1
|
Zhou W, Chen Q, Wang XB, Hughes TO, Liu JJ, Zhang X. De novo assembly of the Platycladus orientalis (L.) Franco transcriptome provides insight into the development and pollination mechanism of female cone based on RNA-Seq data. Sci Rep 2019; 9:10191. [PMID: 31308452 PMCID: PMC6629706 DOI: 10.1038/s41598-019-46696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/03/2019] [Indexed: 11/30/2022] Open
Abstract
For seed-bearing plants, the basis of seed and fruit formation is pollination. The normal progression of pollination is through advances in continuous signal exchange and material transfer, which occur mainly in female reproductive organs; thus, the molecular mechanism of development in female reproductive organs is vital for understanding the principle of pollination. However, molecular biology studies on the development of female cones related to pollination are rare and unclear in gymnosperms, especially in Cupressaceae. In this study, Platycladus orientalis, a monotypic genus within Cupressaceae, was chosen to examine female cone transcriptomes at pre-pollination and pollination stages by Illumina paired-end sequencing technology to de novo sequence six libraries with 3 biological replicates. These libraries were used to construct a P. orientalis transcriptome database containing 71,669 unigenes (4,963 upregulated unigenes and 11,747 downregulated unigenes at the pollination stage) for subsequent analysis. Based on the annotations and expression levels, the functions of differentially expressed unigenes and enriched pathways between the developmental processes of female cones were analysed to detail the preliminary development and pollination mechanism of the female cone. Targeted investigations were specifically performed to determine the elementary mechanism of secretion and functioning of the pollination drop, a vital ovule secretion at the pollination stage. Ultimately, the expression of 15 unigenes selected between two stages were further assessed and confirmed using qRT-PCR, which demonstrated reliable data and significant differences in the expression profiles of key genes. As one of the largest available transcriptomic resources of this species, the database is constructed to prospectively adapt to the physiological and genomic data of woody plants. This work provided the first transcriptome profile of P. orientalis female cones at different developmental stages, and will promote the illumination of the pollination mechanism of P. orientalis, and will serve as the basis for in-depth genomic study in the Cupressaceae family. This initiative will arouse the interest and attention of scholars and pave the way for future studies.
Collapse
Affiliation(s)
- Wei Zhou
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Qi Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiao-Bing Wang
- School of Life Science and Technology, Xinxiang University, Xinxiang, Henan, P.R. China
| | - Tyler O Hughes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jian-Jun Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| | - Xin Zhang
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, College of Forestry, Northwest A&F University, Yangling, P.R. China.
| |
Collapse
|
2
|
Comparison of Reliable Reference Genes Following Different Hormone Treatments by Various Algorithms for qRT-PCR Analysis of Metasequoia. Int J Mol Sci 2018; 20:ijms20010034. [PMID: 30577651 PMCID: PMC6337471 DOI: 10.3390/ijms20010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes for normalizing target gene expression is important for verifying expression changes. Metasequoia is a high-quality and economically important wood species. However, few systematic studies have examined reference genes in Metasequoia. Here, the expression stability of 14 candidate reference genes in different tissues and following different hormone treatments were analyzed using six algorithms. Candidate reference genes were used to normalize the expression pattern of FLOWERING LOCUS T and pyrabactin resistance-like 8. Analysis using the GrayNorm algorithm showed that ACT2 (Actin 2), HIS (histone superfamily protein H3) and TATA (TATA binding protein) were stably expressed in different tissues. ACT2, EF1α (elongation factor-1 alpha) and HIS were optimal for leaves treated with the flowering induction hormone solution, while Cpn60β (60-kDa chaperonin β-subunit), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and HIS were the best reference genes for treated buds. EF1α, HIS and TATA were useful reference genes for accurate normalization in abscisic acid-response signaling. Our results emphasize the importance of validating reference genes for qRT-PCR analysis in Metasequoia. To avoid errors, suitable reference genes should be used for different tissues and hormone treatments to increase normalization accuracy. Our study provides a foundation for reference gene normalization when analyzing gene expression in Metasequoia.
Collapse
|
3
|
Mei L, Dong N, Li F, Li N, Yao M, Chen F, Tang L. Transcriptome analysis of female and male flower buds of Idesia polycarpa Maxim. var. vestita Diels. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Jin Y, Bi Q, Guan W, Mao JF. Development of 23 novel polymorphic EST-SSR markers for the endangered relict conifer Metasequoia glyptostroboides. APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1500038. [PMID: 26421250 PMCID: PMC4578375 DOI: 10.3732/apps.1500038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/04/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Metasequoia glyptostroboides is an endangered relict conifer species endemic to China. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed using transcriptome mining for future genetic and functional studies. METHODS AND RESULTS We collected 97,565 unigene sequences generated by 454 pyrosequencing. A bioinformatics analysis identified 2087 unique and putative microsatellites, from which 96 novel microsatellite markers were developed. Fifty-three of the 96 primer sets successfully amplified clear fragments of the expected sizes; 23 of those loci were polymorphic. The number of alleles per locus ranged from two to eight, with an average of three, and the observed and expected heterozygosity values ranged from 0 to 1.0 and 0.117 to 0.813, respectively. CONCLUSIONS These microsatellite loci will enrich the genetic resources to develop functional studies and conservation strategies for this endangered relict species.
