1
|
Li G, Chen T, Zhang Z, Li B, Tian S. Roles of Aquaporins in Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1134. [PMID: 32882951 PMCID: PMC7569825 DOI: 10.3390/plants9091134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.
Collapse
Affiliation(s)
- Guangjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Boyce CK, Zwieniecki MA. The prospects for constraining productivity through time with the whole-plant physiology of fossils. THE NEW PHYTOLOGIST 2019; 223:40-49. [PMID: 30304562 DOI: 10.1111/nph.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Anatomically preserved fossils allow estimation of hydraulic parameters, potentially providing constraints on interpreting whole-plant physiology. However, different organ systems have typically been considered in isolation - a problem given common mismatches of high and low conductance components coupled in the hydraulic path of the same plant. A recent paper addressed the issue of how to handle resistance mismatches in fossil plant hydraulics, focusing on Carboniferous medullosan seed plants and arborescent lycopsids. Among other problems, however, a fundamental error was made: the transpiration stream consists of resistances in series (where resistances are additive and the component with the largest resistance can dominate the behavior of the system), but emphasis was instead placed on the lowest resistance, effectively treating the system as resistances in parallel (where the component with the smallest resistance will dominate the behavior). Instead of possessing high assimilation capacities to match high specific stem conductances, it is argued here that individual high conductance components in these Paleozoic plants are nonetheless associated with low whole-plant productivity, just as can be commonly seen in living plants. Resolution of how to handle these issues may have broad implications for the Earth system including geobiological feedbacks to rock weathering, atmospheric composition, and climate.
Collapse
Affiliation(s)
- C Kevin Boyce
- Geological Sciences, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
3
|
Ptushenko OS, Ptushenko VV. Tradescantia-based models: a powerful looking glass for investigation of photoacclimation and photoadaptation in plants. PHYSIOLOGIA PLANTARUM 2019; 166:120-133. [PMID: 30854663 DOI: 10.1111/ppl.12963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Here, we summarize diverse evidence from species that belong to the genus Tradescantia, which we propose as handy and versatile models for studies of the ecology of photosynthesis and the mechanisms of photoacclimation in higher plants. A valuable feature of this genus is the amazingly broad range of ecological niches occupied by its species: from shady understory of tropical rainforest to deserts and semideserts. The former habitats demand shade tolerance (e.g. that featured by Tradescantia fluminensis), whereas the latter requires succulence and/or high light stress tolerance (evident in e.g. Tradescantia navicularis). At the same time, the acclimative traits of Tradescantia species seem quite moderate at first glance. Certainly, their basic principles of acclimation seem to differ in some aspects from the ones typical for most of other higher plants. This review presents a systematic analysis of irradiance responses of Tradescantia species studied on different timescales. The specifics of Tradescantia responses to irradiance make the plants of this genus a 'multitool' for studies in this field. Similarity of irradiance acclimation patterns is a characteristic feature in the ecologically contrasting Tradescantia species, which may inspire further insights into physiology and evolution of plants.
Collapse
Affiliation(s)
- Oxana S Ptushenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vasily V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
4
|
Yaaran A, Moshelion M. Role of Aquaporins in a Composite Model of Water Transport in the Leaf. Int J Mol Sci 2016; 17:E1045. [PMID: 27376277 PMCID: PMC4964421 DOI: 10.3390/ijms17071045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/02/2023] Open
Abstract
Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.
Collapse
Affiliation(s)
- Adi Yaaran
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Devi MJ, Sinclair TR, Jain M, Gallo M. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors. PHYSIOLOGIA PLANTARUM 2016; 156:387-96. [PMID: 26303261 DOI: 10.1111/ppl.12378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/31/2015] [Accepted: 06/14/2015] [Indexed: 05/02/2023]
Abstract
A plant trait currently being exploited to decrease crop yield loss under water-deficit conditions is limited-transpiration rate (TRlim ) under high atmospheric vapor pressure deficit (VPD) conditions. Although limited genotype comparisons for the TRlim trait have been performed in peanut (Arachis hypogaea), no detailed study to describe the basis for this trait in peanut has been reported. Since it has been hypothesized that the TRlim trait may be a result of low leaf hydraulic conductance associated with aquaporins (AQPs), the first objective of this study was to examine a possible correlation of TRlim to leaf AQP transcriptional profiles in six peanut cultivars. Five of the studied cultivars were selected because they expressed TRlim while the cultivar York did not. Transcripts of six AQPs were measured. Under exposure to high vapor pressure deficit, cultivar C 76-16 had decreased AQP transcript abundance for four of the six AQPs but in York only one AQP had decreased abundance. The second objective was to explore the influence of AQP inhibitors mercury and silver on expression of TRlim and AQP transcription profiles. Quantitative RT-PCR data were compared in cultivars York and C 76-16, which had the extreme response in TR to VPD. Inhibitor treatment resulted in increased abundance of AQP transcripts in both. The results of these experiments indicate that AQP transcript abundance itself may not be useful in identifying genotypes expressing the TRlim trait under high VPD conditions.
