1
|
Pino-Otín MR, Valenzuela A, Gan C, Lorca G, Ferrando N, Langa E, Ballestero D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116185. [PMID: 38489906 DOI: 10.1016/j.ecoenv.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | - Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Guillermo Lorca
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Natalia Ferrando
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| |
Collapse
|
2
|
Wei Y, Liu X, Ge S, Zhang H, Che X, Liu S, Liu D, Li H, Gu X, He L, Li Z, Xu J. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes (Basel) 2022; 13:genes13061011. [PMID: 35741773 PMCID: PMC9222606 DOI: 10.3390/genes13061011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Phospholipase C is an enzyme that catalyzes the hydrolysis of glycerophospholipids and can be classified as phosphoinositide-specific PLC (PI-PLC) and non-specific PLC (NPC), depending on its hydrolytic substrate. In maize, the function of phospholipase C has not been well characterized. In this study, the phospholipase C inhibitor neomycin sulfate (NS, 100 mM) was applied to maize seedlings to investigate the function of maize PLC. Under the treatment of neomycin sulfate, the growth and development of maize seedlings were impaired, and the leaves were gradually etiolated and wilted. The analysis of physiological and biochemical parameters revealed that inhibition of phospholipase C affected photosynthesis, photosynthetic pigment accumulation, carbon metabolism and the stability of the cell membrane. High-throughput RNA-seq was conducted, and differentially expressed genes (DEGS) were found significantly enriched in photosynthesis and carbon metabolism pathways. When phospholipase C activity was inhibited, the expression of genes related to photosynthetic pigment accumulation was decreased, which led to lowered chlorophyll. Most of the genes related to PSI, PSII and TCA cycles were down-regulated and the net photosynthesis was decreased. Meanwhile, genes related to starch and sucrose metabolism, the pentose phosphate pathway and the glycolysis/gluconeogenesis pathway were up-regulated, which explained the reduction of starch and total soluble sugar content in the leaves of maize seedlings. These findings suggest that phospholipase C plays a key role in photosynthesis and the growth and development of maize seedlings.
Collapse
Affiliation(s)
- Yulei Wei
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyu Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shengnan Ge
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Haiyang Zhang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyang Che
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shiyuan Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Debin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Huixin Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinru Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- Correspondence: (Z.L.); (J.X.)
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
- Correspondence: (Z.L.); (J.X.)
| |
Collapse
|
3
|
Su SH, Keith MA, Masson PH. Gravity Signaling in Flowering Plant Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1290. [PMID: 33003550 PMCID: PMC7601833 DOI: 10.3390/plants9101290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Roots typically grow downward into the soil where they anchor the plant and take up water and nutrients necessary for plant growth and development. While the primary roots usually grow vertically downward, laterals often follow a gravity set point angle that allows them to explore the surrounding environment. These responses can be modified by developmental and environmental cues. This review discusses the molecular mechanisms that govern root gravitropism in flowering plant roots. In this system, the primary site of gravity sensing within the root cap is physically separated from the site of curvature response at the elongation zone. Gravity sensing involves the sedimentation of starch-filled plastids (statoliths) within the columella cells of the root cap (the statocytes), which triggers a relocalization of plasma membrane-associated PIN auxin efflux facilitators to the lower side of the cell. This process is associated with the recruitment of RLD regulators of vesicular trafficking to the lower membrane by LAZY proteins. PIN relocalization leads to the formation of a lateral gradient of auxin across the root cap. Upon transmission to the elongation zone, this auxin gradient triggers a downward curvature. We review the molecular mechanisms that control this process in primary roots and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture, soil exploration and plant adaptation to stressful environments.
Collapse
Affiliation(s)
| | | | - Patrick H. Masson
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA; (S.-H.S.); (M.A.K.)
