1
|
Soler-Garzón A, Mulube M, Kamfwa K, Lungu DM, Hamabwe S, Roy J, Salegua V, Fourie D, Porch TG, McClean PE, Miklas PN. GWAS of resistance to three bacterial diseases in the Andean common bean diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1469381. [PMID: 39301162 PMCID: PMC11410698 DOI: 10.3389/fpls.2024.1469381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Bacterial brown spot (BBS) caused by Pseudomonas syringae pv. syringae (Pss), common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas fuscans subsp. fuscans (Xff), and halo bacterial blight (HBB), caused by Pseudomonas syringae pv. phaseolicola (Psph), are major bacterial diseases that severely affect common bean yields and global food security. Andean-origin dry beans, representing large-seeded market classes, are particularly susceptible. Using 140,325 SNPs, a multi-locus GWAS was conducted on subsets of the Andean diversity panel (ADP) phenotyped for BBS in South Africa, CBB in Puerto Rico, South Africa, and Zambia, and HBB in South Africa, through natural infection, artificial inoculation, or both. Twenty-four QTL associated with resistance were identified: nine for BBS, eight for CBB, and seven for HBB. Four QTL intervals on Pv01, Pv03, Pv05, and Pv08 overlapped with BBS and HBB resistance. A genomic interval on Pv01, near the fin gene, which determines growth habit, was linked to resistance to all three pathogens. Different QTLs were detected for BBS and CBB resistance when phenotyped under natural infection versus artificial inoculation. These results underscore the importance of combining phenotyping methods in multi-GWAS to capture the full genetic spectrum. Previously recognized CBB resistance QTL SAP6 and SU91 and HBB resistance QTL HB4.2, and HB5.1, were observed. Other common (MAF >0.25) and rare (MAF <0.05) resistance QTL were also detected. Overall, these findings enhance the understanding and utilization of bacterial resistance present in ADP for the development of common beans with improved resistance.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Mwiinga Mulube
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Kelvin Kamfwa
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Davies M Lungu
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Swivia Hamabwe
- Department of Plant Science, University of Zambia, Lusaka, Zambia
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Venâncio Salegua
- Mozambique Agricultural Research Institute (IIAM), Nampula, Mozambique
| | - Deidré Fourie
- Dry Bean Producers Organization, Pretoria, South Africa
| | - Timothy G Porch
- Tropical Agriculture Research Station, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Mayagüez, Puerto Rico
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| |
Collapse
|
2
|
Chen W, Li S, Bai D, Li Z, Liu H, Bai L, Pan L. Detoxification mechanism of herbicide in Polypogon fugax and its influence on rhizosphere enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115263. [PMID: 37473705 DOI: 10.1016/j.ecoenv.2023.115263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The excessive use of chemical herbicides has resulted in evolution of herbicide-resistant weeds. Cytochrome P450 monooxygenases (P450s) are vital detoxification enzymes for herbicide-resistant weeds. Herein, we confirmed a resistant (R) Polypogon fugax population showing resistance to quizalofop-p-ethyl, acetolactate synthase (ALS)-inhibiting herbicide pyroxsulam, and several other ACCase (acetyl-CoA carboxylase)-inhibiting herbicides. Molecular analysis revealed no target-site gene mutations in the R population. Foliar spraying with malathion clearly reversed the quizalofop-p-ethyl phytotoxicity. Higher level of quizalofop-p-ethyl degradation was confirmed in the R population using HPLC analysis. Subsequently, RNA-Seq transcriptome analysis indicated that the overexpression of CYP89A2 gene appeared to be responsible for reducing quizalofop-p-ethyl phytotoxicity. The molecular docking results supported a metabolic effect of CYP89A2 protein on most herbicides tested. Furthermore, we found that low doses of herbicides stimulated the rhizosphere enzyme activities in P. fugax and the increase of rhizosphere dehydrogenase of R population may be related to its resistance mechanism. In summary, our research has shown that metabolic herbicide resistance mediated by CYP89A2, contributes to quizalofop-p-ethyl resistance in P. fugax.
