basel) 2021; 12:genes12070952. [PMID: 34206279 PMCID: PMC8303896 DOI: 10.3390/genes12070952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023] Open
Abstract
Guar (Cyamopsis tetragonoloba (L.) Taub.) is an annual legume crop native to India and Pakistan. Seeds of the plant serve as a source of galactomannan polysaccharide (guar gum) used in the food industry as a stabilizer (E412) and as a gelling agent in oil and gas fracturing fluids. There were several attempts to introduce this crop to countries of more northern latitudes. However, guar is a plant of a short photoperiod, therefore, its introduction, for example, to Russia is complicated by a long day length during the growing season. Breeding of new guar varieties insensitive to photoperiod slowed down due to the lack of information on functional molecular markers, which, in turn, requires information on guar genome. Modern breeding strategies, e.g., genomic predictions, benefit from integration of multi-omics approaches such as transcriptome, proteome and metabolome assays. Here we present an attempt to use transcriptome-metabolome integration to understand the genetic determination of flowering time variation among guar plants that differ in their photoperiod sensitivity. This study was performed on nine early- and six delayed-flowering guar varieties with the goal to find a connection between 63 metabolites and 1,067 differentially expressed transcripts using Shiny GAM approach. For the key biomarker of flowering in guar myo-inositol we also evaluated the KEGG biochemical pathway maps available for Arabidopsis thaliana. We found that the phosphatidylinositol signaling pathway is initiated in guar plants that are ready for flowering through the activation of the phospholipase C (PLC) gene, resulting in an exponential increase in the amount of myo-inositol in its free form observed on GC-MS chromatograms. The signaling pathway is performed by suppression of myo-inositol phosphate kinases (phosphorylation) and alternative overexpression of phosphatases (dephosphorylation). Our study suggests that metabolome and transcriptome information taken together, provide valuable information about biomarkers that can be used as a tool for marker-assisted breeding, metabolomics and functional genomics of this important legume crop.
Collapse
Affiliation(s)
- Elizaveta Grigoreva
- Information Technologies and Programming Faculty, ITMO University, 197101 St. Petersburg, Russia; (E.G.); (A.B.)
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, 194021 St. Petersburg, Russia; (V.V.); (E.P.)
- Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Alexander Tkachenko
- Information Technologies and Programming Faculty, ITMO University, 197101 St. Petersburg, Russia; (E.G.); (A.B.)
- Correspondence: ; Tel.: +7-9217634039
| | | | - Aleksandar Beatovic
- Information Technologies and Programming Faculty, ITMO University, 197101 St. Petersburg, Russia; (E.G.); (A.B.)
| | - Pavel Ulianich
- All-Russian Research Institute of Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | - Vladimir Volkov
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, 194021 St. Petersburg, Russia; (V.V.); (E.P.)
- Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Dmitry Karzhaev
- Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Cécile Ben
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (C.B.); (L.G.)
| | - Laurent Gentzbittel
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (C.B.); (L.G.)
| | - Elena Potokina
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, 194021 St. Petersburg, Russia; (V.V.); (E.P.)
- Sirius University of Science and Technology, 354340 Sochi, Russia;
| |
Collapse
|
16
|
Guan Y, Hu W, Xu Y, Yang X, Ji Y, Feng K, Sarengaowa. Metabolomics and physiological analyses validates previous findings on the mechanism of response to wounding stress of different intensities in broccoli. Food Res Int 2021; 140:110058. [PMID: 33648282 DOI: 10.1016/j.foodres.2020.110058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
The mechanism of response of plant to wounding stress is a complex process that physiologically modifies the wounded tissue for protection. In this study, untargeted metabolomics and physiological analyses were performed to validate the molecular mechanism of response to wounding stress of two intensities (0.04 and 1.85 m2 kg-1) in broccoli florets and shreds, respectively. The results showed that 97 and 1220 differentially expressed metabolites could be identified in broccoli subjected to the Florets vs. Control and Shreds vs. Control experiments, respectively. The Kyoto Encyclopedia Genes and Genomes pathway analyses revealed that these metabolites were mainly involved in aminoacyl-tRNA, amino acid, and secondary metabolite biosynthesis; purine metabolism; and plant signal molecule production. This study validated that wounding stress induced plant signal molecule production. Activation of jasmonic acid biosynthesis and H2O2 production were more susceptible to wounding stress of higher intensities, whereas induction of salicylic acid biosynthesis and O2- production were more susceptible to wounding stress of lower intensities. Furthermore, wounding stress also activated glucosinolate and phenylpropanoid biosynthesis by regulating the levels of the precursors, including L-leucine, phenylalanine, tyrosine, valine, isoleucine, tryptophan, methionine, and phenylalanine. Wounding stress induced phenylpropanoid biosynthesis and the antioxidant system by upregulating the corresponding critical enzyme activity and gene expression, contributing greatly to the enhancement of phenolic compound levels, free radical scavenging ability, and resistance to wounding in broccoli.
Collapse
Affiliation(s)
- Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China.
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioesources Utilization, Ministry of Education, Dalian 116600, China
| | - Sarengaowa
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Jin JF, He QY, Li PF, Lou HQ, Chen WW, Yang JL. Genome-Wide Identification and Gene Expression Analysis of Acyl-Activating Enzymes Superfamily in Tomato ( Solanum lycopersicum) Under Aluminum Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:754147. [PMID: 34925406 PMCID: PMC8674732 DOI: 10.3389/fpls.2021.754147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 05/06/2023]
Abstract
In response to changing environments, plants regulate gene expression and subsequent metabolism to acclimate and survive. A superfamily of acyl-activating enzymes (AAEs) has been observed in every class of creatures on planet. Some of plant AAE genes have been identified and functionally characterized to be involved in growth, development, biotic, and abiotic stresses via mediating diverse metabolic pathways. However, less information is available about AAEs superfamily in tomato (Solanum lycopersicum), the highest value fruit and vegetable crop globally. In this study, we aimed to identify tomato AAEs superfamily and investigate potential functions with respect to aluminum (Al) stress that represents one of the major factors limiting crop productivity on acid soils worldwide. Fifty-three AAE genes of tomato were identified and named on the basis of phylogenetic relationships between Arabidopsis and tomato. The phylogenetic analysis showed that AAEs could be classified into six clades; however, clade III contains no AAE genes of tomato. Synteny analyses revealed tomato vegetable paralogs and Arabidopsis orthologs. The RNA-seq and quantitative reverse-transcriptase PCR (qRT-PCR) analysis indicated that 9 out of 53 AAEs genes were significantly up- or downregulated by Al stress. Numerous cis-acting elements implicated in biotic and abiotic stresses were detected in the promoter regions of SlAAEs. As the most abundantly expressed gene in root apex and highly induced by Al, there are many potential STOP1 cis-acting elements present in the promoter of SlAAE3-1, and its expression in root apex was specific to Al. Finally, transgenic tobacco lines overexpressing SlAAE3-1 displayed increased tolerance to Al. Altogether, our results pave the way for further studies on the functional characterization of SlAAE genes in tomato with a wish of improvement in tomato crop in the future.
