1
|
Hasan MS, Lin CJ, Marhavy P, Kyndt T, Siddique S. Redox signalling in plant-nematode interactions: Insights into molecular crosstalk and defense mechanisms. PLANT, CELL & ENVIRONMENT 2024; 47:2811-2820. [PMID: 38679939 DOI: 10.1111/pce.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.
Collapse
Affiliation(s)
- M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES-Molecular Phytomedicine, Bonn, Germany
| | - Ching-Jung Lin
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Peter Marhavy
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Tina Kyndt
- Department Biotechnology, Research Group Epigenetics & Defence, Gent, Belgium
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Kang W, Duan Y, Lei P. Transcriptomic changes in soybean underlying growth promotion and defense against cyst nematode after Bacillus simplex Sneb545 treatment. Gene 2024; 898:148080. [PMID: 38101712 DOI: 10.1016/j.gene.2023.148080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Bacillus simplex Sneb45 is a plant-growth-promoting rhizobacterium that promotes soybean growth and systemic resistance to cyst nematode. To investigate transcriptional changes in soybean roots in response to B. simplex Sneb45 treatment, transcriptome analysis and quantitative real-time PCR were conducted to detect and validate the differentially expressed genes (DEGs). In total, 19,109 DEGs were obtained. After B. simplex Sneb545 treatment, 970 and 1265 genes were up- and down-regulated at 5 days post-inoculation (dpi), respectively, and 142 and 47 genes were up- and down-regulated at 10 dpi, respectively, compared with untreated soybean roots. Functional annotation of DEGs indicated that B. simplex Sneb545 regulated soybean growth and defense against cyst nematode possibly through genes related to auxin, gibberellin, and NB-LRR protein. In addition, GO and KEGG enrichment analyses indicated that the DEGs were enriched in metabolism, signal transduction, and plant-pathogen interaction pathways. Moreover, the auxin and gibberellin contents were lower in B. simplex Sneb545-treated soybean roots than in untreated roots at 5 dpi. B. simplex Sneb545 possibly altered the expression of wound-induced protein and NAC transcription factor to regulate soybean growth and defense against cyst nematode. Our study provided deep insights into the alterations in soybean transcriptome after exposure to B. simplex Sneb45 and a theoretical basis for further exploring molecular functions underlying the biological control activity of B. simplex Sneb545.
Collapse
Affiliation(s)
- Wenshu Kang
- College of Environment, Shenyang University, Shenyang 110044, PR China
| | - Yuxi Duan
- College of plant protection, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Piao Lei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
4
|
Pereira BM, Arraes F, Martins ACQ, Alves NSF, Melo BP, Morgante CV, Saraiva MAP, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. A novel soybean hairy root system for gene functional validation. PLoS One 2023; 18:e0285504. [PMID: 37200365 DOI: 10.1371/journal.pone.0285504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.
Collapse
Affiliation(s)
| | - Fabrício Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Bruno Paes Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Carolina Vianna Morgante
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
- EMBRAPA Semiárido, Petrolina, PE, Brazil
| | - Mario Alfredo Passos Saraiva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Patricia Messenberg Guimaraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| |
Collapse
|
5
|
Klink VP, Alkharouf NW, Lawrence KS, Lawaju BR, Sharma K, Niraula PM, McNeece BT. The heterologous expression of conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs suppresses Meloidogyne incognita parasitism in Gossypium hirsutum (upland cotton). Transgenic Res 2022; 31:457-487. [PMID: 35763120 PMCID: PMC9489592 DOI: 10.1007/s11248-022-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Two conserved Glycine max (soybean) mitogen activated protein kinase 3 (MAPK3) paralogs function in defense to the parasitic soybean cyst nematode Heterodera glycines. Gene Ontology analyses of RNA seq data obtained from MAPK3-1-overexpressing (OE) and MAPK3-2-OE roots compared to their control, as well as MAPK3-1-RNA interference (RNAi) and MAPK3-2-RNAi compared to their control, hierarchically orders the induced and suppressed genes, strengthening the hypothesis that their heterologous expression in Gossypium hirsutum (upland cotton) would impair parasitism by the root knot nematode (RKN) Meloidogyne incognita. MAPK3-1 expression (E) in G. hirsutum suppresses the production of M. incognita root galls, egg masses, and second stage juveniles (J2s) by 80.32%, 82.37%, and 88.21%, respectfully. Unexpectedly, egg number increases by 28.99% but J2s are inviable. MAPK3-2-E effects are identical, statistically. MAPK3-1-E and MAPK3-2-E decreases root mass 1.49-fold and 1.55-fold, respectively, as compared to the pRAP15-ccdB-E control. The reproductive factor (RF) of M. incognita for G. hirsutum roots expressing MAPK3-1-E or MAPK3-2-E decreases 60.39% and 50.46%, respectively, compared to controls. The results are consistent with upstream pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) functioning in defense to H. glycines. The experiments showcase the feasibility of employing MAPK3, through heterologous expression, to combat M. incognita parasitism, possibly overcoming impediments otherwise making G. hirsutum's defense platform deficient. MAPK homologs are identified in other important crop species for future functional analyses.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Building 004 Room 122 BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252 USA
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Plant Pathology, North Dakota State University, 1402 Albrecht Blvd., Walster Hall 306, Fargo, ND 58102 USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Cereal Disease Laboratory, 1551 Lindig Street, Saint Paul, MN 55108 USA
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Department of Biological Sciences, Delaware State University, 1200 North Dupont Highway, Science Center 164, Dover, DE 19901 USA
| | - Brant T. McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762 USA
- Present Address: Nutrien Ag Solutions, 737 Blaylock Road, Winterville, MS 38703 USA
| |
Collapse
|
6
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
7
|
Khatri R, Pant SR, Sharma K, Niraula PM, Lawaju BR, Lawrence KS, Alkharouf NW, Klink VP. Glycine max Homologs of DOESN'T MAKE INFECTIONS 1, 2, and 3 Function to Impair Heterodera glycines Parasitism While Also Regulating Mitogen Activated Protein Kinase Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:842597. [PMID: 35599880 PMCID: PMC9114929 DOI: 10.3389/fpls.2022.842597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Glycine max root cells developing into syncytia through the parasitic activities of the pathogenic nematode Heterodera glycines underwent isolation by laser microdissection (LM). Microarray analyses have identified the expression of a G. max DOESN'T MAKE INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1, DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role, suggests the possible existence of commonalities between symbiosis and defense. G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression experiments of isolated syncytia under further examination here show G. max DMI1-3, DMI2-7, and DMI3-2 expression occurring during the defense response in the H. glycines-resistant genotypes G.max [Peking/PI548402] and G.max [PI88788] indicating a broad and consistent level of expression of the genes. Transgenic overexpression (OE) of G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference (RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The combined opposite outcomes reveal a defense function for these genes. Prior functional transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK) gene family has determined that 9 of them act in the defense response to H. glycines parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In contrast, transgenically-manipulated DMI1-3, DMI2-7, and DMI3-2 expression influences MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max homologs of the CSP, and defense pathway are linked, apparently involving co-regulated gene expression.