| |
Collapse
|
4
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
6
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Molines AT, Marion J, Chabout S, Besse L, Dompierre JP, Mouille G, Coquelle FM. EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol Open 2018; 7:bio.030510. [PMID: 29945874 PMCID: PMC6124560 DOI: 10.1242/bio.030510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules are involved in plant development and adaptation to their environment, but the sustaining molecular mechanisms remain elusive. Microtubule-end-binding 1 (EB1) proteins participate in directional root growth in Arabidopsis thaliana. However, a connection to the underlying microtubule array has not been established yet. We show here that EB1 proteins contribute to the organization of cortical microtubules in growing epidermal plant cells, without significant modulation of microtubule dynamics. Using super-resolution stimulated emission depletion (STED) microscopy and an original quantification approach, we also demonstrate a significant reduction of apparent microtubule bundling in cytoplasmic-EB1-deficient plants, suggesting a function for EB1 in the interaction between adjacent microtubules. Furthermore, we observed root growth defects in EB1-deficient plants, which are not related to cell division impairment. Altogether, our results support a role for EB1 proteins in root development, in part by maintaining the organization of cortical microtubules. This article has an associated First Person interview with the first author of the paper. Summary: EB1 proteins affect cortical-microtubule bundling and organization in Arabidopsis thaliana, without significant modulation of microtubule dynamics. They also participate in root growth, further linking microtubules to plant development.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jessica Marion
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Salem Chabout
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Laetitia Besse
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jim P Dompierre
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Frédéric M Coquelle
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
|
9
|
Barbosa ICR, Shikata H, Zourelidou M, Heilmann M, Heilmann I, Schwechheimer C. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development 2016; 143:4687-4700. [PMID: 27836964 DOI: 10.1242/dev.137117] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/27/2016] [Indexed: 01/16/2023]
Abstract
Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases.
Collapse
Affiliation(s)
- Inês C R Barbosa
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Melina Zourelidou
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Cellular Biochemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, Halle 06120, Germany
| | - Ingo Heilmann
- Institute for Biochemistry and Biotechnology, Cellular Biochemistry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, Halle 06120, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, Freising 85354, Germany
| |
Collapse
|
10
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
11
|
Li L, He Y, Wang Y, Zhao S, Chen X, Ye T, Wu Y, Wu Y. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:504-15. [PMID: 26340337 DOI: 10.1111/tpj.13016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 05/08/2023]
Abstract
Phospholipase C (PLC) is an enzyme that plays crucial roles in various signal transduction pathways in mammalian cells. However, the role of PLC in plant development is poorly understood. Here we report involvement of PLC2 in auxin-mediated reproductive development in Arabidopsis. Disruption of PLC2 led to sterility, indicating a significant role for PLC2 in reproductive development. Development of both male and female gametophytes was severely perturbed in plc2 mutants. Moreover, elevated auxin levels were observed in plc2 floral tissues, suggesting that the infertility of plc2 plants may be associated with increased auxin concentrations in the reproductive organs. We show that expression levels of the auxin reporters DR5:GUS and DR5:GFP were elevated in plc2 anthers and ovules. In addition, we found that expression of the auxin biosynthetic YUCCA genes was increased in plc2 plants. We conclude that PLC2 is involved in auxin biosynthesis and signaling, thus modulating development of both male and female gametophytes in Arabidopsis.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yarui Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxuan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Di DW, Zhang C, Guo GQ. Involvement of secondary messengers and small organic molecules in auxin perception and signaling. PLANT CELL REPORTS 2015; 34:895-904. [PMID: 25693494 DOI: 10.1007/s00299-015-1767-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/26/2023]
Abstract
Auxin is a major phytohormone involved in most aspects of plant growth and development. Generally, auxin is perceived by three distinct receptors: TRANSPORT INHIBITOR RESISTANT1-Auxin/INDOLE ACETIC ACID, S-Phase Kinase-Associated Protein 2A and AUXIN-BINDING PROTEIN1. The auxin perception is regulated by a variety of secondary messenger molecules, including nitric oxide, reactive oxygen species, calcium, cyclic GMP, cyclic AMP, inositol triphosphate, diacylglycerol and by physiological pH. In addition, some small organic molecules, including inositol hexakisphosphate, yokonolide B, p-chlorophenoxyisobutyric acid, toyocamycin and terfestatin A, are involved in auxin signaling. In this review, we summarize and discuss the recent progress in understanding the functions of these secondary messengers and small organic molecules, which are now thoroughly demonstrated to be pervasive and important in auxin perception and signal transduction.