Collapse
Affiliation(s)
- Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Yu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peng Fei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - He Qiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Research Centre for Plant RNA Signaling and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Wei Wei Chen,
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Jian Li Yang,
| |
Collapse
|
18
|
Zhang Y, Xu L, Chen S, Qiang S. Transcription-mediated tissue-specific lignification of vascular bundle causes trade-offs between growth and defence capacity during invasion of Solidago canadensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110638. [PMID: 33218618 DOI: 10.1016/j.plantsci.2020.110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Allocation of more resources to growth but less to defense causing growth vigor of invasive alien plant populations contributes to successful invasion. However, few studies has addressed to relationship between vascular development variation and this mechanism. In this study, a common garden experimentwas established to compare the growth and vascular bundle development between native and introduced populations of Solidago canadensis, which is a wide-distributed invasive species in China. Our results suggested that the rapid growth of introduced populations could be explained by the well-developed and highly lignified xylem; while native populations present more developed and highly lignified phloem, which contributed more resistance to the infection of Sclerotiun rofsii compared with introduced populations. This difference was resulted from tissue-specific tradeoff distribution of lignification related gene expression between xylem and phloem, which is regulated by upstream MYB transcription factors. Our study gives a novel insight of mechanism that explain invasion success: lignin-related gene transcription-mediated tissue-specific lignification of vascular bundle contributes tradeoffs in resource allocation between growth and defence capacity during successful invasion of S. canadensis.
Collapse
Affiliation(s)
- Yu Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingjun Xu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Metabolic Profiling of Primary Metabolites and Galantamine Biosynthesis in Wounded Lycoris radiata Callus. PLANTS 2020; 9:plants9111616. [PMID: 33233833 PMCID: PMC7699913 DOI: 10.3390/plants9111616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Plants are continuously exposed to abiotic and biotic factors that lead to wounding stress. Different plants exhibit diverse defense mechanisms through which various important metabolites are synthesized. Humans can exploit these mechanisms to improve the efficacy of existing drugs and to develop new ones. Most previous studies have focused on the effects of wounding stress on the different plant parts, such as leaves, stems, and roots. To date, however, no study has investigated the accumulation of primary and galantamine content following the exposure of a callus to wounding stress. Therefore, in the present study, we exposed Lycoris radiata calli to wounding stress and assessed the expression levels of several genes involved in metabolic pathways at various time points (0, 3, 6, 12, 24, 48, 72, and 96 h of exposure). Furthermore, we quantify the primary and galantamine content using gas chromatography-time-of-flight mass spectrometry and the high-performance liquid chromatography qRT-PCR analysis of eight galantamine pathway genes (LrPAL-2, LrPAL-3, LrC4H-2, LrC3H, LrTYDC2, LrN4OMT, LrNNR, and LrCYP96T) revealed that seven genes, except LrN4OMT, were significantly expressed following exposure to wounding stress. Galantamine contents of calli after 3, 6, 12, 24, 48, 72, and 96 h of exposure were respectively 2.5, 2.5, 3.5, 3.5, 5.0, 5.0, and 8.5 times higher than that after 0 h of exposure. Furthermore, a total of 48 hydrophilic metabolites were detected in the 0 h exposed callus and 96 h exposed callus using GC-TOFMS. In particular, a strong positive correlation between galantamine and initial precursors, such as phenylalanine and tyrosine, was observed.
Collapse
|
20
|
Liang C, Wan T, Wu R, Zhao M, Zhao Y, Cai Y. Resistance analysis of cherry rootstock 'CDR-1' (Prunus mahaleb) to crown gall disease. BMC PLANT BIOLOGY 2020; 20:516. [PMID: 33183241 PMCID: PMC7661173 DOI: 10.1186/s12870-020-02673-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crown gall disease, caused by the pathogenic bacterium Agrobacterium tumefaciens, is responsible for extensive economic losses in orchards. Cherry rootstock 'CDR-1' (Prunus mahaleb) shows high resistance but the mechanism remains unclear. Here, we examined the morphology of pathogen-infected root neck surface, determined the activity of 10 defense-related enzymes and the content of salicylic acid (SA) and jasmonic acid (JA), and also applied transcriptome analysis, transient expression and transgenic verification to explore the crown gall resistance genes in 'CDR-1' plants. RESULTS In our study, peroxidase increased in the first 10 days, while phenylalanine ammonialyase and lipoxygenase increased in the first 15 days post-infection. Four key enzymes in the AsA-GSH cycle also responded, to a certain extent; although JA content increased significantly after the treatment, the SA content did not. In a follow-up transcriptome analysis, the differentially expressed genes Pm4CL2, PmCYP450, PmHCT1, PmHCT2, and PmCAD were up-regulated. Based on the above results, we focused on the lignin biosynthetic pathway, and further measured lignin content, and found it increased significantly. The Pm4CL2 gene was used to conduct transient expression and transgenic experiments to verify its function in crown gall disease resistance. It showed the relative expression of the treatment group was almost 14-fold that of the control group at 12 h post-treatment. After the infection treatment, clear signs of resistance were found in the transgenic lines; this indicated that under the higher expression level and earlier activation of Pm4CL2, plant resistance was enhanced. CONCLUSIONS The crown gall resistance of 'CDR-1' is likely related to the lignin biosynthetic pathway, in which Pm4CL2 functions crucially during the plant defense response to the pathogen A. tumefaciens. The results thus offer novel insights into the defense responses and resistance mechanism of cherry rootstock 'CDR-1' against crown gall disease.