Collapse
Affiliation(s)
- Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Bisho R. Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
8
|
Dash M, Somvanshi VS, Budhwar R, Godwin J, Shukla RN, Rao U. A rice root-knot nematode Meloidogyne graminicola-resistant mutant rice line shows early expression of plant-defence genes. PLANTA 2021; 253:108. [PMID: 33866432 DOI: 10.1007/s00425-021-03625-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Resistance to rice root-knot nematode Meloidogyne graminicola in a mutant rice line is suggested to be conferred by higher expression of several genes putatively involved in damage-associated molecular pattern recognition, secondary metabolite biosynthesis including phytoalexins, and defence-related genes. Meloidogyne graminicola has emerged as the most destructive plant-parasitic nematode disease of rice (Oryza sativa L.). Genetic resistance to M. graminicola is one of the most effective methods for its management. A M. graminicola-resistant O. sativa ssp. indica mutant line-9 was previously identified through a forward genetic screen (Hatzade et al. Biologia 74:1197-1217, 2019). In the present study, we used RNA-Sequencing to investigate the molecular mechanisms conferring nematode resistance to the mutant line-9 compared to the susceptible parent JBT 36/14 at 24 h post-infection. A total of 674 transcripts were differentially expressed in line-9. Early regulation of genes putatively related to nematode damage-associated molecular pattern recognition (e.g., wall-associated receptor kinases), signalling [Nucleotide-binding, Leucine-Rich Repeat (NLRs)], pathogenesis-related (PR) genes (PR1, PR10a), defence-related genes (NB-ARC domain-containing genes), as well as a large number of genes involved in secondary metabolites including diterpenoid biosynthesis (CPS2, OsKSL4, OsKSL10, Oscyp71Z2, oryzalexin synthase, and momilactone A synthase) was observed in M. graminicola-resistant mutant line-9. It may be suggested that after the nematode juveniles penetrate the roots of line-9, early recognition of invading nematodes triggers plant immune responses mediated by phytoalexins, and other defence proteins such as PR proteins inhibit nematode growth and reproduction. Our study provides the first transcriptomic comparison of nematode-resistant and susceptible rice plants in the same genetic background and adds to the understanding of mechanisms underlying plant-nematode resistance in rice.
Collapse
Affiliation(s)
- Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal Singh Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Roli Budhwar
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Jeffrey Godwin
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, 560043, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
9
|
Niraula PM, Lawrence KS, Klink VP. The heterologous expression of a soybean (Glycine max) xyloglucan endotransglycosylase/hydrolase (XTH) in cotton (Gossypium hirsutum) suppresses parasitism by the root knot nematode Meloidogyne incognita. PLoS One 2020; 15:e0235344. [PMID: 32628728 PMCID: PMC7337317 DOI: 10.1371/journal.pone.0235344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/14/2020] [Indexed: 11/18/2022] Open
Abstract
A Glycine max (soybean) hemicellulose modifying gene, xyloglucan endotransglycoslase/hydrolase (XTH43), has been identified as being expressed within a nurse cell known as a syncytium developing within the soybean root undergoing the process of defense to infection by the parasitic nematode, Heterodera glycines. The highly effective nature of XTH43 overexpression in suppressing H. glycines parasitism in soybean has led to experiments examining whether the heterologous expression of XTH43 in Gossypium hirsutum (upland cotton) could impair the parasitism of Meloidogyne incognita, that form a different type of nurse cell called a giant cell that is enclosed within a swollen root structure called a gall. The heterologous transgenic expression of XTH43 in cotton resulted in an 18% decrease in the number of galls, 70% decrease in egg masses, 64% decrease in egg production and a 97% decrease in second stage juvenile (J2) production as compared to transgenic controls. The heterologous XTH43 expression does not significantly affect root mass. The results demonstrate XTH43 expression functions effectively in impairing the development of M. incognita at numerous life cycle stages occurring within the cotton root. The experiments reveal that there are highly conserved aspects of the defense response of G. max that can function effectively in G. hirsutum to impair M. incognita having a different method of parasitism.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
10
|
Wixom AQ, Casavant NC, Sonnen TJ, Kuhl JC, Xiao F, Dandurand LM, Caplan AB. Initial responses of the trap-crop, Solanum sisymbriifolium, to Globodera pallida invasions. THE PLANT GENOME 2020; 13:e20016. [PMID: 33016605 DOI: 10.1002/tpg2.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/02/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
Many researchers today are looking for mechanisms underlying plant defenses against nematodes by identifying differentially expressed genes in domesticated hosts. In order to provide a different perspective, we analyzed the root transcriptome of an undomesticated non-host species, Solanum sisymbriifolium Lamark (SSI) before and after Globodera pallida infection. Utilizing RNAseq analyses, we identified changes in the expression of 277 transcripts. Many of these genes were not annotated; however, the annotated set included peroxidases, reactive oxygen species-producing proteins, and regulators of cell death. Importantly, 60% of the nematode-responsive genes did not respond to physical damage to root tissues, or to exogenous treatments with either salicylic acid or methyl jasmonate. Based on this, we speculate that the majority of changes in SSI gene expression were promoted by either nematode effectors, pathogen-associated molecular patterns (PAMPs), or by exposure to untested endogenous signaling molecules such as ethylene, or by exposure to multiple stimuli. This study incorporates our findings into a model that accounts for part of this plant's unusual resistance to nematodes.