Collapse
Affiliation(s)
- M Jyostna Devi
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas R Sinclair
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mukesh Jain
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Maria Gallo
- Agronomy Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Qian ZJ, Song JJ, Chaumont F, Ye Q. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. PLANT, CELL & ENVIRONMENT 2015; 38:461-73. [PMID: 24601940 DOI: 10.1111/pce.12319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 05/09/2023]
Abstract
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non-significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr ) and root cells (Lprc ) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf ) and leaf cells (Lplc ) could be attributed to a down-regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs.
Collapse
Affiliation(s)
- Zheng-Jiang Qian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | |
Collapse
|
7
|
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta Gen Subj 2014; 1840:1596-604. [DOI: 10.1016/j.bbagen.2013.09.017] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
8
|
Rockwell FE, Holbrook NM, Stroock AD. Leaf hydraulics II: vascularized tissues. J Theor Biol 2014; 340:267-84. [PMID: 24012489 DOI: 10.1016/j.jtbi.2013.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 11/29/2022]
Abstract
Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.
Collapse
Affiliation(s)
- Fulton E Rockwell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
9
|
Rockwell FE, Michele Holbrook N, Stroock AD. Leaf hydraulics I: scaling transport properties from single cells to tissues. J Theor Biol 2013; 340:251-66. [PMID: 24112968 DOI: 10.1016/j.jtbi.2013.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/06/2013] [Accepted: 09/28/2013] [Indexed: 11/16/2022]
Abstract
In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe these three pathways in terms of experimental variables. We show that, in plant water relations theory, the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical interactions between cells, is consistent with a special case of the more general continuum mechanical theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of equations governing linear poroelastic behavior. We next consider the case for local equilibrium between protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine how accurately simple volume averaging of material properties (a 'composite' model) describes the hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that a composite description for tissues composed of thin walled cells with air spaces of similar size to the cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-isothermal case, information on the magnitude of the thermal gradients is required to assess the dominant phase of water transport, liquid or vapor.
Collapse
Affiliation(s)
- Fulton E Rockwell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
10
|
Prado K, Maurel C. Regulation of leaf hydraulics: from molecular to whole plant levels. FRONTIERS IN PLANT SCIENCE 2013; 4:255. [PMID: 23874349 PMCID: PMC3711007 DOI: 10.3389/fpls.2013.00255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/24/2013] [Indexed: 05/18/2023]
Abstract
The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.
Collapse
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| |
Collapse
|
11
|
Muries B, Carvajal M, Martínez-Ballesta MDC. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins. PLANTA 2013; 237:1297-310. [PMID: 23377621 DOI: 10.1007/s00425-013-1849-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/17/2013] [Indexed: 05/08/2023]
Abstract
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na(+) concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.