Collapse
Affiliation(s)
- Chenglin Liang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Tian Wan
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Rendun Wu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Mei Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yue Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| | - Yuliang Cai
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi Province China
| |
Collapse
|
21
|
Sun X, Ma Y, Yang C, Li J. Rice OVATE family protein 6 regulates leaf angle by modulating secondary cell wall biosynthesis. PLANT MOLECULAR BIOLOGY 2020; 104:249-261. [PMID: 32715397 DOI: 10.1007/s11103-020-01039-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Secondary cell wall not only provides rigidity and mechanical resistance to plants, but also has a large impact on plant growth and adaptation to environments. Biosynthesis of secondary cell wall is regulated by a complicated signaling transduction network; however, it is still unclear how the transcriptional regulation of secondary cell wall biosynthesis works at the molecular level. Here, we report in rice that OVATE family proteins 6 (OsOFP6) is a positive regulator in modulating expression of the genes related to biosynthesis of the secondary cell wall. Transgenic plants with knock-down of OsOFP6 by RNA interference showed increased leaf angle, which resulted from the thinner secondary cell wall with reduced amounts of cellulose and lignin, whilst overexpression of OsOFP6 in rice led to the thinker secondary cell wall with increased lignin content. Protein-protein interaction analysis revealed that OsOFP6 interacts with Oryza sativa homeobox 15 (OSH15), a class I KNOX protein. The interaction of OsOFP6 and OSH15 enhanced the transcriptional activity of OSH15 which binds to the promoter of OsIRX9 (Oryza sativa IRREGULAR XYLEM 9). Taken together, our study provides insights into the function of OsOFP6 in regulating leaf angle and the control of biosynthesis of secondary cell wall.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yamei Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, Botanical Garden, Chinese Academy of Sciences, Guangzhou, South China, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Ferrari C, Shivhare D, Hansen BO, Pasha A, Esteban E, Provart NJ, Kragler F, Fernie A, Tohge T, Mutwil M. Expression Atlas of Selaginella moellendorffii Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. THE PLANT CELL 2020; 32:853-870. [PMID: 31988262 PMCID: PMC7145505 DOI: 10.1105/tpc.19.00780] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
Selaginella moellendorffii is a representative of the lycophyte lineage that is studied to understand the evolution of land plant traits such as the vasculature, leaves, stems, roots, and secondary metabolism. However, only a few studies have investigated the expression and transcriptional coordination of Selaginella genes, precluding us from understanding the evolution of the transcriptional programs behind these traits. We present a gene expression atlas comprising all major organs, tissue types, and the diurnal gene expression profiles for S. moellendorffii We show that the transcriptional gene module responsible for the biosynthesis of lignocellulose evolved in the ancestor of vascular plants and pinpoint the duplication and subfunctionalization events that generated multiple gene modules involved in the biosynthesis of various cell wall types. We demonstrate how secondary metabolism is transcriptionally coordinated and integrated with other cellular pathways. Finally, we identify root-specific genes and show that the evolution of roots did not coincide with an increased appearance of gene families, suggesting that the development of new organs does not coincide with increased fixation of new gene functions. Our updated database at conekt.plant.tools represents a valuable resource for studying the evolution of genes, gene families, transcriptomes, and functional gene modules in the Archaeplastida kingdom.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Devendra Shivhare
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bjoern Oest Hansen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
23
|
Zhong H, Zhang H, Guo R, Wang Q, Huang X, Liao J, Li Y, Huang Y, Wang Z. Characterization and Functional Divergence of a Novel DUF668 Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10120980. [PMID: 31795257 PMCID: PMC6969926 DOI: 10.3390/genes10120980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The domain of unknown function (DUF) superfamily encodes proteins of unknown functions in plants. Among them, DUF668 family members in plants possess a 29 amino-acid conserved domain, and this family has not been described previously. Here, we report this plant-specific novel DUF668 gene family containing 12 OsDUF668 genes in rice (Oryza sativa) and 91 DUF668s for the other seven plant species. In our study, DUF668 genes were present in both dicot and monocot plants, indicating that DUF668 is a conserved gene family that originated by predating the dicot–monocot divergence. Based on the gene structure and motif composition, the DUF668 family consists of two distinct clades, I and II in the phylogenetic tree. Remarkably, OsDUF668 genes clustered on the chromosomes merely show close phylogenetic relationships, suggesting that gene duplications or collinearity seldom happened. Cis-elements prediction display that over 80% of DUF668s contain phytohormone and light responsiveness factors. Further comprehensive experimental analyses of the OsDUF668 family are implemented in 22 different tissues, five hormone treatments, seven environmental factor stresses, and two pathogen-defense related stresses. The OsDUF668 genes express ubiquitously in analyzed rice tissues, and seven genes show tissue-specific high expression profiles. All OsDUF668s respond to drought, and some of Avr9/Cf-9 rapidly elicited genes resist to salt, wound, and rice blast with rapidly altered expression patterns. These findings imply that OsDUF668 is essential for drought-enduring and plant defense. Together, our results bring the important role of the DUF668 gene family in rice development and fitness to the fore.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
| | - Rong Guo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
| | - Xiaoping Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang 330045, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
- Correspondence:
| |
Collapse
|
24
|
Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F. Molecular cloning and functional analysis of 4-Coumarate:CoA ligase 4(4CL-like 1)from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC PLANT BIOLOGY 2019; 19:231. [PMID: 31159735 PMCID: PMC6545724 DOI: 10.1186/s12870-019-1812-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Four-Coumarate:CoA ligase gene (4CL) plays multiple important roles in plant growth and development by catalyzing the formation of CoA ester. 4CL belongs to the plant phenylpropane derivative, which is related to the synthesis of flavonoids and lignin and is a key enzyme in the biosynthetic pathway. RESULTS In this study, 12 4CL genes of Fraxinus mandschurica were identified and named Fm4CL1-Fm4CL12, respectively. The analysis of the expression pattern of Fm4CL genes indicate that Fm4CL-like 1 gene may play a role in the lignin synthesis pathway. Our study indicate that overexpression of Fm4CL-like 1 increases the lignin content of transgenic tobacco by 39.5% compared to WT, and the S/G ratio of transgenic tobacco increased by 19.7% compared with WT. The xylem cell layer of transgenic line is increased by 40% compared to WT, the xylem cell wall thickness increased by 21.6% compared to the WT. Under mannitol-simulated drought stress, the root length of transgenic tobacco is 64% longer than WT, and the seed germination rate of the transgenic lines is 47% higher than that of WT. In addition, the H2O2 content in the transgenic tobacco was 22% lower than that of WT, while the POD and SOD content was higher than WT by 30 and 24% respectively, which showed Fm4CL-like 1 affect the accumulation of reactive oxygen species (ROS). The MDA content and relative conductivity was 25 and 15% lower than WT, respectively. The water loss rate is 16.7% lower than that of WT. The relative expression levels of stress-related genes NtHAK, NtAPX, NtCAT, NtABF2, and NtZFP were higher than those of WT under stress treatment. The stomatal apertures of OE (Overexpression) were 30% smaller than those of WT, and the photosynthetic rate of OE was 48% higher than that of WT. These results showed that the overexpression line exhibited stronger adaptability to osmotic stress than WT. CONCLUSIONS Our results indicate that Fm4CL-like 1 is involved in secondary cell wall development and lignin synthesis. Fm4CL-like 1 play an important role in osmotic stress by affecting cell wall and stomatal development.
Collapse
Affiliation(s)
- Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Xiaoyi Li
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Kai Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040 China
- College of Life Science, Northeast Forestry University, Harbin, 150040 China
| |
Collapse
|
25
|
Chen X, Fang X, Zhang Y, Wang X, Zhang C, Yan X, Zhao Y, Wu J, Xu P, Zhang S. Overexpression of a soybean 4-coumaric acid: coenzyme A ligase (GmPI4L) enhances resistance to Phytophthora sojae in soybean. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:304-313. [PMID: 32172740 DOI: 10.1071/fp18111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023]
Abstract
Phytophthora root and stem rot of soybean (Glycine max (L.) Merr.) caused by Phytophthora sojae is a destructive disease worldwide. The enzyme 4-coumarate: CoA ligase (4CL) has been extensively studied with regard to plant responses to pathogens. However, the molecular mechanism of the response of soybean 4CL to P. sojae remains unclear. In a previous study, a highly upregulated 4CL homologue was characterised through suppressive subtractive hybridisation library and cDNA microarrays, in the resistant soybean cultivar 'Suinong 10' after infection with P. sojae race 1. Here, we isolated the full-length EST, and designated as GmPI4L (P. sojae-inducible 4CL gene) in this study, which is a novel member of the soybean 4CL gene family. GmPI4L has 34-43% over all amino acid sequence identity with other plant 4CLs. Overexpression of GmPI4L enhances resistance to P. sojae in transgenic soybean plants. The GmPI4L is located in the cell membrane when transiently expressed in Arabidopsis protoplasts. Further analyses showed that the contents of daidzein, genistein, and the relative content of glyceollins are significantly increased in overexpression GmPI4L soybeans. Taken together, these results suggested that GmPI4L plays an important role in response to P. sojae infection, possibly by enhancing the content of glyceollins, daidzein, and genistein in soybean.
