1
|
Guo JX, Song RF, Lu KK, Zhang Y, Chen HH, Zuo JX, Li TT, Li XF, Liu WC. CycC1;1 negatively modulates ABA signaling by interacting with and inhibiting ABI5 during seed germination. PLANT PHYSIOLOGY 2022; 190:2812-2827. [PMID: 36173345 PMCID: PMC9706468 DOI: 10.1093/plphys/kiac456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Regulation of seed germination is important for plant survival and propagation. ABSCISIC ACID (ABA) INSENSITIVE5 (ABI5), the central transcription factor in the ABA signaling pathway, plays a fundamental role in the regulation of ABA-responsive gene expression during seed germination; however, how ABI5 transcriptional activation activity is regulated remains to be elucidated. Here, we report that C-type Cyclin1;1 (CycC1;1) is an ABI5-interacting partner affecting the ABA response and seed germination in Arabidopsis (Arabidopsis thaliana). The CycC1;1 loss-of-function mutant is hypersensitive to ABA, and this phenotype was rescued by mutation of ABI5. Moreover, CycC1;1 suppresses ABI5 transcriptional activation activity for ABI5-targeted genes including ABI5 itself by occupying their promoters and disrupting RNA polymerase II recruitment; thus the cycc1;1 mutant shows increased expression of ABI5 and genes downstream of ABI5. Furthermore, ABA reduces the interaction between CycC1;1 and ABI5, while phospho-mimic but not phospho-dead mutation of serine-42 in ABI5 abolishes CycC1;1 interaction with ABI5 and relieves CycC1;1 inhibition of ABI5-mediated transcriptional activation of downstream target genes. Together, our study illustrates that CycC1;1 negatively modulates the ABA response by interacting with and inhibiting ABI5, while ABA relieves the CycC1;1 interaction with and inhibition of ABI5 to activate ABI5 activity for the ABA response, thereby inhibiting seed germination.
Collapse
Affiliation(s)
- Jia-Xing Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hui-Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jia-Xin Zuo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue-Feng Li
- Anyang Wenfeng District Natural Resources Bureau, Anyang 455000, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Chen S, Qiu G. Overexpression of Zostera japonica 14-3-3 gene ZjGRF1 enhances the resistance of transgenic Arabidopsis to copper stress. Mol Biol Rep 2022; 49:11635-11641. [PMID: 36169898 DOI: 10.1007/s11033-022-07915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Copper is both a nutrient essential for plant growth and a pollutant. In recent decades, with the rapid development of industrial and agricultural production, copper has been used more and more widely, and its consumption has also increased rapidly. Excessive soil copper contents induce phytotoxicity, affecting plant growth, development and yields. Moreover, copper can accumulate in crops and enter the food chain through enrichment, harming human health. METHODS AND RESULTS In this study, Arabidopsis wild-type (WT) and Zostera japonica 14-3-3 gene ZjGRF1 overexpression lines were used to explore the physiological function and molecular mechanism of ZjGRF1 in Arabidopsis in the copper stress response. Under copper stress, compared with WT plants, transgenic ZjGRF1 Arabidopsis plants exhibited less inhibition of root growth and development and had higher fresh weights. Under copper stress, the soluble sugar and soluble protein contents in transgenic ZjGRF1 Arabidopsis plants were significantly higher than those in WT plants, while the superoxide dismutase (SOD), peroxidase and catalase (CAT) activities were significantly higher than those in WT plants. Additionally, the malonaldehyde content of transgenic plants was significantly lower than that of WT plants. Furthermore, qRT-PCR results showed that under copper stress, the SOD, CAT1 and HMA5 expression levels in transgenic ZjGRF1 Arabidopsis plants were significantly higher than those in WT plants, while COPT1 expression was significantly lower than that in WT plants. CONCLUSIONS ZjGRF1 enhanced the copper stress resistance of Arabidopsis by maintaining high antioxidant enzyme activity, increasing copper efflux and reducing copper uptake under copper stress.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 536007, Beihai, Guangxi, China.