Collapse
Affiliation(s)
- Beatriz Muries
- Dpto. Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100, Murcia, Spain
| | | | | |
Collapse
|
12
|
Giraldo JP, Wheeler JK, Huggett BA, Holbrook NM. The role of leaf hydraulic conductance dynamics on the timing of leaf senescence. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:37-47. [PMID: 32480964 DOI: 10.1071/fp13033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/27/2013] [Indexed: 06/11/2023]
Abstract
We tested the hypothesis that an age-dependent reduction in leaf hydraulic conductance (Kleaf) influences the timing of leaf senescence via limitation of the stomatal aperture on xylem compound delivery to leaves of tomato (Solanum lycopersicum L.), the tropical trees Anacardium excelsum Kunth, Pittoniotis trichantha Griseb, and the temperate trees Acer saccharum Marsh. and Quercus rubra L. The onset of leaf senescence was preceded by a decline in Kleaf in tomato and the tropical trees, but not in the temperate trees. Age-dependent changes in Kleaf in tomato were driven by a reduction in leaf vein density without a proportional increase in the xylem hydraulic supply. A decline in stomatal conductance accompanied Kleaf reduction with age in tomato but not in tropical and temperate tree species. Experimental manipulations that reduce the flow of xylem-transported compounds into leaves with open stomata induced early leaf senescence in tomato and A. excelsum, but not in P. trichantha, A. saccharum and Q. rubra leaves. We propose that in tomato, a reduction in Kleaf limits the delivery of xylem-transported compounds into the leaves, thus making them vulnerable to senescence. In the tropical evergreen tree A. excelsum, xylem-transported compounds may play a role in signalling the timing of senescence but are not under leaf hydraulic regulation; leaf senescence in the deciduous trees A. trichanta, A. saccharum and Q. rubra is not influenced by leaf vascular transport.
Collapse
Affiliation(s)
- Juan Pablo Giraldo
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - James K Wheeler
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Brett A Huggett
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - N Michele Holbrook
- Harvard University, Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 2012; 7:e52439. [PMID: 23285044 PMCID: PMC3527513 DOI: 10.1371/journal.pone.0052439] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/13/2012] [Indexed: 11/21/2022] Open
Abstract
Aquaporin (AQP) proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG), abscisic acid (ABA) and H(2)O(2). Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA) and H(2)O(2), and less ion leakage (IL), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities when compared with the wild type (WT) under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.
Collapse
Affiliation(s)
- Shiyi Zhou
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wei Hu
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Xiaomin Deng
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhanbing Ma
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lihong Chen
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chao Huang
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chen Wang
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jie Wang
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanzhen He
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangxiao Yang
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangyuan He
- Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
14
|
Ocheltree TW, Nippert JB, Prasad PVV. Changes in stomatal conductance along grass blades reflect changes in leaf structure. PLANT, CELL & ENVIRONMENT 2012; 35:1040-9. [PMID: 22146058 DOI: 10.1111/j.1365-3040.2011.02470.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves.
Collapse
Affiliation(s)
- T W Ocheltree
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
15
|
Guyot G, Scoffoni C, Sack L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. PLANT, CELL & ENVIRONMENT 2012; 35:857-71. [PMID: 22070647 DOI: 10.1111/j.1365-3040.2011.02458.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The leaf is a hydraulic bottleneck, accounting for a large part of plant resistance. Thus, the leaf hydraulic conductance (K(leaf) ) is of key importance in determining stomatal conductance (g(s) ) and rates of gas exchange. Previous studies showed that K(leaf) is dynamic with leaf water status and irradiance. For four species, we tested the combined impacts of these factors on K(leaf) and on g(s) . We determined responses of K(leaf) and g(s) to declining leaf water potential (Ψ(leaf) ) under low and high irradiance (<6 and >900 µmol photons m(-2) s(-1) photosynthetically active radiation, respectively). We hypothesized greater K(leaf) vulnerability under high irradiance. We also hypothesized that K(leaf) and g(s) would be similar in their responses to either light or dehydration: similar light-responses of K(leaf) and g(s) would stabilize Ψ(leaf) across irradiances for leaves transpiring at a given vapour pressure deficit, and similar dehydration responses would arise from the control of stomata by Ψ(leaf) or a correlated signal. For all four species, the K(leaf) light response declined from full hydration to turgor loss point. The K(leaf) and g(s) differed strongly in their light- and dehydration responses, supporting optimization of hydraulic transport across irradiances, and semi-independent, flexible regulation of liquid and vapour phase water transport with leaf water status.