Collapse
Affiliation(s)
- Wen Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifu Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Haozhe Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Bairwa A, Sood S, Bhardwaj V, Rawat S, Tamanna T, Siddappa S, Venkatasalam EP, Dipta B, Sharma AK, Kumar A, Singh B, Mhatre PH, Sharma S, Kumar V. Identification of genes governing resistance to PCN (Globodera rostochiensis) through transcriptome analysis in Solanum tuberosum. Funct Integr Genomics 2023; 23:242. [PMID: 37453957 DOI: 10.1007/s10142-023-01164-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Potato cyst nematodes (PCNs) are major pests worldwide that affect potato production. The molecular changes happening in the roots upon PCN infection are still unknown. Identification of transcripts and genes governing PCN resistance will help in the development of resistant varieties. Hence, differential gene expression of compatible (Kufri Jyoti) and incompatible (JEX/A-267) potato genotypes was studied before (0 DAI) and after (10 DAI) inoculation of Globodera rostochiensis J2s through RNA sequencing (RNA-Seq). Total sequencing reads generated ranged between 33 and 37 million per sample, with a read mapping of 48-84% to the potato reference genome. In the infected roots of the resistant genotype JEX/A-267, 516 genes were downregulated, and 566 were upregulated. In comparison, in the susceptible genotype Kufri Jyoti, 316 and 554 genes were downregulated and upregulated, respectively. Genes encoding cell wall proteins, zinc finger protein, WRKY transcription factors, MYB transcription factors, disease resistance proteins, and pathogenesis-related proteins were found to be majorly involved in the incompatible reaction after PCN infection in the resistant genotype, JEX/A-267. Furthermore, RNA-Seq results were validated through quantitative real-time PCR (qRT-PCR), and it was observed that ATP, FLAVO, CYTO, and GP genes were upregulated at 5 DAI, which was subsequently downregulated at 10 DAI. The genes encoding ATP, FLAVO, LBR, and GP were present in > 1.5 fold before infection in JEX-A/267 and upregulated 7.9- to 27.6-fold after 5 DAI; subsequently, most of these genes were downregulated to 0.9- to 2.8-fold, except LBR, which was again upregulated to 44.4-fold at 10 DAI.
Collapse
Affiliation(s)
- Aarti Bairwa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India.
| | - Shashi Rawat
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Tamanna Tamanna
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - E P Venkatasalam
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani K Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Baljeet Singh
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Priyank H Mhatre
- ICAR-Central Potato Research Station, Muthorai, 643004, The Nilgiris, Udhagamandalam, Tamil Nadu, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, 171001, Shimla, Himachal Pradesh, India
| |
Collapse
|
4
|
Cardoso JLS, Souza AA, Vieira MLC. Molecular basis for host responses to Xanthomonas infection. PLANTA 2022; 256:84. [PMID: 36114308 DOI: 10.1007/s00425-022-03994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the most relevant and recent updated information available on the defense responses of selected hosts against Xanthomonas spp. Xanthomonas is one of the most important genera of Gram-negative phytopathogenic bacteria, severely affecting the productivity of economically important crops worldwide, colonizing either the vascular system or the mesophyll tissue of the host. Due to its rapid propagation, Xanthomonas poses an enormous challenge to farmers, because it is usually controlled using huge quantities of copper-based chemicals, adversely impacting the environment. Thus, developing new ways of preventing colonization by these bacteria has become essential. Advances in genomic and transcriptomic technologies have significantly elucidated at molecular level interactions between various crops and Xanthomonas species. Understanding how these hosts respond to the infection is crucial if we are to exploit potential approaches for improving crop breeding and cutting productivity losses. This review focuses on our current knowledge of the defense response mechanisms in agricultural crops after Xanthomonas infection. We describe the molecular basis of host-bacterium interactions over a broad spectrum with the aim of improving our fundamental understanding of which genes are involved and how they work in this interaction, providing information that can help to speed up plant breeding programs, namely using gene editing approaches.