Collapse
Affiliation(s)
- Alexander Q Wixom
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA
| | - N Carol Casavant
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA
| | | | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, 83844-2329, USA
| | - Allan B Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844-2333, USA
| |
Collapse
|
11
|
Jain N, Rani S, Sharma C, Sinha N, Singh A, Sharma JB, Prasad P, Saripalli G, Sharma PK, Balyan HS, Gupta PK, Prabhu KV. Large-scale stage-specific regulation of gene expression during host-pathogen interactions in CSP44 bread wheat carrying APR gene Lr48. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:203-225. [PMID: 32007128 DOI: 10.1071/fp18336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Genome-wide transcriptome analysis was undertaken in a leaf-rust resistant bread wheat line CSP44 (selected from Australian cv. Condor) carrying the adult plant resistance (APR) gene Lr48. Two pre-adult plant (P-AP) susceptible stages (S48 and S96) and two adult plant (AP) resistant stages (R48 and R96) were used for RNA-seq. At the susceptible P-AP stage (during S48 to S96), expression increased in 2062 genes, and declined in 130 genes; 1775 of 2062 differentially expressed genes (DEGs) also exhibited high expression during early incompatible stage R48. Comparison of S96 with R96 showed that the expression of 80 genes was enhanced and that of 208 genes declined at the AP stage. At the resistant AP stage (during R48 to R96), expression of mere 25 genes increased and that of 126 genes declined. Apparently, the resistance during late adult stage (R96) is caused by regulation of the expression of relatively fewer genes, although at pre-adult stage (S48 to S96), expression of large number of genes increased; expression of majority of these genes kept on increasing during adult stage at R48 also. These and other results of the present study suggest that APR may mimic some kind of systemic acquired resistance (SAR). The host-specific DEGs belonged to 10 different classes including genes involved in defence, transport, epigenetics, photosynthesis, genes encoding some transcription factors etc. The pathogen (Puccinia triticina) specific DEGs (including three genes encoding known biotrophic effectors) seem to help the pathogen in infection/growth through large-scale stage-specific enhanced expression of host's genes. A putative candidate gene for Lr48 containing protein kinase domain (its ortholog in rice encoding OsWAK8) was also identified.
Collapse
Affiliation(s)
- Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sushma Rani
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chanchal Sharma
- Chaudhary Charan Singh University, Meerut 250004, UP, India; and Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan City, Gyeongbook 38453, South Korea
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anupam Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Jai Bhagwan Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pramod Prasad
- Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla 171002, India
| | | | | | | | | | - Kumble Vinod Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; and Protection of Plant Varieties and Farmers' Rights Authority, Govt. of India, Ministry of Agriculture & Farmers Welfare, New Delhi 110012 (India)
| |
Collapse
|
12
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
13
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
14
|
Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT. Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1595-1611. [PMID: 30688400 PMCID: PMC6662113 DOI: 10.1111/pbi.13086] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN) is the most devastating plant-parasitic nematode. Most commercial soybean varieties with SCN resistance are derived from PI88788. Resistance derived from PI88788 is breaking down due to narrow genetic background and SCN population shift. PI88788 requires mainly the rhg1-b locus, while 'Peking' requires rhg1-a and Rhg4 for SCN resistance. In the present study, whole genome re-sequencing of 106 soybean lines was used to define the Rhg haplotypes and investigate their responses to the SCN HG-Types. The analysis showed a comprehensive profile of SNPs and copy number variations (CNV) at these loci. CNV of rhg1 (GmSNAP18) only contributed towards resistance in lines derived from PI88788 and 'Cloud'. At least 5.6 copies of the PI88788-type rhg1 were required to confer SCN resistance, regardless of the Rhg4 (GmSHMT08) haplotype. However, when the GmSNAP18 copies dropped below 5.6, a 'Peking'-type GmSHMT08 haplotype was required to ensure SCN resistance. This points to a novel mechanism of epistasis between GmSNAP18 and GmSHMT08 involving minimum requirements for copy number. The presence of more Rhg4 copies confers resistance to multiple SCN races. Moreover, transcript abundance of the GmSHMT08 in root tissue correlates with more copies of the Rhg4 locus, reinforcing SCN resistance. Finally, haplotype analysis of the GmSHMT08 and GmSNAP18 promoters inferred additional levels of the resistance mechanism. This is the first report revealing the genetic basis of broad-based resistance to SCN and providing new insight into epistasis, haplotype-compatibility, CNV, promoter variation and its impact on broad-based disease resistance in plants.
Collapse
Affiliation(s)
- Gunvant B. Patil
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Jinrong Wan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Li Song
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Tri D. Vuong
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - Adrian O. Stec
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Sondus S. Kahil
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Babu Valliyodan
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| | - J. Hollis Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Robert M. Stupar
- Department Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Henry T. Nguyen
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
| |
Collapse
|
15
|
Trujillo DI, Silverstein KAT, Young ND. Nodule-specific PLAT domain proteins are expanded in the Medicago lineage and required for nodulation. THE NEW PHYTOLOGIST 2019; 222:1538-1550. [PMID: 30664233 DOI: 10.1111/nph.15697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage-specific expansions (LSEs) of nodulation-associated genes can be a strategy to discover candidate gene families. Using bioinformatic tools, we identified 13 LSEs of nodulation-related secreted protein families, each unique to either Glycine, Arachis or Medicago lineages. In the Medicago lineage, nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examined NPD function using CRISPR/Cas9 multiplex genome editing to create Medicago truncatula NPD knockout lines, targeting one to five NPD genes. Mutant lines with differing combinations of NPD gene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild-type control. Double- and triple-knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of a DHHC-type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function. By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule-specific PLAT domain proteins and confirmed that they play a role in successful nodule formation.