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 536007, Beihai, Guangxi, China.
| |
Collapse
|
3
|
Yao H, Li X, Peng L, Hua X, Zhang Q, Li K, Huang Y, Ji H, Wu X, Chen Y, Yang Y, Wang J. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111261. [PMID: 35643603 DOI: 10.1016/j.plantsci.2022.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
14-3-3 proteins, a family of conserved molecules in eukaryotes, target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. ADF4, as one of Actin-Depolymerizing Factor (ADF) family of proteins, is involved in plant development, and response to biotic and abiotic stresses. Here, we show that 14-3-3κ specially interacted with ADF4 in vitro and in vivo. The 14-3-3κ×adf4 double mutant displayed less F-actin bundle and shorter hypocotyl compared with adf4 mutant, indicating that 14-3-3κ acts upstream of ADF4 to mediate the hypocotyl growth in the dark-grown seedlings. Under the osmotic stress, 14-3-3κ mutants displayed less survival rate than wild-type plants. The adf4 mutants exhibited markedly enhanced survival rate under osmotic treatment, while ADF4-overexpressing plants displayed the opposite results, indicating that ADF4 plays a negative role in response to osmotic stress in Arabidopsis. The interaction between ADF4 and 14-3-3κ inhibited the association of ADF4 with actin filament. Moreover, the in vitro phosphorylation assay demonstrates that the phosphorylation of ADF4 by CASEIN KINASE1-LIKE PROTEIN2 (CKL2) was enhanced by binding 14-3-3κ. Collectively, our data infer a fundamental role for the interaction between 14-3-3κ and ADF4 in regulating hypocotyl growth and osmotic tolerance of plants.
Collapse
Affiliation(s)
- Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Ji
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihong Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Liu J, Jiang C, Kang L, Zhang H, Song Y, Zou Z, Zheng W. Over-Expression of a 14-3-3 Protein From Foxtail Millet Improves Plant Tolerance to Salinity Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:449. [PMID: 32351536 PMCID: PMC7174642 DOI: 10.3389/fpls.2020.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/26/2020] [Indexed: 05/09/2023]
Abstract
In plants, 14-3-3 proteins are recognized as mediators of signal transduction and function in both development and stress response. However, there are only a few preliminary functional researches in the C4 crop foxtail millet. Here, phylogenetic analysis categorized foxtail millet 14-3-3s (SiGRFs) into 10 discrete groups (Clusters I to X). Transcriptome and qPCR analyses showed that all the SiGRFs responded to at least one abiotic stress. All but one SiGRF-overexpressing (OE) Arabidopsis thaliana line (SiGRF1) exhibited insensitivity to abiotic stresses during seed germination and seedling growth. Compared with the Col-0 wild-type, SiGRF1-OEs had slightly lower germination rates and smaller leaves. However, flowering time of SiGRF1-OEs occurred earlier than that of Col-0 under high-salt stress. Interaction of SiGRF1 with a foxtail millet E3 ubiquitin-protein ligase (SiRNF1/2) indicates that the proteinase system might hydrolyze SiGRF1. Further investigation showed that SiGRF1 localized in the cytoplasm, and its gene was ubiquitously expressed in various tissues throughout various developmental stages. Additionally, flowering-related genes, WRKY71, FLOWERING LOCUS T, LEAFY, and FRUITFULL, in SiGRF1-OEs exhibited considerably higher expression levels than those in Col-0 under salinity-stressed conditions. Results suggest that SiGRF1 hastens flowering, thereby providing a means for foxtail millet to complete its life cycle and avoid further salt stress.
Collapse
Affiliation(s)
- Jiaming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chengyao Jiang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Lu Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yu Song
- Institute of Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Weijun Zheng
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Genome-wide identification and characterization of late embryogenesis abundant protein-encoding gene family in wheat: Evolution and expression profiles during development and stress. Gene 2020; 736:144422. [PMID: 32007584 DOI: 10.1016/j.gene.2020.144422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are involved in plant stress responses and osmotic regulation, and they are accumulated in the late embryonic stage. There have been no previous genome-wide analyses of the LEA gene family members in wheat and its close relatives. In this study, 281, 53, 151, 89, 99, and 99 LEA genes were identified in wheat (Triticum aestivum), Triticum urartu, Triticum dicoccoides, Aegilops tauschii, barley, and Brachypodium distachyon, respectively. The wheat LEA gene family (TaLEA genes) was divided into eight subfamilies according to the conserved domains. All TaLEA genes contain very few introns (<3) and they are unevenly distributed on the 21 chromosomes. We identified 39 pairs of tandem duplication genes and 9 pairs of segmental duplication genes in the wheat LEA gene family. This proved that the tandem duplication and segmental duplication played an important role in the expansion of the TaLEA gene family. According to published transcriptome data and qRT-PCR analysis, the TaLEA genes exhibit different tissue expression patterns and they are regulated by various abiotic stresses, especially salt and cold stress. This study provides a comprehensive understanding of the wheat LEA gene family.