Collapse
Affiliation(s)
- Jéssica L S Cardoso
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandra A Souza
- Citrus Research Center "Sylvio Moreira", Agronomic Institute (IAC), Cordeirópolis, SP, 13490-000, Brazil
| | - Maria Lucia C Vieira
- Genetics Department, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
5
|
Khodadadi F, Martin PL, Donahue DJ, Peter KA, Aćimović SG. Characterizations of an Emerging Disease: Apple Blotch Caused by Diplocarpon coronariae (syn. Marssonina coronaria) in the Mid-Atlantic United States. PLANT DISEASE 2022; 106:1803-1817. [PMID: 35156848 DOI: 10.1094/pdis-11-21-2557-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apple orchards with minimal or reduced fungicide inputs in the Mid-Atlantic region of the United States have experienced outbreaks of severe premature defoliation with symptoms that matched those of apple blotch disease (ABD) caused by Diplocarpon coronariae. Fungal isolates obtained from symptomatic apple leaves and fruit produced uniform slow-growing, dark-gray colonies on peptone potato dextrose agar and had conidia. Internal transcribed spacer DNA sequences matched with D. coronariae and Koch's postulates were fulfilled when typical ABD symptoms occurred when reinoculated onto apple leaves and fruit. Spore dispersal in nonfungicide-treated orchards detected with quantitative PCR was low in early spring and dropped to undetectable levels in late May and early June before rising exponentially to highs in July and August, which coincided with symptom development. Only low spore numbers were detected in fungicide-treated orchards and nearby forests. In preliminary fungicide tests, fluxapyroxad, thiophanate methyl, and difenoconazole effectively inhibited mycelial growth of isolates in vitro. When apple cultivars Fuji and Honeycrisp were inoculated with D. coronariae, Honeycrisp showed delayed onset of symptoms and lower disease severity, and the transcription profile of seven host defense-related genes showed that PR-2, PR-8, LYK4, and CERK1 were highly induced in Honeycrisp at 2 and 5 days postinoculation. This is the first report of ABD in the Mid-Atlantic United States, which includes studies of seasonal D. coronariae spore dispersal patterns, preliminary fungicide efficacy, and host defense-related gene expression to assist development of best ABD management practices.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Virginia Polytechnic Institute and State University, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA
| | - Phillip L Martin
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA
| | - Daniel J Donahue
- Eastern New York Commercial Horticulture Program, Cornell Cooperative Extension, Cornell University, Highland, NY
| | - Kari A Peter
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA
| | - Srđan G Aćimović
- Virginia Polytechnic Institute and State University, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Winchester, VA
| |
Collapse
|
6
|
Wang Q, Jin Q, Ma Y, Zhang S, Zhang L, Liu Z, Zhang Y. Iron toxicity-induced regulation of key secondary metabolic processes associated with the quality and resistance of Panax ginseng and Panax quinquefolius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112648. [PMID: 34450425 DOI: 10.1016/j.ecoenv.2021.112648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 05/27/2023]
Abstract
Panax ginseng and Panax quinquefolius can survive for long periods of time in iron toxicity-stressed environments, which cause rusty roots and reduced productivity. To reveal the proteomic changes in these two Panax species in response to iron toxicity stress, plants of these two species were divided into a control group and an iron toxicity-stress group. An isobaric tags for relative and absolute quantitation (iTRAQ) proteomics approach was used to explore the changes in protein accumulation and the potential mechanisms underlying the response to iron toxicity stress in the two Panax species. Proteomic analyses revealed approximately 725 differentially expressed proteins (DEPs) in the iron toxicity-stress and control groups, including 233 and 492 proteins whose expression was upregulated and downregulated, respectively. The expression of DEPs related to photosynthesis was significantly downregulated, and DEPs whose expression was significantly upregulated were associated with redox reactions. Many upregulated DEPs were also involved in pathways such as those involving phenylpropanoid, flavonoid, isoflavone and ginsenoside synthesis. The abundance of some ginsenoside monomers (Rg1 and Rb3) also significantly increased in P. ginseng and P. quinquefolius. Moreover, P. quinquefolius contained 455 DEPs whose expression was higher than that in P. ginseng, including many proteins related to the regulation of ion homeostasis, indicating that P. quinquefolius is more resistant to iron toxicity stress than P. ginseng is.
Collapse
Affiliation(s)
- Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China.
| | - Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China
| | - Yingying Ma
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Jilin 130112, China; College of Pharmacy and biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Tian X, Zhang L, Feng S, Zhao Z, Wang X, Gao H. Transcriptome Analysis of Apple Leaves in Response to Powdery Mildew ( Podosphaera leucotricha) Infection. Int J Mol Sci 2019; 20:E2326. [PMID: 31083412 PMCID: PMC6539105 DOI: 10.3390/ijms20092326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/20/2022] Open
Abstract
Apple (Malus × domestica Borkh.) is one of the most important cultivated tree fruit crops worldwide. However, sustainable apple production is threatened by powdery mildew (PM) disease, which is caused by the obligate biotrophic fungus Podosphaera leucotricha. To gain insight into the molecular basis of the PM infection and disease progression, RNA-based transcriptional profiling (RNA-seq) was used to identify differentially expressed genes (DEGs) in apples following inoculation with P. leucotricha. Four RNA-seq libraries were constructed comprising a total of 214 Gb of high-quality sequence. 1177 DEGs (661 upregulated and 629 downregulated) have been identified according to the criteria of a ratio of infection/control fold change > 2, and a false discovery rate (FDR) < 0.001. The majority of DEGs (815) were detected 12 h after inoculation, suggesting that this is an important time point in the response of the PM infection. Gene annotation analysis revealed that DEGs were predominately associated with biological processes, phenylpropanoid biosynthesis, hormone signal transduction and plant-pathogen interactions. Genes activated by infection corresponded to transcription factors (e.g., AP2/ERF, MYB, WRKY and NAC) and synthesis of defense-related metabolites, including pathogenesis-related genes, glucosidase and dehydrin. Overall, the information obtained in this study enriches the resources available for research into the molecular-genetic mechanisms of the apple/powdery mildew interactions, and provides a theoretical basis for the development of new apple varieties with resistance to PM.