Collapse
Affiliation(s)
- Xi Chen
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Fang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Youyi Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Wang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Yan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuanling Zhao
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Key Laboratory of Soybean Cultivation of Ministry of Agriculture PR China, Harbin Heilongjiang, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
26
|
Wang Y, Zhang X, Yang S, Yuan Y. Lignin Involvement in Programmed Changes in Peach-Fruit Texture Indicated by Metabolite and Transcriptome Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12627-12640. [PMID: 30350986 DOI: 10.1021/acs.jafc.8b04284] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Texture is an important component of peach-fruit quality. In the present study, an analysis of metabolite and transcriptome profiles during storage of a nonmelting-flesh cultivar, 'Baili', and a melting-flesh cultivar, 'Hongli', was conducted to explore the molecular mechanisms underlying different fruit textures in peach. Results indicated that higher levels of anthocyanins were present in 'Hongli' peach, whereas lignin monomers and ethylene precursors were higher in 'Baili'. A transcriptome analysis indicated that genes associated with lignin synthesis were more highly expressed in 'Baili' than in 'Hongli', especially Pp4CL2, Pp4CL3, and PpCOMT2. Texture differences between the two varieties may be the result of differential expression of two branches of the phenylpropanoid metabolic pathway. One branch regulates flavonoid metabolism and was highly active in 'Hongli' fruit, whereas the other branch regulates lignin synthesis and was more highly active in 'Baili' fruit.
Collapse
Affiliation(s)
- Ying Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture , Qingdao Agricultural University , Number 700 Changcheng Road , Chengyang, Qingdao City 266109 , Shandong Province , China
| | - Xinfu Zhang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture , Qingdao Agricultural University , Number 700 Changcheng Road , Chengyang, Qingdao City 266109 , Shandong Province , China
| | - Shaolan Yang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture , Qingdao Agricultural University , Number 700 Changcheng Road , Chengyang, Qingdao City 266109 , Shandong Province , China
| | - Yongbing Yuan
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture , Qingdao Agricultural University , Number 700 Changcheng Road , Chengyang, Qingdao City 266109 , Shandong Province , China
| |
Collapse
|
27
|
Lavhale SG, Kalunke RM, Giri AP. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. PLANTA 2018; 248:1063-1078. [PMID: 30078075 DOI: 10.1007/s00425-018-2965-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/30/2018] [Indexed: 05/08/2023]
Abstract
The 4-coumarate-CoA ligases (4CL) contribute in channelizing flux of different phenylpropanoid biosynthetic pathways. Expression of 4CL is optimized at developmental stages and in response to environmental triggers such as biotic and abiotic stresses. The enzyme is valuable in metabolic pathway engineering for curcuminoids, resveratrol, biofuel production and nutritional improvement. Vigorous analysis of regulation at functional and expression level is obligatory to attain efficient commercial production of candidate metabolites using 4CL. Phenylpropanoid pathway provides precursors for numerous secondary metabolites in plants. In this pathway, 4-coumarate-CoA ligase (EC 6.2.1.12, 4CL) is the main branch point enzyme which generates activated thioesters. Being the last enzyme of three shared common steps in general phenylpropanoid pathway, it contributes to channelize precursors for different phenylpropanoids. In plants, 4CL enzymes are present in multiple isoforms and encoded by small gene family. It belongs to adenylate-forming enzyme family and catalyzes the reaction that converts hydroxy or methoxy cinnamic acid derivatives to corresponding thioesters. These thioesters are further utilized for biosynthesis of phenylpropanoids, which are known for having numerous nutritional and medicinal applications. In addition, the 4CL enzymes have been characterized from various plants for their role in plant physiology or in biotic and abiotic stresses. Furthermore, specific isoforms are differentially regulated upon exposure to diverse stimuli leading to flux diversion toward the particular metabolite biosynthesis. Evolutionary studies showed that 4CL separately evolved after monocot and dicot segregation. Here, we provide a comprehensive review on 4CL, which includes evolution, function, gene/protein structure, role in metabolite biosynthesis and cellular partition, and their regulation. Based on the available data, we have explored the scope for pathway engineering by utilizing 4CL enzymes.
Collapse
Affiliation(s)
- Santosh G Lavhale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Raviraj M Kalunke
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.
| |
Collapse
|
28
|
Senda M, Kawasaki M, Hiraoka M, Yamashita K, Maeda H, Yamaguchi N. Occurrence and tolerance mechanisms of seed cracking under low temperatures in soybean (Glycine max). PLANTA 2018; 248:369-379. [PMID: 29737417 DOI: 10.1007/s00425-018-2912-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/29/2018] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION In soybean, occurrence of, or tolerance to, seed cracking under low temperatures may be related to the presence or absence, respectively, of proanthocyanidin accumulation in the seed coat dorsal region. Soybean seeds sometimes undergo cracking during low temperatures in summer. In this study, we focused on the occurrence and tolerance mechanisms of low-temperature-induced seed cracking in the sensitive yellow soybean cultivar Yukihomare and the tolerant yellow soybean breeding line Toiku 248. Yukihomare exhibited seed cracking when subjected to a 21-day low-temperature treatment from 10 days after flowering. In yellow soybeans, seed coat pigmentation is inhibited, leading to low proanthocyanidin levels in the seed coat. Proanthocyanidins accumulated on the dorsal side of the seed coat in Yukihomare under the 21-day low-temperature treatment. In addition, a straight seed coat split occurred on the dorsal side at the full-sized seed stage, resulting in seed cracking in this cultivar. Conversely, proanthocyanidin accumulation was suppressed throughout the seed coat in low-temperature-treated Toiku 248. We propose the following mechanism of seed cracking: proanthocyanidin accumulation and subsequent lignin deposition under low temperatures affects the physical properties of the seed coat, making it more prone to splitting. Further analyses uncovered differences in the physical properties of the seed coat between Yukihomare and Toiku 248. In particular, seed coat hardness decreased in Yukihomare, but not in Toiku 248, under the low-temperature treatment. Seed coat flexibility was higher in Toiku 248 than in Yukihomare under the low-temperature treatment, suggesting that the seed coat of low-temperature-treated Toiku 248 is more flexible than that of low-temperature-treated Yukihomare. These physical properties of the Toiku 248 seed coat observed under low-temperature conditions may contribute to its seed-cracking tolerance.