Collapse
Affiliation(s)
- Diana I Trujillo
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin A T Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
16
|
McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:25-41. [PMID: 30711881 DOI: 10.1016/j.plaphy.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
Mitogen activated protein kinases (MAPKs) play important signal transduction roles. However, little is known regarding how they influence the gene expression of other family members and the relationship to a biological process, including the Glycine max defense response to Heterodera glycines. Transcriptomics have identified MAPK gene expression occurring within root cells undergoing a defense response to a pathogenic event initiated by H. glycines in the allotetraploid Glycine max. Functional analyses are presented for its 32 MAPKs revealing 9 have a defense role, including homologs of Arabidopsis thaliana MAPK (MPK) MPK2, MPK3, MPK4, MPK5, MPK6, MPK13, MPK16 and MPK20. Defense signaling occurring through pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) have been determined in relation to these MAPKs. Five different types of gene expression relate to MAPK expression, influencing PTI and ETI gene expression and proven defense genes including an ABC-G transporter, 20S membrane fusion particle components, glycoside biosynthesis, carbon metabolism, hemicellulose modification, transcription and secretion. The experiments show MAPKs broadly influence defense MAPK gene expression, including the co-regulation of parologous MAPKs and reveal its relationship to proven defense genes. The experiments reveal each defense MAPK induces the expression of a G. max homolog of a PATHOGENESIS RELATED1 (PR1), itself shown to function in defense in the studied pathosystem.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
17
|
Verbeek REM, Van Buyten E, Alam MZ, De Vleesschauwer D, Van Bockhaven J, Asano T, Kikuchi S, Haeck A, Demeestere K, Gheysen G, Höfte M, Kyndt T. Jasmonate-Induced Defense Mechanisms in the Belowground Antagonistic Interaction Between Pythium arrhenomanes and Meloidogyne graminicola in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1515. [PMID: 31824540 PMCID: PMC6883413 DOI: 10.3389/fpls.2019.01515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
Next to their essential roles in plant growth and development, phytohormones play a central role in plant immunity against pathogens. In this study we studied the previously reported antagonism between the plant-pathogenic oomycete Pythium arrhenomanes and the root-knot nematode Meloidogyne graminicola, two root pathogens that co-occur in aerobic rice fields. In this manuscript, we investigated if the antagonism is related to imbalances in plant hormone levels, which could be involved in activation of plant defense. Hormone measurements and gene expression analyses showed that the jasmonate (JA) pathway is induced early upon P. arrhenomanes infection. Exogenous application of methyl-jasmonate (MeJA) on the plant confirmed that JA is needed for basal defense against both P. arrhenomanes and M. graminicola in rice. Whereas M. graminicola suppresses root JA levels to increase host susceptibility, Pythium inoculation boosts JA in a manner that prohibits JA repression by the nematode in double-inoculated plants. Exogenous MeJA supply phenocopied the defense-inducing capacity of Pythium against the root-knot nematode, whereas the antagonism was weakened in JA-insensitive mutants. Transcriptome analysis confirmed upregulation of JA biosynthesis and signaling genes upon P. arrhenomanes infection, and additionally revealed induction of genes involved in biosynthesis of diterpenoid phytoalexins, consistent with strong activation of the gene encoding the JA-inducible transcriptional regulator DITERPENOID PHYTOALEXIN FACTOR. Altogether, the here-reported data indicate an important role for JA-induced defense mechanisms in this antagonistic interaction. Next to that, our results provide evidence for induced expression of genes encoding ERF83, and related PR proteins, as well as auxin depletion in P. arrhenomanes infected rice roots, which potentially further contribute to the reduced nematode susceptibility seen in double-infected plants.
Collapse
Affiliation(s)
- Ruben E. M. Verbeek
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Evelien Van Buyten
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Md Zahangir Alam
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jonas Van Bockhaven
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Takayuki Asano
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Ashley Haeck
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Tina Kyndt,
| |
Collapse
|
18
|
Meng F, Xiao Y, Guo L, Zeng H, Yang X, Qiu D. A DREPP protein interacted with PeaT1 from Alternaria tenuissima and is involved in elicitor-induced disease resistance in Nicotiana plants. JOURNAL OF PLANT RESEARCH 2018; 131:827-837. [PMID: 29730747 DOI: 10.1007/s10265-018-1038-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
PeaT1 is a proteinaceous elicitor from fungal pathogen Alternaria tenuissima. Our previous research revealed that this elicitor could induce defense response and enhance disease resistance in various plants including Nicotiana plants. However, immune activation mechanisms whereby PeaT1 elicits defense response remain unclear. In this study, the association between elicitor protein PeaT1 and the plasma membrane was assessed using the FITC (Fluorescein isothiocyanate) labeling method. A PeaT1-interacting protein was isolated via 125I-PeaT1 cross-linking and Far Western blot analyses, and designated PtBP1 (PeaT1 Binding Protein 1). From the data of Mass spectrometry (MS) and bioinformatics analysis, the 22 kDa plasma membrane protein PtBP1 was inferred to be a member of DREPP (developmentally regulated plasma membrane polypeptide) family that is induced in plants under stress conditions and might get involved in downstream signaling. For further verification of this association, Far Western blot, co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) analyses were performed, showing PtBP1 could bind with PeaT1 in vitro and in vivo. Virus-induced gene silencing (VIGS) analysis exhibited that PtBP1 silencing in Nicotiana benthamiana attenuated tobacco mosaic virus (TMV) resistance compared to the tobacco rattle virus (TRV) control after PeaT1 treatment.
Collapse
Affiliation(s)
- Fanlu Meng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Lihua Guo
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
19
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
20
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
21
|
Li S, Chen Y, Zhu X, Wang Y, Jung KH, Chen L, Xuan Y, Duan Y. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode-resistant black soybean during Heterodera glycines race 3 infection. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:96-104. [PMID: 29169106 DOI: 10.1016/j.jplph.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 05/07/2023]
Abstract
Glycine max (soybean) is an extremely important crop, representing a major source of oil and protein for human beings. Heterodera glycines (soybean cyst nematode, SCN) infection severely reduces soybean production; therefore, protecting soybean from SCN has become an issue for breeders. Black soybean has exhibited a different grade of resistance to SCN. However, the underlying mechanism of Huipizhi Heidou resistance against SCN remains elusive. The Huipizhi Heidou (ZDD2315) and race 3 of Heterodera glycines were chosen to study the mechanism of resistance via examination of transcriptomic changes. After 5, 10, and 15days of SCN infection, whole roots were sampled for RNA extraction, and uninfected samples were simultaneously collected as a control. 740, 1413, and 4925 genes were isolated by padj (p-value adjusted)<0.05 after 5, 10, and 15days of the infection, respectively, and 225 differentially expressed genes were overlapped at all the time points. We found that the differentially expressed genes (DEGs) at 5, 10, and 15days after infection were involved in various biological function categories; in particular, induced genes were enriched in defense response, hormone mediated signaling process, and response to stress. To verify the pathways observed in the GO and KEGG enrichment results, effects of hormonal signaling in cyst-nematode infection were further examined via treatment with IAA (indo-3-acetic acid), salicylic acid (SA), gibberellic acid (GA), jasmonic acid (JA), and ethephon, a precursor of ethylene. The results indicate that five hormones led to a significant reduction of J2 number in the roots of Huipizhi Heidou and Liaodou15, representing SCN-resistant and susceptible lines, respectively. Taken together, our analyses are aimed at understanding the resistance mechanism of Huipizhi Heidou against the SCN race 3 via the dissection of transcriptomic changes upon J2 infection. The data presented here will help further research on the basis of soybean and cyst-nematode interaction.