Collapse
Affiliation(s)
- Xiaomin Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Li Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Shuaishuai Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Tripathi L, Tripathi JN, Shah T, Muiruri KS, Katari M. Molecular Basis of Disease Resistance in Banana Progenitor Musa balbisiana against Xanthomonas campestris pv. musacearum. Sci Rep 2019; 9:7007. [PMID: 31065041 PMCID: PMC6504851 DOI: 10.1038/s41598-019-43421-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Banana Xanthomonas wilt disease, caused by Xanthomonas campestris pv. musacearum (Xcm), is a major threat to banana production in east Africa. All cultivated varieties of banana are susceptible to Xcm and only the progenitor species Musa balbisiana was found to be resistant. The molecular basis of susceptibility and resistance of banana genotypes to Xcm is currently unknown. Transcriptome analysis of disease resistant genotype Musa balbisiana and highly susceptible banana cultivar Pisang Awak challenged with Xcm was performed to understand the disease response. The number of differentially expressed genes (DEGs) was higher in Musa balbisiana in comparison to Pisang Awak. Genes associated with response to biotic stress were up-regulated in Musa balbisiana. The DEGs were further mapped to the biotic stress pathways. Our results suggested activation of both PAMP-triggered basal defense and disease resistance (R) protein-mediated defense in Musa balbisiana as early response to Xcm infection. This study reports the first comparative transcriptome profile of the susceptible and resistant genotype of banana during early infection with Xcm and provide insights on the defense mechanism in Musa balbisiana, which can be used for genetic improvement of commonly cultivated banana varieties.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), P.O. Box 30709-00100, Nairobi, Kenya.
| | - Jaindra Nath Tripathi
- International Institute of Tropical Agriculture (IITA), P.O. Box 30709-00100, Nairobi, Kenya
| | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), P.O. Box 30709-00100, Nairobi, Kenya
| | - Kariuki Samwel Muiruri
- International Institute of Tropical Agriculture (IITA), P.O. Box 30709-00100, Nairobi, Kenya
| | - Manpreet Katari
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
9
|
Kebede AZ, Johnston A, Schneiderman D, Bosnich W, Harris LJ. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics 2018; 19:131. [PMID: 29426290 PMCID: PMC5807830 DOI: 10.1186/s12864-018-4513-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. Results RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. Conclusion By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms. Electronic supplementary material The online version of this article (10.1186/s12864-018-4513-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aida Z Kebede
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.,Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Danielle Schneiderman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
10
|
Li S, Chen Y, Zhu X, Wang Y, Jung KH, Chen L, Xuan Y, Duan Y. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:96-104. [PMID: 29169106 DOI: 10.1016/j.jplph.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 05/07/2023]
Abstract
Glycine max (soybean) is an extremely important crop, representing a major source of oil and protein for human beings. Heterodera glycines (soybean cyst nematode, SCN) infection severely reduces soybean production; therefore, protecting soybean from SCN has become an issue for breeders. Black soybean has exhibited a different grade of resistance to SCN. However, the underlying mechanism of Huipizhi Heidou resistance against SCN remains elusive. The Huipizhi Heidou (ZDD2315) and race 3 of Heterodera glycines were chosen to study the mechanism of resistance via examination of transcriptomic changes. After 5, 10, and 15days of SCN infection, whole roots were sampled for RNA extraction, and uninfected samples were simultaneously collected as a control. 740, 1413, and 4925 genes were isolated by padj (p-value adjusted)<0.05 after 5, 10, and 15days of the infection, respectively, and 225 differentially expressed genes were overlapped at all the time points. We found that the differentially expressed genes (DEGs) at 5, 10, and 15days after infection were involved in various biological function categories; in particular, induced genes were enriched in defense response, hormone mediated signaling process, and response to stress. To verify the pathways observed in the GO and KEGG enrichment results, effects of hormonal signaling in cyst-nematode infection were further examined via treatment with IAA (indo-3-acetic acid), salicylic acid (SA), gibberellic acid (GA), jasmonic acid (JA), and ethephon, a precursor of ethylene. The results indicate that five hormones led to a significant reduction of J2 number in the roots of Huipizhi Heidou and Liaodou15, representing SCN-resistant and susceptible lines, respectively. Taken together, our analyses are aimed at understanding the resistance mechanism of Huipizhi Heidou against the SCN race 3 via the dissection of transcriptomic changes upon J2 infection. The data presented here will help further research on the basis of soybean and cyst-nematode interaction.