Collapse
Affiliation(s)
- Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan.
| | - Michio Kawasaki
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Miho Hiraoka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Kazuki Yamashita
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori, 036-8561, Japan
| | - Naoya Yamaguchi
- Hokkaido Research Organization, Tokachi Agricultural Experiment Station, Shinsei, Memuro-cho, Kasai-gun, Hokkaido, 082-0081, Japan
| |
Collapse
|
29
|
Sheshadri SA, Nishanth MJ, Harita N, Brindha P, Bindu S. Comparative genome based cis-elements analysis in the 5' upstream and 3' downstream region of cell wall invertase and Phenylalanine ammonia lyase in Nicotiana benthamiana. Comput Biol Chem 2018; 72:181-191. [PMID: 29329783 DOI: 10.1016/j.compbiolchem.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/12/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022]
Abstract
Plant secondary metabolites are widely used in human disease treatment; though primary metabolism provides precursors for secondary metabolism, not much has been studied to unravel the link connecting both the processes. Most common form of gene regulation interconnecting diverse metabolism occurs at the transcriptional and/or posttranscriptional level mediated by regulatory cis-elements. The present study aims at understanding the common cis-elements network connecting the major primary metabolic enzyme, cell wall invertase (CWIN) and secondary metabolism genes in Nicotiana benthamiana (N. benthamiana). The CWIN and thirty one other gene sequences were extracted from N. benthamiana genome, followed by cis-element analysis of their 5' upstream and 3' downstream region using different programs (Genomatix software suite; PLACE and PlantCARe). Comparative cis-element analysis of CWIN (N. benthamiana and other plant species) and other primary, secondary metabolism and transcription factor genes (N. benthamiana) revealed the occurrence of common stress associated cis-elements. Predominantly, AHBP, L1BX, MYBL, MADS, MYBS, GTBX, DOFF and CCAF were found in the 5' upstream region of all genes, whereas AHBP, MYBL, L1BX, HEAT, CCAF and KAN1 were largely occurring in the 3' downstream region of all genes; indicating common function of these elements in transcriptional and posttranscriptional gene regulation. Further, genomic analysis using FGENESH, GenScan and homology based methods (BlastX and BlastN) was performed on the N. benthamiana contigs harboring CWIN and PAL, in an attempt to identify genomic neighborhood genes. The 5' upstream and 3' downstream region of genes in the genomic neighborhood of CWIN and PAL were also subjected to similar cis-element analysis, and the results indicated cis-elements profile similar to CWIN, PAL and other primary, secondary metabolism and transcription factor genes. The results of evolutionary studies confirmed that the 5' upstream region of NbCWINs significantly showed more proximity to secondary metabolism genes 4CL and the redox gene SOD, followed by the phenylpropanoid pathway gene CHI. The 3' downstream regions of NbCWINs were more closely related to other plant CWINs, followed by the redox gene, SOD and primary metabolism gene FBA. Thus, the commonly found stress responsive cis-elements in our study can play a vital role in modulating key pathways of both primary and secondary metabolism; thereby postulating their role in regulating plant growth and metabolisms under unfavourable growth conditions.
Collapse
Affiliation(s)
- S A Sheshadri
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - M J Nishanth
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - N Harita
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India
| | - P Brindha
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, 613401 India
| | - S Bindu
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 India.
| |
Collapse
|
30
|
Feng H, Yang Y, Sun S, Li Y, Zhang L, Tian J, Zhu Q, Feng Z, Zhu H, Sun J. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4559-4569. [PMID: 28981784 DOI: 10.1093/jxb/erx281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pigment components in green cotton fibers were isolated and identified as 22-O-caffeoyl-22-hydroxymonodocosanoin and 22-O-caffeoyl-22-hydroxydocosanoic acid. The concentration of 22-O-caffeoyl-22-hydroxymonodocosanoin correlated positively with the degree of colour in the green fibers, indicating a role for caffeoyl derivatives in the pigmentation of green cotton fibers. Upland cotton (Gossypium hirsutum L.) contains four genes, Gh4CL1-Gh4CL4, encoding 4-coumarate:CoA ligases (4CLs), key enzymes in the phenylpropanoid biosynthesis pathway. In 15-24-day post-anthesis fibers, the expression level of Gh4CL1 was very low, Gh4CL3 had a similar expression level in both white and green cottons, Gh4CL2 had a significantly higher expression level in green fibers than in white fibers, while Gh4CL4 had a higher expression level in white fibers than in green fibers. According to enzyme kinetics analysis, Gh4CL1 displayed a preference for 4-coumarate, Gh4CL3 and Gh4CL4 exhibited a somewhat low but still prominent activity towards ferulate, while Gh4CL2 had a strong preference for caffeate and ferulate. These results suggest that Gh4CL2 might be involved in the metabolism of caffeoyl residues and related to pigment biosynthesis in green cotton fibers. Our findings provide insights for understanding the biochemical and molecular mechanisms of pigmentation in green cotton fibers.
Collapse
Affiliation(s)
- Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yonglin Yang
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shichao Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yanjun Li
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Lin Zhang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| |
Collapse
|
31
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
32
|
Zhao Q. Lignification: Flexibility, Biosynthesis and Regulation. TRENDS IN PLANT SCIENCE 2016; 21:713-721. [PMID: 27131502 DOI: 10.1016/j.tplants.2016.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 05/18/2023]
Abstract
Lignin is a complex phenolic polymer that is deposited in the secondary cell wall of all vascular plants. The evolution of lignin is considered to be a critical event during vascular plant development, because lignin provides mechanical strength, rigidity, and hydrophobicity to secondary cell walls to allow plants to grow tall and transport water and nutrients over a long distance. In recent years, great research efforts have been made to genetically alter lignin biosynthesis to improve biomass degradability for the production of second-generation biofuels. This global focus on lignin research has significantly advanced our understanding of the lignification process. Based on these advances, here I provide an overview of lignin composition, the biosynthesis pathway and its regulation.
Collapse
Affiliation(s)
- Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Li YC, Wan WL, Lin JS, Kuo YW, King YC, Chen YC, Jeng ST. Signal transduction and regulation of IbpreproHypSys in sweet potato. PLANT, CELL & ENVIRONMENT 2016; 39:1576-87. [PMID: 26924170 DOI: 10.1111/pce.12729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 05/28/2023]
Abstract
Hydroxyproline-rich glycopeptides (HypSys) are small signalling peptides containing 18-20 amino acids. The expression of IbpreproHypSys, encoding the precursor of IbHypSys, was induced in sweet potato (Ipomoea batatas cv. Tainung 57) through wounding and IbHypSys treatments by using jasmonate and H2 O2 . Transgenic sweet potatoes overexpressing (OE) and silencing [RNA interference (RNAi)] IbpreproHypSys were created. The expression of the wound-inducible gene for ipomoelin (IPO) in the local and systemic leaves of OE plants was stronger than the expression in wild-type (WT) and RNAi plants after wounding. Furthermore, grafting experiments indicated that IPO expression was considerably higher in WT stocks receiving wounding signals from OE than from RNAi scions. However, wounding WT scions highly induced IPO expression in OE stocks. These results indicated that IbpreproHypSys expression contributed towards sending and receiving the systemic signals that induced IPO expression. Analysing the genes involved in the phenylpropanoid pathway demonstrated that lignin biosynthesis was activated after synthetic IbHypSys treatment. IbpreproHypSys expression in sweet potato suppressed Spodoptera litura growth. In conclusion, wounding induced the expression of IbpreproHypSys, whose protein product was processed into IbHypSys. IbHypSys stimulated IbpreproHypSys and IPO expression and enhanced lignin biosynthesis, thus protecting plants from insects.