Collapse
|
7
|
14-3-3 proteins contribute to leaf and root development via brassinosteroid insensitive 1 in Arabidopsis thaliana. Genes Genomics 2020; 42:347-354. [DOI: 10.1007/s13258-019-00909-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
|
8
|
Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110219. [PMID: 31521216 DOI: 10.1016/j.plantsci.2019.110219] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
The 14-3-3 proteins are a family of highly conserved phosphoserine-binding proteins that participate in the regulation of diverse physiological and developmental processes. In this research, twenty 14-3-3 genes in apples, which contained a highly conserved 14-3-3 domain, were identified and divided into two subgroups. Among them, MdGRF11 was further cloned and investigated. qRT-PCR analyses and GUS staining show that MdGRF11 is expressed in various organs and tissues with the highest expression levels found in the fruit. MdGRF11 was upregulated by polyethylene glycol 6000 (PEG 6000), NaCl, abscisic acid (ABA) and low temperature (4 °C) treatments. MdGRF11-overexpressing transgenic Arabidopsis and apple calli exhibited reduced sensitivity to salt and PEG 6000 treatments. Moreover, the ectopic expression of MdGRF11 improved the tolerance of transgenic tobacco to salt and drought stresses, which grew longer roots, underwent more growth, and presented higher chlorophyll levels than the wild-type control under salt and drought stress conditions. Furthermore, MdGRF11 expression remarkably reduced electrolyte leakage, malondialdehyde content levels, H2O2 and O2- accumulation under salt and drought stress conditions, which relied on the regulation of ROS-scavenging signaling to reduce oxidative damage of cells after salt and drought stress treatment. MdGRF11 also enhanced tolerance to stress by upregulating expression levels of ROS-scavenging and stress-related genes, especially improving responses to drought stress by modifying the water loss rates and stomatal aperture. Moreover, MdGRF11 could interact with MdAREB/ABF transcription factors through yeast two hybrid analyses. In conclusion, our results indicate that MdGRF11 acts as a positive regulator of salt and drought stress responses through regulating ROS scavenging and other signaling systems.
Collapse
Affiliation(s)
- Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Ying Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qiang Zhao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
9
|
Camoni L, Visconti S, Aducci P, Marra M. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once. FRONTIERS IN PLANT SCIENCE 2018; 9:297. [PMID: 29593761 PMCID: PMC5859350 DOI: 10.3389/fpls.2018.00297] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 05/19/2023]
Abstract
In this review we highlight the advances achieved in the investigation of the role of 14-3-3 proteins in hormone signaling, biosynthesis, and transport. 14-3-3 proteins are a family of conserved molecules that target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. As a result, they regulate several cellular processes, ranging from metabolism to transport, growth, development, and stress response. High-throughput proteomic data and two-hybrid screen demonstrate that 14-3-3 proteins physically interact with many protein clients involved in the biosynthesis or signaling pathways of the main plant hormones, while increasing functional evidence indicates that 14-3-3-target interactions play pivotal regulatory roles. These advances provide a framework of our understanding of plant hormone action, suggesting that 14-3-3 proteins act as hubs of a cellular web encompassing different signaling pathways, transducing and integrating diverse hormone signals in the regulation of physiological processes.
Collapse
|
10
|
|
11
|
Sun X, Sun M, Jia B, Chen C, Qin Z, Yang K, Shen Y, Meiping Z, Mingyang C, Zhu Y. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis. PLoS One 2015; 10:e0146163. [PMID: 26717241 PMCID: PMC4696740 DOI: 10.1371/journal.pone.0146163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Zhiwei Qin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Kejun Yang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Zhang Meiping
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Cong Mingyang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
12
|
|
13
|
Shigeta T, Yasuda D, Mori T, Yoshimitsu Y, Nakamura Y, Yoshida S, Asami T, Okamoto S, Matsuo T. Characterization of brassinosteroid-regulated proteins in a nuclear-enriched fraction of Arabidopsis suspension-cultured cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:985-95. [PMID: 21571540 DOI: 10.1016/j.plaphy.2011.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/26/2011] [Indexed: 05/08/2023]
Abstract
To identify nuclear proteins involved in the brassinosteroid (BR) signaling pathway, a targeted proteomic approach was applied to Arabidopsis thaliana suspension-cultured T87 cells. Cell growth was promoted by 0.1 μM brassinolide (BL) and inhibited by 5 μM brassinazole (Brz). Analysis of BR-regulated proteins in nuclear-enriched fractions was carried out using two-dimensional polyacrylamide gel electrophoresis with a special fluorescent dye. Proteins of interest were identified by correlating normalized spot volume of proteins on the gels with cellular BR level (Brz-treated cells, extremely low level of BRs; control cells, normal level of BRs; BL-treated cells, high level of BRs). A number of BR-responsive proteins were detected and some of these proteins were identified by nano-liquid chromatography-tandem mass spectrometry after enzymatic digestion. Fluctuations in eight identified nuclear proteins in BL-treated cells were investigated in the first 12 h of treatment. Three nuclear BR-responsive proteins, Nucleosome Assembly Protein (NAP) 1;1, Band 7 Family Protein, and Vernalization Independence 3, significantly decreased during this time. Meanwhile, NAP1;2, S-Adenosylmethionine Synthetase 2, and 60S Ribosomal Protein L14 increased markedly over time. Since some of these proteins are reportedly related to chromosome remodeling, cell growth induced by BL may involve chromatin remodeling. Interestingly, NAP1;2 was found to be post-translationally modified in response to cellular BR levels. Our study of quantitative protein changes in the nucleus provides valuable insight into BR-induced cellular and physiological responses.