Collapse
Affiliation(s)
- Dong-Wei Di
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China,
| | | | | |
Collapse
|
13
|
Žádníková P, Smet D, Zhu Q, Straeten DVD, Benková E. Strategies of seedlings to overcome their sessile nature: auxin in mobility control. FRONTIERS IN PLANT SCIENCE 2015; 6:218. [PMID: 25926839 PMCID: PMC4396199 DOI: 10.3389/fpls.2015.00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.
Collapse
Affiliation(s)
- Petra Žádníková
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, GhentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, GhentBelgium
| | - Dajo Smet
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, GhentBelgium
| | - Qiang Zhu
- Institute of Science and Technology Austria, KlosterneuburgAustria
| | | | - Eva Benková
- Institute of Science and Technology Austria, KlosterneuburgAustria
| |
Collapse
|
14
|
Sato EM, Hijazi H, Bennett MJ, Vissenberg K, Swarup R. New insights into root gravitropic signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2155-65. [PMID: 25547917 PMCID: PMC4986716 DOI: 10.1093/jxb/eru515] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 05/18/2023]
Abstract
An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant's survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch-statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives.
Collapse
Affiliation(s)
- Ethel Mendocilla Sato
- University of Antwerp, Biology Department, Plant Growth and Development, Groenenborgerlaan 171, 2020 Antwerpen, Belgium Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Hussein Hijazi
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Kris Vissenberg
- University of Antwerp, Biology Department, Plant Growth and Development, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
15
|
Leishmania donovani infection enhances lateral mobility of macrophage membrane protein which is reversed by liposomal cholesterol. PLoS Negl Trop Dis 2014; 8:e3367. [PMID: 25474261 PMCID: PMC4256160 DOI: 10.1371/journal.pntd.0003367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background The protozoan parasite Leishmania donovani (LD) reduces cellular cholesterol of the host possibly for its own benefit. Cholesterol is mostly present in the specialized compartment of the plasma membrane. The relation between mobility of membrane proteins and cholesterol depletion from membrane continues to be an important issue. The notion that leishmania infection alters the mobility of membrane proteins stems from our previous study where we showed that the distance between subunits of IFNγ receptor (R1 and R2) on the cell surface of LD infected cell is increased, but is restored to normal by liposomal cholesterol treatment. Methodology/Principal Findings We determined the lateral mobility of a membrane protein in normal, LD infected and liposome treated LD infected cells using GFP-tagged PLCδ1 as a probe. The mobility of PLCδ1 was computationally analyzed from the time lapse experiment using boundary distance plot and radial profile movement. Our results showed that the lateral mobility of the membrane protein, which is increased in infection, is restored to normal upon liposomal cholesterol treatment. The results of FRAP experiment lent further credence to the above notion. The membrane proteins are intimately linked with cellular actin and alteration of cellular actin may influence lateral mobility. We found that F-actin is decreased in infection but is restored to normal upon liposomal cholesterol treatment as evident from phalloidin staining and also from biochemical analysis by immunoblotting. Conclusions/Significances To our knowledge this is the first direct demonstration that LD parasites during their intracellular life cycle increases lateral mobility of membrane proteins and decreases F-actin level in infected macrophages. Such defects may contribute to ineffective intracellular signaling and other cellular functions. The protozoan parasites, Leishmania donovani, replicate within the macrophages of the mammalian hosts. During its intracellular lifecycle, the parasite induces a wide variety of defects in the membrane homeostasis. Membrane bound receptor molecules are important for interacting with external stimuli. Our study very clearly showed that there is an increase in the mobility of membrane protein coupled with decrease in F-actin in infected cells, which may be corrected by liposomal cholesterol treatment. This observation indicates that intracellular parasite may alter the membrane biology of infected cells which may dampen overall cellular function.
Collapse
|
16
|
Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 2013; 8:e55393. [PMID: 23405144 PMCID: PMC3566141 DOI: 10.1371/journal.pone.0055393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
17
|
Gardiner J, Marc J. Phospholipases may play multiple roles in anisotropic plant cell growth. PROTOPLASMA 2013; 250:391-5. [PMID: 22270827 DOI: 10.1007/s00709-012-0377-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/09/2012] [Indexed: 05/08/2023]
Abstract
Both the cortical microtubule cytoskeleton and cellulose microfibrils are important for the anisotropic growth of plant cells. Although the two systems interact, the details of this interaction are far from clear. It has been shown the inhibitors of phospholipase D, phospholipase A(2) and phospholipase C all cause disorganisation of the microtubule cytoskeleton. Since the phospholipases act on the plasma membrane, which links cortical microtubules to cellulose microfibrils in the cell wall, they may play a key role in the communication between the two structures. This communication may take various forms. Microtubule-linked phospholipase activity may cause the organisation of underlying cellulose microfibril liquid crystals. Alternatively, phospholipases may co-operate in the regulation of plasma membrane fluidity, affecting the movement of cellulose synthase complexes in the underlying plasma membrane. GPI-anchored proteins in the plasma membrane, which are cleaved by phospholipases, may possibly play a role.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, University of Sydney, Camperdown 2006, Australia.
