1
|
Wang Y, Zhu C, Chen G, Li X, Zhu M, Alariqi M, Hussian A, Ma W, Lindsey K, Zhang X, Nie X, Jin S. Cotton Bollworm (H. armigera) Effector PPI5 Targets FKBP17-2 to Inhibit ER Immunity and JA/SA Responses, Enhancing Insect Feeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407826. [PMID: 39352314 PMCID: PMC11600268 DOI: 10.1002/advs.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 11/28/2024]
Abstract
The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuanying Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Gefei Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xuke Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Mingjv Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussian
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weihua Ma
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction CorpsAgricultural CollegeShihezi UniversityShiheziXinjiang832003P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
2
|
Ma X, Yin Z, Li H, Guo J. Roles of herbivorous insects salivary proteins. Heliyon 2024; 10:e29201. [PMID: 38601688 PMCID: PMC11004886 DOI: 10.1016/j.heliyon.2024.e29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
The intricate relationship between herbivorous insects and plants has evolved over millions of years, central to this dynamic interaction are salivary proteins (SPs), which mediate key processes ranging from nutrient acquisition to plant defense manipulation. SPs, sourced from salivary glands, intestinal regurgitation or acquired through horizontal gene transfer, exhibit remarkable functional versatility, influencing insect development, behavior, and adhesion mechanisms. Moreover, SPs play pivotal roles in modulating plant defenses, to induce or inhibit plant defenses as elicitors or effectors. In this review, we delve into the multifaceted roles of SPs in herbivorous insects, highlighting their diverse impacts on insect physiology and plant responses. Through a comprehensive exploration of SP functions, this review aims to deepen our understanding of plant-insect interactions and foster advancements in both fundamental research and practical applications in plant-insect interactions.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, 550025, PR China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the PR China, Guiyang, 550025, PR China
| |
Collapse
|
3
|
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023; 28:7888. [PMID: 38067617 PMCID: PMC10708458 DOI: 10.3390/molecules28237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.
Collapse
Affiliation(s)
| | | | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| |
Collapse
|
4
|
Ribeiro TFL, Oliveira DJDA, da Costa JG, Gutierrez MAM, de Oliveira EJ, Ribeiro Junior KAL, Goulart HF, Riffel A, Santana AEG. Volatile Organic Compounds from Cassava Plants Confer Resistance to the Whitefly Aleurothrixus aepim (Goeldi, 1886). INSECTS 2023; 14:762. [PMID: 37754730 PMCID: PMC10531547 DOI: 10.3390/insects14090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023]
Abstract
Cassava is an essential tuber crop used to produce food, feed, and beverages. Whitefly pests, including Aleurothrixus aepim (Goeldi, 1886) (Hemiptera: Aleyrodidae), significantly affect cassava-based agroecosystems. Plant odours have been described as potential pest management tools, and the cassava clone M Ecuador 72 has been used by breeders as an essential source of resistance. In this study, we analysed and compared the volatile compounds released by this resistant clone and a susceptible genotype, BRS Jari. Constitutive odours were collected from young plants and analysed using gas chromatography-mass spectrometry combined with chemometric tools. The resistant genotype released numerous compounds with previously described biological activity and substantial amounts of the monoterpene (E)-β-ocimene. Whiteflies showed non-preferential behaviour when exposed to volatiles from the resistant genotype but not the susceptible genotype. Furthermore, pure ocimene caused non-preferential behaviour in whiteflies, indicating a role for this compound in repellence. This report provides an example of the intraspecific variation in odour emissions from cassava plants alongside information on odorants that repel whiteflies; these data can be used to devise whitefly management strategies. A better understanding of the genetic variability in cassava odour constituents and emissions under field conditions may accelerate the development of more resistant cassava varieties.