Collapse
Affiliation(s)
- Shuang Li
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| | - Yu Chen
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Yuanyuan Wang
- College of Biology science and technology, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, 110866,Shenyang, China.
| |
Collapse
|
22
|
Aljaafri WAR, McNeece BT, Lawaju BR, Sharma K, Niruala PM, Pant SR, Long DH, Lawrence KS, Lawrence GW, Klink VP. A harpin elicitor induces the expression of a coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene and others functioning during defense to parasitic nematodes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:161-175. [PMID: 29107936 DOI: 10.1016/j.plaphy.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/23/2023]
Abstract
The bacterial effector harpin induces the transcription of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene. In Glycine max, Gm-NDR1-1 transcripts have been detected within root cells undergoing a natural resistant reaction to parasitism by the syncytium-forming nematode Heterodera glycines, functioning in the defense response. Expressing Gm-NDR1-1 in Gossypium hirsutum leads to resistance to Meloidogyne incognita parasitism. In experiments presented here, the heterologous expression of Gm-NDR1-1 in G. hirsutum impairs Rotylenchulus reniformis parasitism. These results are consistent with the hypothesis that Gm-NDR1-1 expression functions broadly in generating a defense response. To examine a possible relationship with harpin, G. max plants topically treated with harpin result in induction of the transcription of Gm-NDR1-1. The result indicates the topical treatment of plants with harpin, itself, may lead to impaired nematode parasitism. Topical harpin treatments are shown to impair G. max parasitism by H. glycines, M. incognita and R. reniformis and G. hirsutum parasitism by M. incognita and R. reniformis. How harpin could function in defense has been examined in experiments showing it also induces transcription of G. max homologs of the proven defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), TGA2, galactinol synthase, reticuline oxidase, xyloglucan endotransglycosylase/hydrolase, alpha soluble N-ethylmaleimide-sensitive fusion protein (α-SNAP) and serine hydroxymethyltransferase (SHMT). In contrast, other defense genes are not directly transcriptionally activated by harpin. The results indicate harpin induces pathogen associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) defense processes in the root, activating defense to parasitic nematodes.
Collapse
Affiliation(s)
- Weasam A R Aljaafri
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Prakash M Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| | - David H Long
- Albaugh, LLC, 4060 Dawkins Farm Drive, Olive Branch, MS 38654, United States.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL 36849, United States.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States.
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
23
|
Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA. Transgenic Strategies for Enhancement of Nematode Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:750. [PMID: 28536595 PMCID: PMC5422515 DOI: 10.3389/fpls.2017.00750] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Amjad Abbas
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
| | - Faiz A. Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | | |
Collapse
|
24
|
McNeece BT, Pant SR, Sharma K, Niruala P, Lawrence GW, Klink VP. A Glycine max homolog of NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) alters defense gene expression while functioning during a resistance response to different root pathogens in different genetic backgrounds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:60-71. [PMID: 28273511 DOI: 10.1016/j.plaphy.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 05/23/2023]
Abstract
A Glycine max homolog of the Arabidopsis thaliana NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) coiled-coil nucleotide binding leucine rich repeat (CC-NB-LRR) defense signaling gene (Gm-NDR1-1) is expressed in root cells undergoing a defense response to the root pathogenic nematode, Heterodera glycines. Gm-NDR1-1 overexpression in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] impairs parasitism. In contrast, Gm-NDR1-1 RNA interference (RNAi) in the H. glycines-resistant genotype G. max[Peking/PI 548402] facilitates parasitism. The broad effectiveness of Gm-NDR1-1 in impairing parasitism has then been examined by engineering its heterologous expression in Gossypium hirsutum which is susceptible to the root pathogenic nematode Meloidogyne incognita. The heterologous expression of Gm-NDR1-1 in G. hirsutum effectively impairs M. incognita parasitism, reducing gall, egg mass, egg and juvenile numbers. In contrast to our prior experiments examining the effectiveness of the heterologous expression of a G. max homolog of the A. thaliana salicyclic acid signaling (SA) gene NONEXPRESSOR OF PR1 (Gm-NPR1-2), no cumulative negative effect on M. incognita parasitism has been observed in G. hirsutum expressing Gm-NDR1-1. The results indicate a common genetic basis exists for plant resistance to parasitic nematodes that involves Gm-NDR1. However, the Gm-NDR1-1 functions in ways that are measurably dissimilar to Gm-NPR1-2. Notably, Gm-NDR1-1 overexpression leads to increased relative transcript levels of its homologs of A. thaliana genes functioning in SA signaling, including NPR1-2, TGA2-1 and LESION SIMULATING DISEASE1 (LSD1-2) that is lost in Gm-NDR1-1 RNAi lines. Similar observations have been made regarding the expression of other defense genes.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States; Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research & Extension, Texas A&M University, Weslaco, TX 78596, United States
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Prakash Niruala
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, United States
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
25
|
Guimaraes LA, Pereira BM, Araujo ACG, Guimaraes PM, Brasileiro ACM. Ex vitro hairy root induction in detached peanut leaves for plant-nematode interaction studies. PLANT METHODS 2017; 13:25. [PMID: 28400855 PMCID: PMC5387216 DOI: 10.1186/s13007-017-0176-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/02/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea) production is largely affected by a variety of abiotic and biotic stresses, including the root-knot nematode (RKN) Meloidogyne arenaria that causes yield losses worldwide. Transcriptome studies of wild Arachis species, which harbor resistance to a number of pests and diseases, disclosed several candidate genes for M. arenaria resistance. Peanut is recalcitrant to genetic transformation, so the use of Agrobacterium rhizogenes-derived hairy roots emerged as an alternative for in-root functional characterization of these candidate genes. RESULTS The present report describes an ex vitro methodology for hairy root induction in detached leaves based on the well-known ability of peanut to produce roots spontaneously from its petiole, which can be maintained for extended periods under high-humidity conditions. Thirty days after infection with the A. rhizogenes 'K599' strain, 90% of the detached leaves developed transgenic hairy roots with 5 cm of length in average, which were then inoculated with M. arenaria. For improved results, plant transformation, and nematode inoculation parameters were adjusted, such as bacterial cell density and growth stage; moist chamber conditions and nematode inoculum concentration. Using this methodology, a candidate gene for nematode resistance, AdEXLB8, was successfully overexpressed in hairy roots of the nematode-susceptible peanut cultivar 'Runner', resulting in 98% reduction in the number of galls and egg masses compared to the control, 60 days after M. arenaria infection. CONCLUSIONS This methodology proved to be more practical and cost-effective for functional validation of peanut candidate genes than in vitro and composite plant approaches, as it requires less space, reduces analysis costs and displays high transformation efficiency. The reduction in the number of RKN galls and egg masses in peanut hairy roots overexpressing AdEXLB8 corroborated the use of this strategy for functional characterization of root expressing candidate genes. This approach could be applicable not only for peanut-nematode interaction studies but also to other peanut root diseases, such as those caused by fungi and bacteria, being also potentially extended to other crop species displaying similar petiole-rooting competence.