Collapse
Affiliation(s)
- Yu-Chi Li
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Lin Wan
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Department of Plant Biochemistry, Center for Plant Molecular Biology, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yun-Wei Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi King
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 82444, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
34
|
Wang CH, Yu J, Cai YX, Zhu PP, Liu CY, Zhao AC, Lü RH, Li MJ, Xu FX, Yu MD. Characterization and Functional Analysis of 4-Coumarate:CoA Ligase Genes in Mul-berry. PLoS One 2016; 11:e0155814. [PMID: 27213624 PMCID: PMC4877003 DOI: 10.1371/journal.pone.0155814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 01/06/2023] Open
Abstract
A small, multigene family encodes 4-coumarate:CoA ligases (4CLs) that catalyze the ligation of CoA to hydroxycinnamic acids, a branch point directing metabolites to flavonoid or monolignol pathways. In this study, we characterized four 4CL genes from M. notabilis Genome Database, and cloned four Ma4CL genes from M. atropurpurea cv. Jialing No.40. A tissue-specific expression analysis indicated that Ma4CL3 was expressed at higher levels than the other genes, and that Ma4CL3 was strongly expressed in root bark, stem bark, and old leaves. Additionally, the expression pattern of Ma4CL3 was similar to the trend of the total flavonoid content throughout fruit development. A phylogenetic analysis suggested that Mn4CL1, Mn4CL2, and Mn4CL4 belong to class I 4CLs, and Mn4CL3 belongs to class II 4CLs. Ma4CL genes responded differently to a series of stresses. Ma4CL3 expression was higher than that of the other Ma4CL genes following wounding, salicylic acid, and ultraviolet treatments. An in vitro enzyme assay indicated that 4-coumarate acid was the best substrate among cinnamic acid, 4-coumarate acid, and caffeate acid, but no catalytic activity to sinapate acid and ferulate acid. The results of subcellular localization experiments showed that Ma4CL3 localized to the cytomembrane, where it activated transcription. We used different vectors and strategies to fuse Ma4CL3 with stilbene synthase (STS) to construct four Ma4CL-MaSTS co-expression systems to generate resveratrol. The results indicated that only a transcriptional fusion vector, pET-Ma4CL3-T-MaSTS, which utilized a T7 promoter and lac operator for the expression of MaSTS, could synthesize resveratrol.
Collapse
Affiliation(s)
- Chuan-Hong Wang
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jian Yu
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu-Xiang Cai
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Pan-Pan Zhu
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Chang-Ying Liu
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Ai-Chun Zhao
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Rui-Hua Lü
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meng-Jiao Li
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Feng-Xiang Xu
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
| | - Mao-De Yu
- State Key Laboratory of Silkworm Genome Biology/College of Biotechnology, Southwest University, Chongqing, 400716, China
- * E-mail:
| |
Collapse
|
35
|
Ryu J, Kwon SJ, Sung SY, Kim WJ, Kim DS, Ahn JW, Kim JB, Kim SH, Ha BK, Kang SY. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics 2016. [DOI: 10.1007/s13258-015-0341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Becerra-Moreno A, Redondo-Gil M, Benavides J, Nair V, Cisneros-Zevallos L, Jacobo-Velázquez DA. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. FRONTIERS IN PLANT SCIENCE 2015; 6:837. [PMID: 26528305 PMCID: PMC4606068 DOI: 10.3389/fpls.2015.00837] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/23/2015] [Indexed: 05/22/2023]
Abstract
The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid) and secondary (phenylpropanoid) metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota) was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds, and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary metabolites when plants are treated with water stress alone or when additional water stress is applied on wounded tissue. If the accumulation of a specific primary or secondary metabolite were desirable, it would be recommended to apply both stresses to accelerate their biosynthesis. However, strategies such as the use of enzymatic inhibitors to block the carbon flux and enhance the accumulation of specific compounds should be designed.
Collapse
Affiliation(s)
- Alejandro Becerra-Moreno
- Department of Biotechnology and Food Engineering, Centro de Biotecnologia-FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey-Campus MonterreyMonterrey, Mexico
| | - Mónica Redondo-Gil
- Department of Biotechnology and Food Engineering, Centro de Biotecnologia-FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey-Campus MonterreyMonterrey, Mexico
| | - Jorge Benavides
- Department of Biotechnology and Food Engineering, Centro de Biotecnologia-FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey-Campus MonterreyMonterrey, Mexico
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M UniversityCollege Station, TX, USA
| | | | - Daniel A. Jacobo-Velázquez
- Department of Biotechnology and Food Engineering, Centro de Biotecnologia-FEMSA, School of Engineering and Sciences, Tecnologico de Monterrey-Campus MonterreyMonterrey, Mexico
| |
Collapse
|
37
|
Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, Jiao C, Zheng Y, Yang W, Fei Z, Xu Y. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. PLoS One 2015; 10:e0130267. [PMID: 26079257 PMCID: PMC4469606 DOI: 10.1371/journal.pone.0130267] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/19/2015] [Indexed: 11/23/2022] Open
Abstract
Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides novel insights into watermelon fruit quality and ripening biology. Furthermore, the comparative expression profile data we developed provides a valuable resource to accelerate functional studies in watermelon and facilitate watermelon crop improvement.
Collapse
Affiliation(s)
- Shaogui Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| | - Honghe Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States of America
| | - Haiying Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| | - Jingan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| | - Yi Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| | - Guoyi Gong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States of America
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States of America
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States of America
| | - Yong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing, China
| |
Collapse
|
38
|
Sutela S, Hahl T, Tiimonen H, Aronen T, Ylioja T, Laakso T, Saranpää P, Chiang V, Julkunen-Tiitto R, Häggman H. Phenolic compounds and expression of 4CL genes in silver birch clones and Pt4CL1a lines. PLoS One 2014; 9:e114434. [PMID: 25502441 PMCID: PMC4263613 DOI: 10.1371/journal.pone.0114434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/10/2014] [Indexed: 01/09/2023] Open
Abstract
A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins.