| | | |
Collapse
|
18
|
Millar KDL, Kiss JZ. Analyses of tropistic responses using metabolomics. AMERICAN JOURNAL OF BOTANY 2013. [PMID: 23196394 DOI: 10.3732/ajb.1200316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Characterization of phototropism and gravitropism has been through gene expression studies, assessment of curvature response, and protein expression experiments. To our knowledge, the current study is the first to determine how the metabolome, the complete set of small-molecule metabolites within a plant, is impacted during these tropisms. METHODS We have determined the metabolic profile of plants during gravitropism and phototropism. Seedlings of Arabidopsis thaliana wild type (WT) and phyB mutant were exposed to unidirectional light (red or blue) or reoriented to induce a tropistic response, and small-molecule metabolites were assayed and quantified. A subset of the WT was analyzed using microarray experiments to obtain gene profiling data. KEY RESULTS Analyses of the metabolomic data using principal component analysis showed a common profile in the WT during the different tropistic curvatures, but phyB mutants produced a distinctive profile for each tropism. Interestingly, the gravity treatment elicited the greatest changes in gene expression of the WT, followed by blue light, then by red light treatments. For all tropisms, we identified genes that were downregulated by a large magnitude in carbohydrate metabolism and secondary metabolism. These included ATCSLA15, CELLULOSE SYNTHASE-LIKE, and ATCHS/SHS/TT4, CHALCONE SYNTHASE. In addition, genes involved in amino acid biosynthesis were strongly upregulated, and these included THA1 (THREONINE ALDOLASE 1) and ASN1 (DARK INDUCIBLE asparagine synthase). CONCLUSIONS We have established the first metabolic profile of tropisms in conjunction with transcriptomic analyses. This approach has been useful in characterizing the similarities and differences in the molecular mechanisms involved with phototropism and gravitropism.
Collapse
Affiliation(s)
- Katherine D L Millar
- Department of Biology, University of Mississippi, University, Mississippi 38677 USA
| | | |
Collapse
|
19
|
Smith CM, Desai M, Land ES, Perera IY. A role for lipid-mediated signaling in plant gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:153-60. [PMID: 23258369 DOI: 10.3732/ajb.1200355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gravitropism is a universal plant response. It is initiated by the sensing of the primary signal (mass or pressure), which is then converted into chemical signals that are transduced and propagated in a precise spatial and temporal fashion, resulting in a differential growth response. Our thesis is that membrane lipids and lipid-mediated signaling pathways play critical roles in the initial signaling and in the establishment of polarity. In this review, we highlight results from recent literature and discuss the major questions that remain unanswered.
Collapse
Affiliation(s)
- Caroline M Smith
- Department of Plant Biology, Campus Box 7612, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
20
|
Baldwin KL, Strohm AK, Masson PH. Gravity sensing and signal transduction in vascular plant primary roots. AMERICAN JOURNAL OF BOTANY 2013; 100:126-42. [PMID: 23048015 DOI: 10.3732/ajb.1200318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.