Collapse
Affiliation(s)
- Shuang Li
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| | - Yu Chen
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Yuanyuan Wang
- College of Biology science and technology, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| |
Collapse
|
11
|
Huang J, Deng J, Shi T, Chen Q, Liang C, Meng Z, Zhu L, Wang Y, Zhao F, Yu S, Chen Q. Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum Tararicum). Sci Rep 2017; 7:11792. [PMID: 28924217 PMCID: PMC5603606 DOI: 10.1038/s41598-017-11929-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Tartary buckwheat seeds are rich in various nutrients, such as storage proteins, starch, and flavonoids. To get a good knowledge of the transcriptome dynamics and gene regulatory mechanism during the process of seed development and nutrients accumulation, we performed a comprehensive global transcriptome analysis using rice tartary buckwheat seeds at different development stages, namely pre-filling stage, filling stage, and mature stage. 24 819 expressed genes, including 108 specifically expressed genes, and 11 676 differentially expressed genes (DEGs) were identified. qRT-PCR analysis was performed on 34 DEGs to validate the transcriptome data, and a good consistence was obtained. Based on their expression patterns, the identified DEGs were classified to eight clusters, and the enriched GO items in each cluster were analyzed. In addition, 633 DEGs related to plant hormones were identified. Furthermore, genes in the biosynthesis pathway of nutrients accumulation were analyzed, including 10, 20, and 23 DEGs corresponding to the biosynthesis of seed storage proteins, flavonoids, and starch, respectively. This is the first transcriptome analysis during seed development of tartary buckwheat. It would provide us a comprehensive understanding of the complex transcriptome dynamics during seed development and gene regulatory mechanism of nutrients accumulation.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Jiao Deng
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Taoxiong Shi
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Qijiao Chen
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Chenggang Liang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Ziye Meng
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Liwei Zhu
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Yan Wang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Fengli Zhao
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Pengfei Road No. 7, Dapeng New District, Shenzhen, 518120, Guangdong, P.R. China
| | - Shizhou Yu
- Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang, 550081, Guizhou, P.R. China
| | - Qingfu Chen
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China.
| |
Collapse
|
12
|
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 2016; 113:E7010-E7019. [PMID: 27791104 PMCID: PMC5111717 DOI: 10.1073/pnas.1608765113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yeting Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Chun Su
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Stephan C Schuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802;
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
13
|
Hu Y, Duan S, Zhang Y, Shantharaj D, Jones JB, Wang N. Temporal Transcription Profiling of Sweet Orange in Response to PthA4-Mediated Xanthomonas citri subsp. citri Infection. PHYTOPATHOLOGY 2016; 106:442-451. [PMID: 26780431 DOI: 10.1094/phyto-09-15-0201-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri, is a devastating disease of most commercial citrus varieties. In our previous study, we analyzed the transcriptional response of 'Valencia' sweet orange to X. citri subsp. citri wild-type and pthA4 mutant infection at 48 h postinoculation (hpi). Using microarray analysis, two PthA4 targets, CsLOB1 and CsSWEET1, were identified. We have shown that PthA4 binds to the effector binding element (EBE) of CsLOB1 and activates gene expression of this susceptibility gene. However, how PthA4 modulates host genes at different stages of infection remains to be determined. In this study, we compared the transcriptional profiles between citrus leaf tissue inoculated with Xcc306 and those inoculated with a pthA4-deletion mutant strain (Xcc306∆pthA4) at 6, 48, and 120 hpi. At both 48 and 120 hpi, the PthA4-mediated infection significantly upregulated expression of a variety of genes involved in cell-wall degradation and modification, DNA packaging, G-protein, protein synthesis, sucrose metabolism, and cell division functions, while the downregulated genes were mainly enriched in photosynthesis, transport, secondary metabolism, cytochrome P450, and various plant defense-associated mechanisms. To validate microarray results, gene expression of 26 genes representing genes associated with cell-wall-associated, immunity system, and carbohydrate metabolism was confirmed using quantitative reverse-transcription polymerase chain reaction. Expression patterns of these genes at 48 and 120 hpi were consistent with the microarray results. We also identified putative EBE for PthA4 (EBEPthA4) in the promoter regions of multiple genes upregulated by PthA4, to which PthA4 might bind directly to control their gene expression. Our study provided a dynamic picture of citrus genes regulated by PthA4 during the X. citri subsp. citri infection of citrus leaves at different stages. This study will be useful in further understanding the virulence mechanism of X. citri subsp. citri and identifying potential targets of PthA4.