Collapse
Affiliation(s)
- Gaëlle Guyot
- Université Bordeaux 1, Bâtiment B2 Avenue des Facultés, 33405 Talence, France Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
16
|
Simonin KA, Limm EB, Dawson TE. Hydraulic conductance of leaves correlates with leaf lifespan: implications for lifetime carbon gain. THE NEW PHYTOLOGIST 2012; 193:939-947. [PMID: 22224403 DOI: 10.1111/j.1469-8137.2011.04014.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain. Leaf hydraulic conductance (K(Leaf)), carbon isotope discrimination (Δ(13)C), leaf mass per unit area (LMA) and the driving force for water transport from stem to leaf (ΔΨ(Stem-Leaf)) were characterized for leaves spanning three orders of magnitude in surface area and two orders of magnitude in lifespan. We observed positive isometric scaling between K(Leaf) and leaf area but no relationship between Δ(13)C and leaf area. Leaf lifespan and LMA had minimal effect on K(Leaf) per unit leaf area, but a negative correlation exists among LMA, lifespan, and K(Leaf) per unit dry mass. During periods of leaf water loss, ΔΨ(Stem-Leaf) was relatively constant. We show for the first time that K(Leaf, mass), an index of the carbon cost associated with water use, is negatively correlated with lifespan. This highlights the importance of characterizing K(Leaf, mass) and suggests a tradeoff between resource investment in liquid phase processes and structural rigidity.
Collapse
Affiliation(s)
- Kevin A Simonin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Faculty of Agriculture, Food and Natural Resources, University of Sydney, NSW 2570, Australia
| | - Emily B Limm
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Save-The-Redwoods League, 114 Sansome Street, Suite 1200, San Francisco, CA 94104, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Sommerville KE, Sack L, Ball MC. Hydraulic conductance of Acacia phyllodes (foliage) is driven by primary nerve (vein) conductance and density. PLANT, CELL & ENVIRONMENT 2012; 35:158-168. [PMID: 21923760 DOI: 10.1111/j.1365-3040.2011.02425.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We determined effects of venation traits on hydraulic conductance of phyllodes (foliage), using an array of Acacia s.str. species with diverse phyllode morphologies as the source of variation. Measurements were made on phyllodes from 44 species, grown in common gardens but originating from different positions along a precipitation gradient. K(phyllode) varied 18-fold and was positively correlated with primary nerve hydraulic conductance, and with primary nerve (vein) density but not with minor nerve density, in contrast with previous studies of true leaves in other dicotyledons. Phyllodes with higher primary nerve density also had greater mass per area (PMA) and larger bundle sheath extensions (BSEs) from their minor nerves. We suggest that higher primary nerve conductivity and density may decrease the distance travelled in the high-resistance extra-xylem pathways of the phyllode. Further, larger BSEs may increase the area available for dispersion of water from the xylem to the extra-xylem tissue. High PMA phyllodes were more common in acacias from areas receiving lower annual precipitation. Maximizing efficient water movement through phyllodes may be more important where rainfall is meagre and infrequent, explaining relationships between nerve patterns and the climates of origin in Australian phyllodinous Acacia.
Collapse
Affiliation(s)
- Katy E Sommerville
- Plant Science Division, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
18
|
Besse M, Knipfer T, Miller AJ, Verdeil JL, Jahn TP, Fricke W. Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4127-42. [PMID: 21737414 PMCID: PMC3153690 DOI: 10.1093/jxb/err175] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 05/02/2023]
Abstract
Aquaporins are multifunctional membrane channels which belong to the family of major intrinsic proteins (MIPs) and are best known for their ability to facilitate the movement of water. In the present study, earlier results from microarray experiments were followed up. These experiments had suggested that, in barley (Hordeum vulgare L.), aquaporin family members are expressed in distinct patterns during leaf development. Real-time PCR and in situ hybridization were used to analyse the level and tissue-distribution of expression of candidate aquaporins, focusing on plasma membrane and tonoplast intrinsic proteins (PIPs, TIPs). Water channel function of seven aquaporins, whose transcripts were the most abundant and the most variable, was tested through expression in yeast and, in part, through expression in oocytes. All PIP1 and PIP2 subfamily members changed in expression during leaf development, with expression being much higher or lower in growing compared with mature tissue. The same applied to those TIPs which were expressed at detectable levels. Specific roles during leaf development are proposed for particular aquaporins.
Collapse
Affiliation(s)
- Matthieu Besse
- UCD School of Biology and Environmental Sciences, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thorsten Knipfer
- UCD School of Biology and Environmental Sciences, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anthony J. Miller
- Centre for Soils and Ecosystem Function, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Jean-Luc Verdeil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, UMR 1096, TA 96/02, Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Thomas P. Jahn
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Wieland Fricke
- UCD School of Biology and Environmental Sciences, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
19
|
Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, Kaiser BN, Leigh RA, Tyerman SD. Calcium delivery and storage in plant leaves: exploring the link with water flow. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2233-50. [PMID: 21511913 DOI: 10.1093/jxb/err111] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.