Collapse
Affiliation(s)
- Suvi Sutela
- Department of Biology, University of Oulu, Oulu, Finland
| | - Terhi Hahl
- Department of Biology, University of Oulu, Oulu, Finland
| | - Heidi Tiimonen
- The Finnish Border Guard, Border and Coast Guard Academy, Imatra, Finland
| | - Tuija Aronen
- Finnish Forest Research Institute, Eastern Finland Regional Unit (Punkaharju Unit), Punkaharju, Finland
| | - Tiina Ylioja
- Finnish Forest Research Institute, Southern Finland Regional Unit (Vantaa Unit), Vantaa, Finland
| | - Tapio Laakso
- Finnish Forest Research Institute, Southern Finland Regional Unit (Vantaa Unit), Vantaa, Finland
| | - Pekka Saranpää
- Finnish Forest Research Institute, Southern Finland Regional Unit (Vantaa Unit), Vantaa, Finland
| | - Vincent Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | - Hely Häggman
- Department of Biology, University of Oulu, Oulu, Finland
| |
Collapse
|
39
|
Guerriero G, Sergeant K, Hausman JF. Wood biosynthesis and typologies: a molecular rhapsody. TREE PHYSIOLOGY 2014; 34:839-55. [PMID: 24876292 DOI: 10.1093/treephys/tpu031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wood represents one of the most important renewable commodities for humanity and plays a crucial role in terrestrial ecosystem carbon-cycling. Wood formation is the result of a multitude of events that require the concerted action of endogenous and exogenous factors under the influence of photoperiod, for instance genes and plant growth regulators. Beyond providing mechanical support and being responsible for the increase in stem radial diameter, woody tissues constitute the vascular system of trees and are capable of reacting to environmental stimuli, and as such are therefore quite plastic and responsive. Despite the ecological and economic importance of wood, not all aspects of its formation have been unveiled. Many gaps in our knowledge are still present, which hinder the maximal exploitation of this precious bioresource. This review aims at surveying the current knowledge of wood formation and the available molecular data addressing the relationship between wood production and environmental factors, which have crucial influences on the rhythmic regulation of cambial activity and exert profound effects on tree stem growth, wood yield and properties. We will here go beyond wood sensu stricto, i.e., secondary xylem, and extend our survey to other tissues, namely vascular cambium, phloem and fibres. The purpose is to provide the reader with an overview of the complexity of the topic and to highlight the importance of progressing in the future towards an integrated knowledge on the subject.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg;
| |
Collapse
|
40
|
Kim J, Choi B, Park YH, Cho BK, Lim HS, Natarajan S, Park SU, Bae H. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.). ScientificWorldJournal 2013; 2013:421578. [PMID: 24204204 PMCID: PMC3800569 DOI: 10.1155/2013/421578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/16/2013] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study is to clone and characterize the expression pattern of a F5H gene encoding ferulate 5-hydroxylase in the phenylpropanoid pathway from kenaf (Hibiscus cannabinus L.). Kenaf is a fast-growing dicotyledonous plant valued for its biomass. F5H, a cytochrome P450-dependent monooxygenase (CYP84), is a key enzyme for syringyl lignin biosynthesis. The full length of the F5H ortholog was cloned and characterized. The full-length F5H ortholog consists of a 1,557-bp open reading frame (ORF) encoding 518 amino acids (GenBank Accession number JX524278). The deduced amino acid sequence showed that kenaf F5H had the highest similarity (78%) with that of Populus trichocarpa. Transcriptional analysis of F5H ortholog was conducted using quantitative real-time PCR during the developmental stages of various tissues and in response to various abiotic stresses. The highest transcript level of the F5H ortholog was observed in immature flower tissues and in early stage (6 week-old) of stem tissues, with a certain level of expression in all tissues tested. The highest transcript level of F5H ortholog was observed at the late time points after treatments with NaCl (48 h), wounding (24 h), cold (24 h), abscisic acid (24 h), and methyl jasmonate (24 h).
Collapse
Affiliation(s)
- Jonggeun Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Bosung Choi
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Young-Hwan Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Byoung-Kwan Cho
- Department of Biosystems and Machinery Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Sang-Un Park
- Department of Crop Science, Chungnam National University, Daejeon 305-754, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
41
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Docimo T, Consonni R, Coraggio I, Mattana M. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites. Int J Mol Sci 2013; 14:13626-44. [PMID: 23812081 PMCID: PMC3742207 DOI: 10.3390/ijms140713626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 02/04/2023] Open
Abstract
Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.
Collapse
Affiliation(s)
- Teresa Docimo
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, Milan 20133, Italy; E-Mails: (T.D.); (I.C.)
| | - Roberto Consonni
- Institute for Macromolecular Studies, NMR Department, CNR, Via Bassini 15, Milan 20133, Italy; E-Mail:
| | - Immacolata Coraggio
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, Milan 20133, Italy; E-Mails: (T.D.); (I.C.)
| | - Monica Mattana
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, Milan 20133, Italy; E-Mails: (T.D.); (I.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-2369-9677; Fax: +39-02-2369-9411
| |
Collapse
|
43
|
Gea G, Kjell S, Jean-François H. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops. Int J Mol Sci 2013; 14:10958-78. [PMID: 23708098 PMCID: PMC3709712 DOI: 10.3390/ijms140610958] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Lignin and cellulose represent the two main components of plant secondary walls and the most abundant polymers on Earth. Quantitatively one of the principal products of the phenylpropanoid pathway, lignin confers high mechanical strength and hydrophobicity to plant walls, thus enabling erect growth and high-pressure water transport in the vessels. Lignin is characterized by a high natural heterogeneity in its composition and abundance in plant secondary cell walls, even in the different tissues of the same plant. A typical example is the stem of fibre crops, which shows a lignified core enveloped by a cellulosic, lignin-poor cortex. Despite the great value of fibre crops for humanity, however, still little is known on the mechanisms controlling their cell wall biogenesis, and particularly, what regulates their spatially-defined lignification pattern. Given the chemical complexity and the heterogeneous composition of fibre crops' secondary walls, only the use of multidisciplinary approaches can convey an integrated picture and provide exhaustive information covering different levels of biological complexity. The present review highlights the importance of combining high throughput -omics approaches to get a complete understanding of the factors regulating the lignification heterogeneity typical of fibre crops.
Collapse
Affiliation(s)
- Guerriero Gea
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Sergeant Kjell
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| | - Hausman Jean-François
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (G.G.); (S.K.)
| |
Collapse
|
44
|
Pan X, Li H, Wei H, Su W, Jiang X, Lu H. Analysis of the spatial and temporal expression pattern directed by the Populus tomentosa 4-coumarate:CoA ligase Pto4CL2 promoter in transgenic tobacco. Mol Biol Rep 2013; 40:2309-17. [PMID: 23184048 DOI: 10.1007/s11033-012-2312-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/19/2012] [Indexed: 12/31/2022]
Abstract
4-Coumarate:CoA ligase (4CL) is a key enzyme in the phenylpropanoid synthesis pathway. The Pto4CL2 promoter was cloned from Populus tomentosa Carr. and fused to the reporter gene encoding β-glucuronidase (GUS); the complex expression patterns directed by the Pto4CL2 promoter were then characterized in Nicotiana tabacum Xanthi by histochemical assays. The promoter 5'-deletion and histochemical assay conducted on transformants indicated that the -317 to -292 nt region supports Pto4CL2 expression in the epidermis and petals and the deletion of the -266 to -252 nt region resulted in the loss of tissue specificity and a dramatic reduction in GUS activity. Furthermore, electrophoretic mobility shift assays testified that an adenine and cytosine-rich element (-264 to -255 nt) and an abscisic acid-responsive element (-242 to -235 nt) in the Pto4CL2 promoter would have functions for the complex expression profiling and efficient basal expression, respectively. These results further clarify the mode of the regulatory expression of class II 4CL promoters in higher plants.