Collapse
Affiliation(s)
- Yang Hu
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Shuo Duan
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Yunzeng Zhang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Deepak Shantharaj
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Jeffrey B Jones
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| | - Nian Wang
- First, fourth, and fifth authors: Department of Plant Pathology, University of Florida, Gainesville 32611; and second, third, and sixth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred 33850
| |
Collapse
|
14
|
Luo J, Wei K, Wang S, Zhao W, Ma C, Hettenhausen C, Wu J, Cao G, Sun G, Baldwin IT, Wu J, Wang L. COI1-Regulated Hydroxylation of Jasmonoyl-L-isoleucine Impairs Nicotiana attenuata's Resistance to the Generalist Herbivore Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2822-31. [PMID: 26985773 DOI: 10.1021/acs.jafc.5b06056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well-known as the key signaling molecule that elicits plant defense responses after insect herbivory. Oxidation, which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in the wild tobacco plant Nicotiana attenuata. Individually silencing the four homologues revealed that NaCYP94B3 like-1 and NaCYP94B3 like-2, but not NaCYP94B3 like-3 and NaCYP94B3 like-4, are involved in the C-12-hydroxylation of JA-Ile. Simultaneously silencing three of the NaCYP94B3 like genes, NaCYP94B3 like-1, -2, and -4, in the VIGS-NaCYP94B3s plants doubled herbivory-induced JA-Ile levels and greatly enhanced plant resistance to the generalist insect herbivore, Spodoptera litura. The poor larval performance was strongly correlated with the high concentrations of several JA-Ile-dependent direct defense metabolites in VIGS-NaCYP94B3s plants. Furthermore, we show that the abundance of 12-hydroxy-JA-Ile was dependent on JA-Ile levels as well as COI1, the receptor of JA-Ile. COI1 appeared to transcriptionally control NaCYP94B3 like-1 and -2 and thus regulates the catabolism of its own ligand molecule, JA-Ile. These results highlight the important role of JA-Ile degradation in jasmonate homeostasis and provide new insight into the feedback regulation of JA-Ile catabolism. Given that silencing these CYP94 genes did not detectably alter plant growth and highly increased plant defense levels, we propose that CYP94B3 genes can be potential targets for genetic improvement of herbivore-resistant crops.
Collapse
Affiliation(s)
- Ji Luo
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Shuanghua Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Weiye Zhao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Jinsong Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, China
| |
Collapse
|
15
|
Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3879-92. [PMID: 25903915 PMCID: PMC4473988 DOI: 10.1093/jxb/erv190] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Induced resistance to the necrotrophic pathogen Botrytis cinerea depends on jasmonate metabolism and signalling in Arabidopsis. We have presented here extensive jasmonate profiling in this pathosystem and investigated the impact of the recently reported jasmonoyl-isoleucine (JA-Ile) catabolic pathway mediated by cytochrome P450 (CYP94) enzymes. Using a series of mutant and overexpressing (OE) plant lines, we showed that CYP94B3 and CYP94C1 are integral components of the fungus-induced jasmonate metabolic pathway and control the abundance of oxidized conjugated but also some unconjugated derivatives, such as sulfated 12-HSO4-JA. Despite causing JA-Ile overaccumulation due to impaired oxidation, CYP94 deficiency had negligible impacts on resistance, associated with enhanced JAZ repressor transcript levels. In contrast, plants overexpressing (OE) CYP94B3 or CYP94C1 were enriched in 12-OH-JA-Ile or 12-COOH-JA-Ile respectively. This shift towards oxidized JA-Ile derivatives was concomitant with strongly impaired defence gene induction and reduced disease resistance. CYP94B3-OE, but unexpectedly not CYP94C1-OE, plants displayed reduced JA-Ile levels compared with the wild type, suggesting that increased susceptibility in CYP94C1-OE plants may result from changes in the hormone oxidation ratio rather than absolute changes in JA-Ile levels. Consistently, while feeding JA-Ile to seedlings triggered strong induction of JA pathway genes, induction was largely reduced or abolished after feeding with the CYP94 products 12-OH-JA-Ile and 12-COOH-JA-Ile, respectively. This trend paralleled in vitro pull-down assays where 12-COOH-JA-Ile was unable to promote COI1-JAZ9 co-receptor assembly. Our results highlight the dual function of CYP94B3/C1 in antimicrobial defence: by controlling hormone oxidation status for signal attenuation, these enzymes also define JA-Ile as a metabolic hub directing jasmonate profile complexity.