Collapse
Affiliation(s)
- Matthew Gilliham
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Metzner R, Thorpe MR, Breuer U, Blümler P, Schurr U, Schneider HU, Schroeder WH. Contrasting dynamics of water and mineral nutrients in stems shown by stable isotope tracers and cryo-SIMS. PLANT, CELL & ENVIRONMENT 2010; 33:1393-1407. [PMID: 20444220 DOI: 10.1111/j.1365-3040.2010.02157.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny). Tracers were subsequently mapped in stem cross-sections with cryo-secondary ion mass spectrometry. The water tracer equilibrated within minutes across the entire cross-section. In contrast, the nutrient tracers showed a very heterogeneous exchange between xylem vessels and the different stem tissues, even after 4 h. Dynamics of nutrients in the tissues revealed a fast and extensive exchange of nutrients in the xylem parenchyma, with, for example, calcium being completely replaced by tracer in less than 5 min. Dilution of potassium tracer during its 30 s transit in xylem sap through the stem showed that potassium concentration was up-regulated over many hours, to the extent that some of it was probably supplied by phloem recirculation from the shoot.
Collapse
Affiliation(s)
- Ralf Metzner
- Central Division of Analytical Chemistry, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Sadok W, Sinclair TR. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:821-9. [PMID: 19969533 PMCID: PMC2814113 DOI: 10.1093/jxb/erp350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/16/2009] [Accepted: 11/06/2009] [Indexed: 05/05/2023]
Abstract
The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.
Collapse
Affiliation(s)
| | - Thomas R. Sinclair
- Agronomy Physiology Laboratory, PO Box 110965, University of Florida, Gainesville, FL 32611-0965, USA
| |
Collapse
|
22
|
Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner AR, Maurel C. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1418-30. [PMID: 20034965 PMCID: PMC2832249 DOI: 10.1104/pp.109.145326] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/21/2009] [Indexed: 05/18/2023]
Abstract
Aquaporins are channel proteins that facilitate the transport of water across plant cell membranes. In this work, we used a combination of pharmacological and reverse genetic approaches to investigate the overall significance of aquaporins for tissue water conductivity in Arabidopsis (Arabidopsis thaliana). We addressed the function in roots and leaves of AtPIP1;2, one of the most abundantly expressed isoforms of the plasma membrane intrinsic protein family. At variance with the water transport phenotype previously described in AtPIP2;2 knockout mutants, disruption of AtPIP1;2 reduced by 20% to 30% the root hydrostatic hydraulic conductivity but did not modify osmotic root water transport. These results document qualitatively distinct functions of different PIP isoforms in root water uptake. The hydraulic conductivity of excised rosettes (K(ros)) was measured by a novel pressure chamber technique. Exposure of Arabidopsis plants to darkness increased K(ros) by up to 90%. Mercury and azide, two aquaporin inhibitors with distinct modes of action, were able to induce similar inhibition of K(ros) by approximately 13% and approximately 25% in rosettes from plants grown in the light or under prolonged (11-18 h) darkness, respectively. Prolonged darkness enhanced the transcript abundance of several PIP genes, including AtPIP1;2. Mutant analysis showed that, under prolonged darkness conditions, AtPIP1;2 can contribute to up to approximately 20% of K(ros) and to the osmotic water permeability of isolated mesophyll protoplasts. Therefore, AtPIP1;2 can account for a significant portion of aquaporin-mediated leaf water transport. The overall work shows that AtPIP1;2 represents a key component of whole-plant hydraulics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F–34060 Montpellier cedex 1, France (O.P., C.T.-R., A.G., Y.B., C.M.); Amélioration Génétique des Espèces à Multiplication Végétative, Unité Propre de Recherche CIRAD, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain (R.M.); and Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany (A.R.S.)