Collapse
Affiliation(s)
- Yuqing Jin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Quanxin Bi
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Wenbin Guan
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Jian-Feng Mao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
5
|
Pang T, Guo L, Shim D, Cannon N, Tang S, Chen J, Xia X, Yin W, Carlson JE. Characterization of the Transcriptome of the Xerophyte Ammopiptanthus mongolicus Leaves under Drought Stress by 454 Pyrosequencing. PLoS One 2015; 10:e0136495. [PMID: 26313687 PMCID: PMC4552034 DOI: 10.1371/journal.pone.0136495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ammopiptanthus mongolicus (Maxim. Ex Kom.) Cheng f., an endangered ancient legume species, endemic to the Gobi desert in north-western China. As the only evergreen broadleaf shrub in this area, A. mongolicus plays an important role in the region's ecological-environmental stability. Despite the strong potential of A. mongolicus in providing new insights on drought tolerance, sequence information on the species in public databases remains scarce. To both learn about the role of gene expression in drought stress tolerance in A. mongolicus and to expand genomic resources for the species, transcriptome sequencing of stress-treated A. mongolicus plants was performed. RESULTS Using 454 pyrosequencing technology, 8,480 and 7,474 contigs were generated after de novo assembly of RNA sequences from leaves of untreated and drought-treated plants, respectively. After clustering using TGICL and CAP3 programs, a combined assembly of all reads produced a total of 11,357 putative unique transcripts (PUTs). Functional annotation and classification of the transcripts were conducted by aligning the 11,357 PUTs against the public protein databases and nucleotide database (Nt). Between control and drought-treated plants, 1,620 differentially expressed genes (DEGs) were identified, of which 1,106 were up-regulated and 514 were down-regulated. The differential expression of twenty candidate genes in metabolic pathways and transcription factors families related to stress-response were confirmed by quantitative real-time PCR. Representatives of several large gene families, such as WRKY and P5CS, were identified and verified in A. mongolicus for the first time. CONCLUSIONS The additional transcriptome resources, gene expression profiles, functional annotations, and candidate genes provide a more comprehensive understanding of the stress response pathways in xeric-adapted plant species such as A. mongolicus.
Collapse
Affiliation(s)
- Tao Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Lili Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
- College of Agricultural, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Donghwan Shim
- The Schatz Center for Tree Molecular Genetics, Department Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441–350, Korea
| | - Nathaniel Cannon
- The Schatz Center for Tree Molecular Genetics, Department Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sha Tang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Jinhuan Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Key Laboratory for Silviculture and Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - John E. Carlson
- The Schatz Center for Tree Molecular Genetics, Department Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Zhao Y, Liang H, Li L, Tang S, Han X, Wang C, Xia X, Yin W. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways. FRONTIERS IN PLANT SCIENCE 2015; 6:467. [PMID: 26157452 PMCID: PMC4478380 DOI: 10.3389/fpls.2015.00467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/12/2015] [Indexed: 05/29/2023]
Abstract
Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.
Collapse
Affiliation(s)
- Ying Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson UniversityClemson, SC, USA
| | - Lan Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Sha Tang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Xiao Han
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Congpeng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
7
|
Tang S, Liang H, Yan D, Zhao Y, Han X, Carlson JE, Xia X, Yin W. Populus euphratica: the transcriptomic response to drought stress. PLANT MOLECULAR BIOLOGY 2013; 83:539-57. [PMID: 23857471 DOI: 10.1007/s11103-013-0107-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/09/2013] [Indexed: 05/04/2023]
Abstract
Populus euphratica Olivier is widely established in arid and semiarid regions but lags in the availability of transcriptomic resources in response to water deficiency. To investigate the mechanisms that allow P. euphratica to maintain growth in arid regions, the responses of the plant to soil water deficit were analyzed at a systems level using physiological and pyrosequencing approaches. We generated 218,601 and 287,120 reads from non-stressed control and drought-stressed P. euphratica leaves respectively, totaling over 200 million base pairs. After assembly, 24,013 transcripts were yielded with an average length of 1,128 bp. We determined 2,279 simple sequence repeats, which may have possible information for understanding drought adaption of woody plants. Stomatal closure was inhibited under moderate drought to maintain a relatively high rate of CO2 assimilation and water transportation, which was supposed to be important for P. euphratica to maintain normal growth and develop vigorous root systems in an adverse environment. This was accompanied by strong transcriptional remodeling of stress-perception, signaling and transcription regulation, photoprotective system, oxidative stress detoxification, and other stress responsive genes. In addition, genes involved in stomatal closure inhibition, ascorbate-glutathione pathway and ubiquitin-proteasome system that may specially modulate the drought stress responses of P. euphratica are highlighted. Our analysis provides a comprehensive picture of how P. euphratica responds to drought stress at physiological and transcriptome levels which may help to understand molecular mechanisms associated with drought response and could be useful for genetic engineering of woody plants.
Collapse
Affiliation(s)
- Sha Tang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|