Collapse
Affiliation(s)
- Yann Aubert
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Institut de Chimie, Unité Mixte de Recherche 7177 Université de Strasbourg-Centre National de la Recherche Scientifique, 1 rue Blaise Pascal 67008 Strasbourg Cedex, France
| | - Franck Pinot
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer 67084 Strasbourg Cedex, France
| |
Collapse
|
16
|
Kitaoka N, Kawaide H, Amano N, Matsubara T, Nabeta K, Takahashi K, Matsuura H. CYP94B3 activity against jasmonic acid amino acid conjugates and the elucidation of 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine as an additional metabolite. PHYTOCHEMISTRY 2014; 99:6-13. [PMID: 24467969 DOI: 10.1016/j.phytochem.2013.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/25/2013] [Accepted: 12/31/2013] [Indexed: 05/06/2023]
Abstract
The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and inactivation. Oxidation of jasmonoyl-L-isoleucine at the C-12 position, which is catalyzed by cytochrome P450s CYP94B3 and CYP94C1, is thought to be one of the main inactivation pathways. In this study, an additional function of CYP94B3 was elucidated, as well additional jasmonoyl-L-isoleucine metabolites being investigated. It was found that CYP94B3 also catalyzes the hydroxylation of jasmonoyl-L-valine and jasmonoyl-L-phenylalanine, and that these hydroxyl compounds accumulated after wounding and possessed lower activity than non-hydroxylated compounds. Additionally, 12-O-β-glucopyranosyl-jasmonoyl-L-isoleucine accumulated after wounding, suggesting that it is a metabolite of jasmonoyl-L-isoleucine.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiroshi Kawaide
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Naruki Amano
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takuya Matsubara
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kensuke Nabeta
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kosaku Takahashi
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hideyuki Matsuura
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
17
|
Wiśniewska A, Dąbrowska-Bronk J, Szafrański K, Fudali S, Święcicka M, Czarny M, Wilkowska A, Morgiewicz K, Matusiak J, Sobczak M, Filipecki M. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Res 2012; 22:557-69. [PMID: 23129482 PMCID: PMC3653032 DOI: 10.1007/s11248-012-9665-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.
Collapse
Affiliation(s)
- A Wiśniewska
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fu XZ, Gong XQ, Zhang YX, Wang Y, Liu JH. Different transcriptional response to Xanthomonas citri subsp. citri between kumquat and sweet orange with contrasting canker tolerance. PLoS One 2012; 7:e41790. [PMID: 22848606 PMCID: PMC3406098 DOI: 10.1371/journal.pone.0041790] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/25/2012] [Indexed: 01/25/2023] Open
Abstract
Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating biotic stresses affecting the citrus industry. Meiwa kumquat (Fortunella crassifolia) is canker-resistant, while Newhall navel orange (Citrus sinensis Osbeck) is canker-sensitive. To understand the molecular mechanisms underlying the differences in responses to Xcc, transcriptomic profiles of these two genotypes following Xcc attack were compared by using the Affymetrix citrus genome GeneChip. A total of 794 and 1324 differentially expressed genes (DEGs) were identified as canker-responsive genes in Meiwa and Newhall, respectively. Of these, 230 genes were expressed in common between both genotypes, while 564 and 1094 genes were only significantly expressed in either Meiwa or Newhall. Gene ontology (GO) annotation and Singular Enrichment Analysis (SEA) of the DEGs showed that genes related to the cell wall and polysaccharide metabolism were induced for basic defense in both Meiwa and Newhall, such as chitinase, glucanase and thaumatin-like protein. Moreover, apart from inducing basic defense, Meiwa showed specially upregulated expression of several genes involved in the response to biotic stimulus, defense response, and cation binding as comparing with Newhall. And in Newhall, abundant photosynthesis-related genes were significantly down-regulated, which may be in order to ensure the basic defense. This study revealed different molecular responses to canker disease in Meiwa and Newhall, affording insight into the response to canker and providing valuable information for the identification of potential genes for engineering canker tolerance in the future.
Collapse
Affiliation(s)
- Xing-Zheng Fu
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Xiao-Qing Gong
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Yue-Xin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Yin Wang
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Huang C, Qian Y, Li Z, Zhou X. Virus-induced gene silencing and its application in plant functional genomics. SCIENCE CHINA-LIFE SCIENCES 2012; 55:99-108. [PMID: 22415680 DOI: 10.1007/s11427-012-4280-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.