Collapse
Affiliation(s)
- Tomoaki Shigeta
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Denison FC, Paul AL, Zupanska AK, Ferl RJ. 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 2011; 22:720-7. [PMID: 21907297 DOI: 10.1016/j.semcdb.2011.08.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/15/2011] [Indexed: 12/18/2022]
Abstract
Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division.
Collapse
Affiliation(s)
- Fiona C Denison
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, United States
| | | | | | | |
Collapse
|
15
|
Maroniche GA, Mongelli VC, Peralta AV, Distéfano AJ, Llauger G, Taboga OA, Hopp EH, del Vas M. Functional and biochemical properties of Mal de Río Cuarto virus (Fijivirus, Reoviridae) P9-1 viroplasm protein show further similarities to animal reovirus counterparts. Virus Res 2010; 152:96-103. [PMID: 20600394 DOI: 10.1016/j.virusres.2010.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Mal de Río Cuarto virus (MRCV) is a plant virus of the genus Fijivirus within the family Reoviridae that infects several monocotyledonous species and is transmitted by planthoppers in a persistent and propagative manner. Other members of the family replicate in viral inclusion bodies (VIBs) termed viroplasms that are formed in the cytoplasm of infected plant and insect cells. In this study, the protein coded by the first ORF of MRCV segment S9 (P9-1) was shown to establish cytoplasmic inclusion bodies resembling viroplasms after transfection of Spodoptera frugiperda insect cells. In accordance, MRCV P9-1 self-associates giving rise to high molecular weight complexes when expressed in bacteria. Strong self-interaction was also evidenced by yeast two-hybrid assays. Furthermore, biochemical characterization showed that MRCV P9-1 bound single stranded RNA and had ATPase activity. Finally, the MRCV P9-1 region required for the formation of VIB-like structures was mapped to the protein carboxy-terminal half. This extensive functional and biochemical characterization of MRCV P9-1 revealed further similarities between plant and animal reovirus viroplasm proteins.
Collapse
Affiliation(s)
- Guillermo A Maroniche
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Las Cabañas y Los Reseros s/n., Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Paul AL, Liu L, McClung S, Laughner B, Chen S, Ferl RJ. Comparative Interactomics: Analysis of Arabidopsis 14-3-3 Complexes Reveals Highly Conserved 14-3-3 Interactions between Humans and Plants. J Proteome Res 2009; 8:1913-24. [DOI: 10.1021/pr8008644] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna-Lisa Paul
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| | - Li Liu
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| | - Scott McClung
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| | - Beth Laughner
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| | - Sixue Chen
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| | - Robert J. Ferl
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611-0690, Department of Botany, University of Florida, Gainesville, Florida 32611, and Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610-3622
| |
Collapse
|
17
|
Chevalier D, Morris ER, Walker JC. 14-3-3 and FHA domains mediate phosphoprotein interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:67-91. [PMID: 19575580 DOI: 10.1146/annurev.arplant.59.032607.092844] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many aspects of plant growth and development require specific protein interactions to carry out biochemical and cellular functions. Several proteins mediate these interactions, two of which specifically recognize phosphoproteins: 14-3-3 proteins and proteins with FHA domains. These are the only phosphobinding domains identified in plants. Both domains are present in animals and plants, and are used by plant proteins to regulate metabolic, developmental, and signaling pathways. 14-3-3s regulate sugar metabolism, proton gradients, and control transcription factor localization. FHA domains are modular domains often found in multidomain proteins that are involved in signal transduction and plant development.
Collapse
Affiliation(s)
- David Chevalier
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|