Collapse
Affiliation(s)
- Katherine L Baldwin
- Laboratory of Genetics and Program of Cellular and Molecular Biology, University of Wisconsin-Madison, 425G Henry Mall, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
21
|
Gleeson L, Squires S, Bisgrove SR. The microtubule associated protein END BINDING 1 represses root responses to mechanical cues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:1-9. [PMID: 22404827 DOI: 10.1016/j.plantsci.2012.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/28/2011] [Accepted: 01/23/2012] [Indexed: 05/31/2023]
Abstract
The ability of roots to navigate around rocks and other debris as they grow through the soil requires a mechanism for detecting and responding to input from both touch and gravity sensing systems. The microtubule associated protein END BINDING 1b (EB1b) is involved in this process as mutants have defects responding to combinations of touch and gravity cues. This study investigates the role of EB1b in root responses to mechanical cues. We find that eb1b-1 mutant roots exhibit an increase over wild type in their response to touch and that the expression of EB1b genes in transgenic mutants restores the response to wild type levels, indicating that EB1b is an inhibitor of the response. Mutant roots are also hypersensitive to increased levels of mechanical stimulation, revealing the presence of another process that activates the response. These findings are supported by analyses of double mutants between eb1b-1 and seedlings carrying mutations in PHOSPHOGLUCOMUTASE (PGM), ALTERED RESPONSE TO GRAVITY1 (ARG1), or TOUCH3 (TCH3), genes that encode proteins involved in gravity sensing, signaling, or touch responses, respectively. A model is proposed in which root responses to mechanical cues are modulated by at least two competing regulatory processes, one that promotes touch-mediated growth and another, regulated by EB1b, which dampens root responses to touch and enhances gravitropism.
Collapse
Affiliation(s)
- Laura Gleeson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | |
Collapse
|
22
|
Strohm AK, Baldwin KL, Masson PH. Molecular mechanisms of root gravity sensing and signal transduction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:276-85. [PMID: 23801441 DOI: 10.1002/wdev.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism.
Collapse
|
23
|
Gardiner J, Overall R, Marc J. PDZ domain proteins: 'dark matter' of the plant proteome? MOLECULAR PLANT 2011; 4:933-937. [PMID: 21653283 DOI: 10.1093/mp/ssr043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PDZ domain proteins in metazoans function in diverse roles, and in conjunction with PDZ domain-binding proteins form macromolecular complexes for signaling at synapses and cell junctions. Bioinformatics approaches using the SMART tool indicate there are only a modest number of Arabidopsis PDZ proteins. However, there are hundreds of proteins predicted to possess PDZ domain-binding motifs, suggesting that there are many PDZ domain proteins not detectable by conventional bioinformatic approaches. Our Scansite analysis of PDZ domain-binding proteins indicates that PDZ domain proteins may play key roles in cytoskeletal organization including actin microfilaments, microtubules, and nuclear cytoskeletal proteins, and in the organization of macromolecular complexes involved in cell-to-cell signaling, transport, and cell wall formation.
Collapse
Affiliation(s)
- John Gardiner
- School of Biological Sciences, University of Sydney, Sydney 2006, Australia.
| | | | | |
Collapse
|
24
|
Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton (Hoboken) 2011; 69:1-21. [PMID: 21976360 DOI: 10.1002/cm.20538] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
In this study, the effects of disturbance of the reactive oxygen species (ROS) homeostasis on the organization of tubulin cytoskeleton in interphase and mitotic root-tip cells of Triticum turgidum and Arabidopsis thaliana were investigated. Reduced ROS levels were obtained by treatment with diphenylene iodonium (DPI) and N-acetyl-cysteine, whereas menadione was applied to achieve ROS overproduction. Both increased and low ROS levels induced: (a) Macrotubule formation in cells with low ROS levels and tubulin paracrystals under oxidative stress. The protein MAP65-1 was detected in treated cells, exhibiting a conformation comparable to that of the atypical tubulin polymers. (b) Disappearance of microtubules (MTs). (c) Inhibition of preprophase band formation. (d) Delay of the nuclear envelope breakdown at prometaphase. (e) Prevention of perinuclear tubulin polymer assembly in prophase cells. (f) Loss of bipolarity of prophase, metaphase and anaphase spindles. Interestingly, examination of the A. thaliana rhd2/At respiratory burst oxidase homolog C (rbohc) NADPH oxidase mutant, lacking RHD2/AtRBOHC, gave comparable results. Similarly to DPI, the decreased ROS levels in rhd2 root-tip cells, interfered with MT organization and induced macrotubule assembly. These data indicate, for first time in plants, that ROS are definitely implicated in: (a) mechanisms controlling the assembly/disassembly of interphase, preprophase and mitotic MT systems and (b) mitotic spindle function. The probable mechanisms, by which ROS affect these processes, are discussed.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Botany, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|