Collapse
Affiliation(s)
- Larissa Arrais Guimaraes
- Parque Estação Biológica, Embrapa Recursos Genéticos e Biotecnologia, CP 02372, Final W5 Norte, Brasília, DF Brazil
| | - Bruna Medeiros Pereira
- Parque Estação Biológica, Embrapa Recursos Genéticos e Biotecnologia, CP 02372, Final W5 Norte, Brasília, DF Brazil
- Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF Brazil
| | - Ana Claudia Guerra Araujo
- Parque Estação Biológica, Embrapa Recursos Genéticos e Biotecnologia, CP 02372, Final W5 Norte, Brasília, DF Brazil
| | | | | |
Collapse
|
26
|
Hu Y, You J, Li C, Williamson VM, Wang C. Ethylene response pathway modulates attractiveness of plant roots to soybean cyst nematode Heterodera glycines. Sci Rep 2017; 7:41282. [PMID: 28112257 PMCID: PMC5256374 DOI: 10.1038/srep41282] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Plant parasitic nematodes respond to root exudates to locate their host roots. In our studies second stage juveniles of Heterodera glycines, the soybean cyst nematode (SCN), quickly migrated to soybean roots in Pluronic F-127 gel. Roots of soybean and non-host Arabidopsis treated with the ethylene (ET)-synthesis inhibitor aminoethoxyvinylglycine (AVG) were more attractive to SCN than untreated roots, and significantly more nematodes penetrated into roots. Moreover, Arabidopsis ET insensitive mutants (ein2, ein2-1, ein2-5, ein3-1, ein5-1, and ein6) were more attractive than wild-type plants. Conversely, the constitutive triple-response mutant ctr1-1, was less attractive to SCN. While ET receptor gain-of-function mutant ein4-1 attracted more SCN than the wild-type, there were no significant differences in attractiveness between another gain-of-function ET receptor mutant, etr1-3, or the loss-of-function mutants etr1-7 and ers1-3 and the wild type. Expression of the reporter construct EBS: β-glucuronidase (GUS) was detected in Arabidopsis root tips as early as 6 h post infection, indicating that ET signaling was activated in Arabidopsis early by SCN infection. These results suggest that an active ET signaling pathway reduces root attractiveness to SCN in a way similar to that reported for root-knot nematodes, but opposite to that suggested for the sugar beet cyst nematode Heterodera schachtii.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081 China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081 China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081 China
| | | | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081 China
| |
Collapse
|
27
|
Liu Q, Wang X, Tzin V, Romeis J, Peng Y, Li Y. Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC PLANT BIOLOGY 2016; 16:259. [PMID: 27923345 PMCID: PMC5142284 DOI: 10.1186/s12870-016-0946-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.), which is a staple food for more than half of the world's population, is frequently attacked by herbivorous insects, including the rice stem borer, Chilo suppressalis. C. suppressalis substantially reduces rice yields in temperate regions of Asia, but little is known about how rice plants defend themselves against this herbivore at molecular and biochemical level. RESULTS In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and in metabolic processes in rice plants that had been continuously fed by C. suppressalis larvae for different durations (0, 24, 48, 72, and 96 h). Furthermore, the data were validated using quantitative real-time PCR. There were 4,729 genes and 151 metabolites differently regulated when rice plants were damaged by C. suppressalis larvae. Further analyses showed that defense-related phytohormones, transcript factors, shikimate-mediated and terpenoid-related secondary metabolism were activated, whereas the growth-related counterparts were suppressed by C. suppressalis feeding. The activated defense was fueled by catabolism of energy storage compounds such as monosaccharides, which meanwhile resulted in the increased levels of metabolites that were involved in rice plant defense response. Comparable analyses showed a correspondence between transcript patterns and metabolite profiles. CONCLUSION The current findings greatly enhance our understanding of the mechanisms of induced defense response in rice plants against C. suppressalis infestation at molecular and biochemical levels, and will provide clues for development of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingyun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vered Tzin
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Jörg Romeis
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Agroscope, Biosafety Research Group, Zurich, Switzerland
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Mitchum MG. Soybean Resistance to the Soybean Cyst Nematode Heterodera glycines: An Update. PHYTOPATHOLOGY 2016; 106:1444-1450. [PMID: 27392178 DOI: 10.1094/phyto-06-16-0227-rvw] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, remains a serious threat to soybean production throughout the world. A lack of genetic diversity in resistant soybean cultivars has led to a widespread shift toward virulence in SCN populations, leaving farmers with few proven options other than nonhost rotation to manage this nematode. Recent advances in our understanding of the genes controlling resistance to the nematode have led to improved molecular markers, which are, in turn, increasing the efficiency and precision of the breeding pipeline. A better understanding of the molecular and biochemical basis of SCN resistance and nematode virulence will provide information useful for the development of a long-term strategic plan for diversification and the deployment of cultivars that protect current sources of natural resistance while identifying new targets for engineering novel resistance.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, Columbia, MO 65211
| |
Collapse
|
29
|
Wu XY, Zhou GC, Chen YX, Wu P, Liu LW, Ma FF, Wu M, Liu CC, Zeng YJ, Chu AE, Hang YY, Chen JQ, Wang B. Soybean Cyst Nematode Resistance Emerged via Artificial Selection of Duplicated Serine Hydroxymethyltransferase Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:998. [PMID: 27458476 PMCID: PMC4937839 DOI: 10.3389/fpls.2016.00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/24/2016] [Indexed: 05/17/2023]
Abstract
A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans.