Collapse
Affiliation(s)
- Xiang Pan
- College of Life Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, Haidian District, Beijing, 100083, China
| | | | | | | | | | | |
Collapse
|
45
|
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. THE NEW PHYTOLOGIST 2012; 196:427-440. [PMID: 22931461 DOI: 10.1111/j.1469-8137.2012.04277.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/12/2012] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
46
|
Neutelings G. Lignin variability in plant cell walls: contribution of new models. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:379-86. [PMID: 21889043 DOI: 10.1016/j.plantsci.2011.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/29/2011] [Accepted: 06/29/2011] [Indexed: 05/08/2023]
Abstract
Lignin is a major component of certain plant cell walls. The enzymes and corresponding genes associated with the metabolic pathway leading to the production of this complex phenolic polymer have been studied for many years now and are relatively well characterized. The use of genetically modified model plants (Arabidopsis, tobacco, poplar.) and mutants has contributed greatly to our current understanding of this process. The recent utilisation and/or development of a number of dedicated genomic and transcriptomic tools for other species opens new perspectives for advancing our knowledge of the biological role of this important polymer in less typical situations and/or species. In this context, studies on the formation of hypolignified G-type fibres in angiosperm tension wood, and the natural hypolignification of secondary cell walls in plant bast fibre species such as hemp (Cannabis sativa), flax (Linum usitatissimum) or ramie (Boehmeria nivea) are starting to provide novel information about how plants control secondary cell wall formation. Finally, other biologically interesting species for which few molecular resources currently exist could also represent interesting future models.
Collapse
Affiliation(s)
- Godfrey Neutelings
- Université Lille-Nord de France, Lille 1 UMR INRA 1281, SADV, Villeneuve d'Ascq cedex, France.
| |
Collapse
|
47
|
Schlink K. Gene expression profiling in wounded and systemic leaves of Fagus sylvatica reveals up-regulation of ethylene and jasmonic acid signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:445-452. [PMID: 21489095 DOI: 10.1111/j.1438-8677.2010.00397.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Wounding is a crucial threat to plants because of the physical damage caused and the possible entry of pathogens. Little is known about the wound reaction in forest trees. Therefore, leaves of young beech trees were wounded and the transcriptional response of wounded leaves and leaves directly above and below was analysed. A total of 123 genes exhibited significant regulation. The magnitude of regulation was slightly weaker in the downward leaves but the regulation pattern resembles that of the local and upward reactions. Thus, the signal was transduced in both vertical directions. Genes exhibiting major regulation lacked functional assignment or belonged to signalling, transcription and defence categories. Signalling included activation of transcripts in the calcium and ethylene pathways. There was also evidence for activation of jasmonic acid signalling, but no activation of jasmonic acid-responsive PR (pathogenesis-related) genes was observed. Moreover, repression of salicylic acid responsive defence was measured. Metabolic changes included induction of a core gene of the phenylpropanoid pathway, while energy metabolism exhibited down-regulation. These results support the conclusion that young beech trees might give up leaves and/or reduce leaf energy content after an attack so as to deprive a putative herbivore of a nutrient supply, instead of investing much energy in leaf defence.
Collapse
Affiliation(s)
- K Schlink
- Technische Universität München, Center of Life and Food Sciences Weihenstephan, Forest Genetics, Freising, Germany.
| |
Collapse
|
48
|
Sonnante G, D'Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C. Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid. PLANT PHYSIOLOGY 2010; 153:1224-38. [PMID: 20431089 PMCID: PMC2899911 DOI: 10.1104/pp.109.150144] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 04/27/2010] [Indexed: 05/17/2023]
Abstract
Artichoke (Cynara cardunculus subsp. scolymus) extracts have high antioxidant capacity, due primarily to flavonoids and phenolic acids, particularly chlorogenic acid (5-caffeoylquinic acid [CGA]), dicaffeoylquinic acids, and caffeic acid, which are abundant in flower bracts and bioavailable to humans in the diet. The synthesis of CGA can occur following different routes in plant species, and hydroxycinnamoyl-coenzyme A transferases are important enzymes in these pathways. Here, we report on the isolation and characterization of two novel genes both encoding hydroxycinnamoyl-coenzyme A quinate transferases (HQT) from artichoke. The recombinant proteins (HQT1 and HQT2) were assayed after expression in Escherichia coli, and both showed higher affinity for quinate over shikimate. Their preferences for acyl donors, caffeoyl-coenzyme A or p-coumaroyl-coenzyme A, were examined. Modeling and docking analyses were used to propose possible pockets and residues involved in determining substrate specificities in the HQT enzyme family. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT1 might be more directly associated with CGA content. Transient and stable expression of HQT1 in Nicotiana resulted in a higher production of CGA and cynarin (1,3-dicaffeoylquinic acid). These findings suggest that several isoforms of HQT contribute to the synthesis of CGA in artichoke according to physiological needs and possibly following various metabolic routes.
Collapse
MESH Headings
- Acyltransferases/chemistry
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Chlorogenic Acid/metabolism
- Cynara scolymus/enzymology
- Cynara scolymus/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Enzyme Assays
- Escherichia coli/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Kinetics
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Organ Specificity/genetics
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Sequence Analysis, DNA
- Structural Homology, Protein
- Nicotiana/genetics
Collapse
Affiliation(s)
- Gabriella Sonnante
- Institute of Plant Genetics, National Research Council, 70126 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:360-76. [PMID: 20377698 DOI: 10.1111/j.1744-7909.2010.00892.x] [Citation(s) in RCA: 482] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lignin is a polymer of phenylpropanoid compounds formed through a complex biosynthesis route, represented by a metabolic grid for which most of the genes involved have been sequenced in several plants, mainly in the model-plants Arabidopsis thaliana and Populus. Plants are exposed to different stresses, which may change lignin content and composition. In many cases, particularly for plant-microbe interactions, this has been suggested as defence responses of plants to the stress. Thus, understanding how a stressor modulates expression of the genes related with lignin biosynthesis may allow us to develop study-models to increase our knowledge on the metabolic control of lignin deposition in the cell wall. This review focuses on recent literature reporting on the main types of abiotic and biotic stresses that alter the biosynthesis of lignin in plants.
Collapse
|
50
|
Zhong R, Ye ZH. Transcriptional regulation of lignin biosynthesis. PLANT SIGNALING & BEHAVIOR 2009; 4:1028-34. [PMID: 19838072 PMCID: PMC2819510 DOI: 10.4161/psb.4.11.9875] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 05/17/2023]
Abstract
Lignin is the second most abundant plant biopolymer mainly present in the secondary walls of tracheary elements and fibers in wood. Understanding how lignin is biosynthesized has long been an interest to plant biologists and will have a significant impact on tree biotechnology. Lignin is polymerized from monolignols that are synthesized through the lignin biosynthetic pathway. To make lignin, all the genes in the lignin biosynthetic pathway need to be coordinately turned on. It has been shown that a common cis-element, namely the AC element, is present in the majority of the lignin biosynthetic genes and required for their expression in lignifying cells. Important progress has been made in the identification of transcription factors that bind to the AC elements and are potentially involved in the coordinated regulation of lignin biosynthesis. The Arabidopsis MYB58 and MYB63 as well as their poplar ortholog PtrMYB28 are transcriptional activators of the lignin biosynthetic pathway, whereas the eucalyptus EgMYB2 and pine PtMYB4 transcription factors are likely Arabidopsis MYB46 orthologs involved in the regulation of the entire secondary wall biosynthetic program. It was found that the transcriptional regulation of lignin biosynthesis is under the control of the same transcriptional network regulating the biosynthesis of other secondary wall components, including cellulose and xylan. The identification of transcription factors directly activating lignin biosynthetic genes provides unprecedented tools to potentially manipulate the amount of lignin in wood and other plant products based on our needs.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|