| |
Collapse
|
23
|
Voicu MC, Zwiazek JJ. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves. TREE PHYSIOLOGY 2010; 30:193-204. [PMID: 20022867 DOI: 10.1093/treephys/tpp112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The present study investigated leaf water transport properties in trembling aspen (Populus tremuloides) leaves. Leaf lamina hydraulic conductance (K(lam)) and stomatal conductance (g(s)) were drastically suppressed by NaF (a general metabolic inhibitor). In leaves treated with 0.2 mM HgCl(2) (an aquaporin blocker), K(lam) declined by 22% when the leaves were sampled in June but the decline was not significant when the leaves were sampled in August. The leaves sampled in June that transpired 30 mM beta-mercaptoethanol following mercury application showed similar K(lam) as those in control leaves transpiring distilled water. When leaves were pressure-infiltrated with 0.1 mM HgCl(2), K(lam) significantly declined by 25%. Atrazine (a photosystem II inhibitor) drastically reduced leaf net CO(2) uptake by the leaves from seedlings and mature trees but did not have any effect on K(lam) regardless of the irradiance at the leaf level during the K(lam) measurements. When PTS(3) (trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate) apoplastic tracer was pressure-infiltrated inside the leaves, its concentration in the leaf exudates did not change from ambient light to high irradiance treatment and declined in the presence of HgCl(2) in the treatment solution. Trembling aspen K(lam) appears to be linked to leaf metabolism and is uncoupled from the short-term variations in photosynthesis. Aquaporin-mediated water transport does not appear to constitute the dominant pathway for the pressure-driven water flow in the leaves of trembling aspen trees.
Collapse
Affiliation(s)
- Mihaela C Voicu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
24
|
Moshelion M, Hachez C, Ye Q, Cavez D, Bajji M, Jung R, Chaumont F. Membrane water permeability and aquaporin expression increase during growth of maize suspension cultured cells. PLANT, CELL & ENVIRONMENT 2009; 32:1334-45. [PMID: 19453479 DOI: 10.1111/j.1365-3040.2009.02001.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (P(f)) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3, ZmPIP2;1, ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the P(f). Interestingly, we found that the P(f) were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell P(f).
Collapse
Affiliation(s)
- Menachem Moshelion
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
25
|
Heinen RB, Ye Q, Chaumont F. Role of aquaporins in leaf physiology. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2971-85. [PMID: 19542196 DOI: 10.1093/jxb/erp171] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Playing a key role in plant growth and development, leaves need to be continuously supplied with water and carbon dioxide to fulfil their photosynthetic function. On its way through the leaf from the xylem to the stomata, water can either move through cell walls or pass from cell to cell to cross the different tissues. Although both pathways are probably used to some degree, evidence is accumulating that living cells contribute substantially to the overall leaf hydraulic conductance (K(leaf)). Transcellular water flow is facilitated and regulated by water channels in the membranes, named aquaporins (AQPs). This review addresses how AQP expression and activity effectively regulate the leaf water balance in normal conditions and modify the cell membrane water permeability in response to different environmental factors, such as irradiance, temperature, and water supply. The role of AQPs in leaf growth and movement, and in CO(2) transport is also discussed.
Collapse
Affiliation(s)
- Robert B Heinen
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
26
|
Hachez C, Heinen RB, Draye X, Chaumont F. The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. PLANT MOLECULAR BIOLOGY 2008; 68:337-53. [PMID: 18622732 DOI: 10.1007/s11103-008-9373-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/28/2008] [Indexed: 05/19/2023]
Abstract
Leaves are key organs for evaporation and photosynthesis and play a crucial role in plant growth and development. In order to function properly, they need to maintain a balanced water content. Water movement through a leaf occurs by a combination of different pathways: water can follow an apoplastic route through the cell wall or a cell-to-cell route via the symplastic and transcellular paths. As aquaporins (AQPs) play an important role in regulating transcellular water flow and CO(2) conductance, studies on AQP mRNA and protein expression in leaves are essential to better understand their role in these physiological processes. Here, we quantified and localized the expression of Zea mays plasma membrane aquaporins (ZmPIPs, plasma membrane intrinsic proteins) in the leaf using quantitative RT-PCR and immunodetection. All ZmPIP genes except ZmPIP2;7 were expressed in leaves. Expression was found to be dependent on the developmental stage of the leaf tissue, with, in general, an increase in expression at the end of the elongation zone and a decrease in mature leaf tissue. These data correlated with the cell water permeability, as determined using a protoplast swelling assay. The diurnal expression of ZmPIPs was also investigated and expression was found to be higher during the first hours of the light period than at night. Immunocytochemical localization of four ZmPIP isoforms indicated that they are involved in leaf radial water movement, in particular in vascular bundles and the mesophyll.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|