Collapse
Affiliation(s)
- Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NanjingChina
| | - Yun-Xia Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Li-Wei Liu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Mian Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Cheng-Chen Liu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Ying-Jie Zeng
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
| | - Alexander E. Chu
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UTUSA
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NanjingChina
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
- *Correspondence: Bin Wang, Jian-Qun Chen,
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, NanjingChina
- *Correspondence: Bin Wang, Jian-Qun Chen,
| |
Collapse
|
30
|
Matthews B, Youssef R. Agrobacterium rhizogenes-Based Transformation of Soybean Roots to Form Composite Plants. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
31
|
Matthews B, Youssef R. Soybean Cyst Nematode, Heterodera glycines, Infection Assay Using Soybean Roots. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Xu D, Nguyen HT. Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genomics 2015; 16:148. [PMID: 25880563 PMCID: PMC4351908 DOI: 10.1186/s12864-015-1316-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most devastating pathogen of soybean. Many gene expression profiling studies have been conducted to investigate the responses of soybean to the infection by this pathogen using primarily the first-generation soybean genome array that covered approximately 37,500 soybean transcripts. However, no study has been reported yet using the second-generation Affymetrix soybean whole-genome transcript array (Soybean WT array) that represents approximately 66,000 predicted soybean transcripts. RESULTS In the present work, the gene expression profiles of two soybean plant introductions (PIs) PI 437654 and PI 567516C (both resistant to multiple SCN HG Types) and cultivar Magellan (susceptible to SCN) were compared in the presence or absence of the SCN inoculum at 3 and 8 days post-inoculation using the Soybean WT array. Data analysis revealed that the two resistant soybean lines showed distinctive gene expression profiles from each other and from Magellan not only in response to the SCN inoculation, but also in the absence of SCN. Overall, 1,413 genes and many pathways were revealed to be differentially regulated. Among them, 297 genes were constitutively regulated in the two resistant lines (compared with Magellan) and 1,146 genes were responsive to the SCN inoculation in the three lines, with 30 genes regulated both constitutively and by SCN. In addition to the findings similar to those in the published work, many genes involved in ethylene, protein degradation, and phenylpropanoid pathways were also revealed differentially regulated in the present study. GC-rich elements (e.g., GCATGC) were found over-represented in the promoter regions of certain groups of genes. These have not been observed before, and could be new defense-responsive regulatory elements. CONCLUSIONS Different soybean lines showed different gene expression profiles in the presence and absence of the SCN inoculum. Both inducible and constitutive gene expression may contribute to resistance to multiple SCN HG Types in the resistant soybean PI lines. Ethylene, protein degradation, and phenylpropanoid pathways, as well as many other pathways reported previously, may play important roles in mediating the soybean-SCN interactions. The revealed genes, pathways, and promoter elements can be further explored to regulate or engineer soybean for resistance to SCN.
Collapse
Affiliation(s)
- Jinrong Wan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Tri Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| | - Yongqing Jiao
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
- Current address: Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - Trupti Joshi
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Hongxin Zhang
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Dong Xu
- Department of Computer Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
33
|
Cloning and analysis of expression patterns and transcriptional regulation of RghBNG in response to plant growth regulators and abiotic stresses in Rehmannia glutinosa. SPRINGERPLUS 2015; 4:60. [PMID: 25674509 PMCID: PMC4320158 DOI: 10.1186/s40064-015-0830-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/16/2015] [Indexed: 01/23/2023]
Abstract
RghBNG, a gene of unknown function, was cloned from Rehmannia glutinosa by reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA of RghBNG was 548 bp with a282-bp open reading frame. It encoded a polypeptide of 93 amino acids with a predicted molecular weight of 10.5 kDa and a theoretical isoelectric point of 9.25. Bioinformatics analysis indicated that RghBNG had no homology to any known plant genes, whereas the RghBNG polypeptide was highly similar to other plant proteins and possessed one conserved B12D protein family functional domain. Phylogenetic analysis revealed that RghBNG encoded for a dicot protein. RghBNG spatial and temporal expression patterns and responses to abiotic stresses and plant growth regulators were investigated by qRT-PCR. RghBNG transcripts were detected in roots, stems, leaves, petals, receptacles, stamens and pistils with the highest and lowest levels respectively observed in petals and leaves of mature plants. Additionally, RghBNG transcripts were detected at three developmental stages of roots, stems and leaves; the highest levels were observed in roots at seedling stage; Transcript levels changed to varying degrees in different tissues and stages; We also studied the effects of abiotic stress and plant growth regulators in roots and leaves. RghBNG expression was significantly increased (p < 0.01) by chromium, gibberellic acid and NaCl, with the highest levels induced by chromium stress; In contrast, 6-benzyladenine reduced expression. These results strongly suggest that RghBNG is involved in R. glutinosa growth, development and response to plant growth regulators and abiotic stresses.
Collapse
|
34
|
Pant SR, Krishnavajhala A, McNeece BT, Lawrence GW, Klink VP. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines. PLANT SIGNALING & BEHAVIOR 2015; 10:e977737. [PMID: 25530246 PMCID: PMC4622666 DOI: 10.4161/15592324.2014.977737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 05/19/2023]
Abstract
Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified.