Collapse
Affiliation(s)
- Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
20
|
Koo AJK, Howe GA. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. FRONTIERS IN PLANT SCIENCE 2012; 3:19. [PMID: 22639640 PMCID: PMC3355578 DOI: 10.3389/fpls.2012.00019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/18/2012] [Indexed: 05/20/2023]
Abstract
The oxylipin hormone jasmonate controls myriad processes involved in plant growth, development, and immune function. The discovery of jasmonoyl-l-isoleucine (JA-Ile) as the major bioactive form of the hormone highlights the need to understand biochemical and cell biological processes underlying JA-Ile homeostasis. Among the major metabolic control points governing the accumulation of JA-Ile in plant tissues are the availability of jasmonic acid, the immediate precursor of JA-Ile, and oxidative enzymes involved in catabolism and deactivation of the hormone. Recent studies indicate that JA-Ile turnover is mediated by a ω-oxidation pathway involving members of the CYP94 family of cytochromes P450. This discovery opens new opportunities to genetically manipulate JA-Ile levels for enhanced resistance to environmental stress, and further highlights ω-oxidation as a conserved pathway for catabolism of lipid-derived signals in plants and animals. Functional characterization of the full complement of CYP94 P450s promises to reveal new pathways for jasmonate metabolism and provide insight into the evolution of oxylipin signaling in land plants.
Collapse
Affiliation(s)
- Abraham J. K. Koo
- Department of Energy-Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Gregg A. Howe
- Department of Energy-Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Gregg A. Howe, Department of Energy-Plant Research Laboratory, Michigan State University, 122 Plant Biology Building, East Lansing, MI 48824-1312, USA. e-mail:
| |
Collapse
|
21
|
Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H. Arabidopsis CYP94B3 encodes jasmonyl-L-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. PLANT & CELL PHYSIOLOGY 2011; 52:1757-65. [PMID: 21849397 DOI: 10.1093/pcp/pcr110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The hormonal action of jasmonate in plants is controlled by the precise balance between its biosynthesis and catabolism. It has been shown that jasmonyl-L-isoleucine (JA-Ile) is the bioactive form involved in the jasmonate-mediated signaling pathway. However, the catabolism of JA-Ile is poorly understood. Although a metabolite, 12-hydroxyJA-Ile, has been characterized, detailed functional studies of the compound and the enzyme that produces it have not been conducted. In this report, the kinetics of wound-induced accumulation of 12-hydroxyJA-Ile in plants were examined, and its involvement in the plant wound response is described. Candidate genes for the catabolic enzyme were narrowed down from 272 Arabidopsis Cyt P450 genes using Arabidopsis mutants. The candidate gene was functionally expressed in Pichia pastoris to reveal that CYP94B3 encodes JA-Ile 12-hydroxylase. Expression analyses demonstrate that expression of CYP94B3 is induced by wounding and shows specific activity toward JA-Ile. Plants grown in medium containing JA-Ile show higher sensitivity to JA-Ile in cyp94b3 mutants than in wild-type plants. These results demonstrate that CYP94B3 plays a major regulatory role in controlling the level of JA-Ile in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Laboratory of Bioorganic Chemistry, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A 2011; 108:9298-303. [PMID: 21576464 DOI: 10.1073/pnas.1103542108] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone jasmonoyl-L-isoleucine (JA-Ile) signals through the COI1-JAZ coreceptor complex to control key aspects of plant growth, development, and immune function. Despite detailed knowledge of the JA-Ile biosynthetic pathway, little is known about the genetic basis of JA-Ile catabolism and inactivation. Here, we report the identification of a wound- and jasmonate-responsive gene from Arabidopsis that encodes a cytochrome P450 (CYP94B3) involved in JA-Ile turnover. Metabolite analysis of wounded leaves showed that loss of CYP94B3 function in cyp94b3 mutants causes hyperaccumulation of JA-Ile and concomitant reduction in 12-hydroxy-JA-Ile (12OH-JA-Ile) content, whereas overexpression of this enzyme results in severe depletion of JA-Ile and corresponding changes in 12OH-JA-Ile levels. In vitro studies showed that heterologously expressed CYP94B3 converts JA-Ile to 12OH-JA-Ile, and that 12OH-JA-Ile is less effective than JA-Ile in promoting the formation of COI1-JAZ receptor complexes. CYP94B3-overexpressing plants displayed phenotypes indicative of JA-Ile deficiency, including defects in male fertility, resistance to jasmonate-induced growth inhibition, and susceptibility to insect attack. Increased accumulation of JA-Ile in wounded cyp94b3 leaves was associated with enhanced expression of jasmonate-responsive genes. These results demonstrate that CYP94B3 exerts negative feedback control on JA-Ile levels and performs a key role in attenuation of jasmonate responses.
Collapse
|