Collapse
Key Words
- BIK1, botrytis induced kinase1
- CuSOD, copper superoxide dismutase
- EDS1, enhanced disease susceptibility1
- ER, endoplasmic reticulum
- GOI, gene of interest
- Golgi
- INA, 2,6-dichloroisonicotinic acid
- JA, jasmonic acid
- LESION SIMULATING DISEASE1 (LSD1)
- LOL1, LSD1-like
- LSD1, lesion simulating disease1
- MATE, multidrug and toxin extrusion
- NPR1, nonexpressor of PR1
- O2−, superoxide
- PAD4, phytoalexin deficient 4
- PCD, programmed cell death
- PR1, pathogenesis-related 1
- RNAi, RNA interference
- ROI, reactive oxygen intermediates
- SA, salicylic acid
- SAR, systemic acquired resistance
- SHMT, serine hydroxymethyltransferase
- SID2, salicylic-acid-induction deficient2
- Sed5p, suppressors of the erd2-deletion 5
- XTH, xyloglucan endotransglycosylase/hydrolase
- membrane fusion
- pathogen resistance
- qPCR, quantitative polymerase chain reaction
- salicylic acid
- sec, secretion
- signaling
- syntaxin 31
- vesicle
- α-SNAP, alpha soluble N-ethylmaleimide-sensitive factor attachment protein
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| | - Aparna Krishnavajhala
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
- Department of Biochemistry; Molecular Biology; Entomology and Plant Pathology; Mississippi State University; Starkville, MS USA
| | - Brant T McNeece
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| | - Gary W Lawrence
- Department of Biochemistry; Molecular Biology; Entomology and Plant Pathology; Mississippi State University; Starkville, MS USA
| | - Vincent P Klink
- Department of Biological Sciences; Mississippi State University; Starkville, MS USA
| |
Collapse
|
35
|
Li R, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. PLANT CELL REPORTS 2015; 34:5-22. [PMID: 25208657 DOI: 10.1007/s00299-014-1676-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/24/2023]
Abstract
Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hosseini P, Matthews BF. Regulatory interplay between soybean root and soybean cyst nematode during a resistant and susceptible reaction. BMC PLANT BIOLOGY 2014; 14:300. [PMID: 25421055 PMCID: PMC4262236 DOI: 10.1186/s12870-014-0300-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/22/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant-parasitic nematodes (PPNs) are obligate parasites that feed on the roots of living host plants. Often, these nematodes can lay hundreds of eggs, each capable of surviving without a host for as long as 12 years. When it comes to wreaking havoc on agricultural yield, few nematodes can compare to the soybean cyst nematode (SCN). Quantifying soybean (Glycine max) transcription factor binding sites (TFBSs) during a late-stage SCN resistant and susceptible reaction can shed light onto the systematic interplay between host and pathogen, thereby elucidating underlying cis-regulatory mechanisms. RESULTS We sequenced the soybean root transcriptome at 6 and 8 days upon independent inoculation with a virulent and avirulent SCN population. Genes such as β-1,4 glucanase, chalcone synthase, superoxide dismutase and various heat shock proteins (HSPs) exhibited reaction-specific expression profiles. Several likely defense-response genes candidates were also identified which are believed to confer SCN resistance. To explore magnitude of TFBS representation during SCN pathogenesis, a multivariate statistical software identified 46 over-represented TFBSs which capture soybean regulatory dynamics across both reactions. CONCLUSIONS Our results reveal a set of soybean TFBSs which are over-represented solely throughout a resistant and susceptible SCN reaction. This set furthers our understanding of soybean cis-regulatory dynamics by providing reaction-specific levels of over-representation at 6 and 8 days after inoculation (dai) with SCN.
Collapse
Affiliation(s)
- Parsa Hosseini
- />School of Systems Biology, George Mason University, Manassas, VA USA
- />Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD USA
- />Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD USA
| | - Benjamin F Matthews
- />Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Beltsville, MD USA
| |
Collapse
|
37
|
Maldonado A, Youssef R, McDonald M, Brewer E, Beard H, Matthews B. Modification of the expression of two NPR1 suppressors, SNC1 and SNI1, in soybean confers partial resistance to the soybean cyst nematode, Heterodera glycines. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:714-726. [PMID: 32481026 DOI: 10.1071/fp13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/23/2014] [Indexed: 06/11/2023]
Abstract
Systemic acquired resistance (SAR) is an enhanced defence response triggered when plants detect a pathogen. The response is extended to uninfected organs to protect against future attack. NPR1 is a nuclear leucine-rich repeat protein with a key role in SAR. It binds specifically to salicylic acid, and acts as a transcriptional coregulator of SAR activators and an inhibitor of transcriptional repressors. The proteins encoded by Suppressor of NPR1, Constitutive (SNC1) and Suppressor of NPR1, Inducible (SNI1) interact with NPR1 to regulate the expression of pathogenesis-related genes. The Arabidopsis thaliana (L.) Heynh. snc1 mutant exhibits a constitutive resistance response, but in the sni1 mutant, the SNI1 protein is rendered incapable of suppressing pathogen resistance genes. To study the influence of SNC1 and SNI1 on resistance to the soybean cyst nematode (Heterodera glycines), soybean (Glycine max (L.) Merr.) roots were separately transformed with four constructs designed to: (i) overexpress GmSNC1, the soybean orthologue of AtSNC1; (ii) overexpress AtSNI1; (iii) silence GmSNC1 and (iv) silence GmSNI1. A significant reduction of the female nematode population was observed in Treatments (i) and (iv). The expression of SAR marker genes was analysed in these treatments. The unusual pattern of expression of pathogen resistance genes shows there are differences in the effect resistance genes have on soybean and A. thaliana. Although NPR1 is involved in the cross-talk between the salicylic acid, jasmonic acid and ethylene pathways, understanding the nematode resistance mechanism in plants is still imprecise. These results provide further insights into the soybean defence response.
Collapse
Affiliation(s)
- Andrea Maldonado
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret McDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Benjamin Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
38
|
Pant SR, Matsye PD, McNeece BT, Sharma K, Krishnavajhala A, Lawrence GW, Klink VP. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2014; 85:107-21. [PMID: 24452833 DOI: 10.1007/s11103-014-0172-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/08/2014] [Indexed: 05/23/2023]
Abstract
A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.
Collapse
Affiliation(s)
- Shankar R Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA,
| | | | | | | | | | | | | |
Collapse
|
39
|
Matthews BF, Beard H, Brewer E, Kabir S, MacDonald MH, Youssef RM. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC PLANT BIOLOGY 2014; 14:96. [PMID: 24739302 PMCID: PMC4021311 DOI: 10.1186/1471-2229-14-96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. RESULTS Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). CONCLUSIONS Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.
Collapse
Affiliation(s)
- Benjamin F Matthews
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Hunter Beard
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Eric Brewer
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Sara Kabir
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Margaret H MacDonald
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Reham M Youssef
- United States Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
- Fayoum University, Fayoum, Egypt
| |
Collapse
|
40
|
Lin J, Mazarei M, Zhao N, Zhu JJ, Zhuang X, Liu W, Pantalone VR, Arelli PR, Stewart CN, Chen F. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1135-45. [PMID: 24034273 DOI: 10.1111/pbi.12108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.
Collapse
Affiliation(s)
- Jingyu Lin
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|