Collapse
Affiliation(s)
| | | | | | - Miguel Angel Martinez Gutierrez
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | | | - Karlos Antonio Lisboa Ribeiro Junior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-900, AL, Brazil
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | - Henrique Fonseca Goulart
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| | | | - Antonio Euzebio Goulart Santana
- Natural Product Research Laboratory (LPqRN), Campus of Engineering and Agrarian Science, Federal University of Alagoas (UFAL), Maceió 57072-900, AL, Brazil
| |
Collapse
|
5
|
Deng QQ, Ye M, Wu XB, Song J, Wang J, Chen LN, Zhu ZY, Xie J. Damage of brown planthopper (BPH) Nilaparvata lugens and rice leaf folder (LF) Cnaphalocrocis medinalis in parent plants lead to distinct resistance in ratoon rice. PLANT SIGNALING & BEHAVIOR 2022; 17:2096790. [PMID: 35876337 PMCID: PMC9318313 DOI: 10.1080/15592324.2022.2096790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/02/2023]
Abstract
Herbivore-induced defense responses are often specific, whereas plants could induce distinct defense responses corresponding to infestation by different herbivorous insects. Brown plant hopper (BPH) Nilaparvata lugens, a phloem-feeding insect, and rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, are both specialist herbivores on rice. To characterize the distinct resistance primed by prior damage to these two specialist herbivores, we challenged rice plants with two herbivores during vegetative growth of parent plants and assessed plant resistance in subsequent ratoons. Here, we show that LF and BPH induce different suites of defense responses in parent rice plants, LF induced higher level of JA accumulation and OsAOS, OsCOI1 transcripts, while BPH induced higher accumulation of SA and OsPAL1 transcripts. Moreover, an apparent loss of LF resistance was observed in OsAOS, OsCOI1 RNAi lines. Ratoon plants generated from parents receiving prior LF infestation exhibited higher jasmonic acid (JA) levels and elevated levels of transcripts of defense-related genes associated with JA signaling, while ratoon generated from parents receiving prior BPH infestation exhibited higher salicylic acid (SA) levels and elevated levels of transcripts of defense-related genes associated with SA signaling. Moreover, previous LF infestation obviously elevated ratoons resistance to LF, while previous infestation by BPH led to enhanced resistance in ratoons to BPH. Pre-priming of ratoons defense to LF was significantly reduced in OsAOS and OsCOI1 RNAi plant, but silencing OsAOS and OsCOI1 did not attenuate ratoons resistance to BPH. These results suggest that infestation of two specialist herbivores with different feeding styles in parent crop led to distinct defense responses in subsequent rations, and the acquired resistance to LF in ratoons is associated with priming of jasmonic acid-dependent defense responses.
Collapse
Affiliation(s)
- Qian-Qian Deng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jun Wang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Li-Na Chen
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jing Xie
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| |
Collapse
|
6
|
Kallure GS, Shinde BA, Barvkar VT, Kumari A, Giri AP. Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111120. [PMID: 34895549 DOI: 10.1016/j.plantsci.2021.111120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Little is known about how different plant-based diets influence the insect herbivores' oral secretion (OS) composition and eventually the plant defense responses. We analyzed the OS composition of the generalist Lepidopteran insect, Helicoverpa armigera feeding on the host plant tomato (OSH), non-host plant capsicum (OSNH), and artificial diet (OSAD) using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Higher numbers and levels of alkaloids and terpenoids were observed in OSH and OSNH, respectively while OSAD was rich in phospholipids. Interestingly, treatment of H. armigera OSAD, OSH and OSNH on wounded tomato leaves showed differential expression of (i) genes involved in JA and SA biosynthesis and their responsive genes, and (ii) biosynthetic pathway genes of chlorogenic acid (CGA) and trehalose, which exhibited increased accumulation along with several other plant defensive metabolites. Specifically, high levels of CGA were detected after OSH and OSNH treatments in tomato leaves. There was higher expression of the genes involved in phenylpropanoid biosynthesis, which may lead to the increased accumulation of CGA and related metabolites. In the insect bioassay, CGA significantly inhibited H. armigera larval growth. Our results underline the differential accumulation of plant and insect OS metabolites and identified potential plant metabolite(s) affecting insect growth and development.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Balkrishna A Shinde
- Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
7
|
Kallure GS, Kumari A, Shinde BA, Giri AP. Characterized constituents of insect herbivore oral secretions and their influence on the regulation of plant defenses. PHYTOCHEMISTRY 2022; 193:113008. [PMID: 34768189 DOI: 10.1016/j.phytochem.2021.113008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
For more than 350 million years, there have been ongoing dynamic interactions between plants and insects. In several cases, insects cause-specific feeding damage with ensuing herbivore-associated molecular patterns that invoke characteristic defense responses. During feeding on plant tissue, insects release oral secretions (OSs) containing a repertoire of molecules affecting plant defense (effectors). Some of these OS components might elicit a defense response to combat insect attacks (elicitors), while some might curb the plant defenses (suppressors). Few reports suggest that the synthesis and function of OS components might depend on the host plant and associated microorganisms. We review these intricate plant-insect interactions, during which there is a continuous exchange of molecules between plants and feeding insects along with the associated microorganisms. We further provide a list of commonly identified inducible plant produced defensive molecules released upon insect attack as well as in response to OS treatments of the plants. Thus, we describe how plants specialized and defense-related metabolism is modulated at innumerable phases by OS during plant-insect interactions. A molecular understanding of these complex interactions will provide a means to design eco-friendly crop protection strategies.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Archana Kumari
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Balkrishna A Shinde
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Department of Biotechnology, Shivaji University, Vidya Nagar, Kolhapur, 416004, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Rane AS, Venkatesh V, Joshi RS, Giri AP. Molecular investigation of Coleopteran specific α-Amylase inhibitors from Amaranthaceae members. Int J Biol Macromol 2020; 163:1444-1450. [PMID: 32735926 DOI: 10.1016/j.ijbiomac.2020.07.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
α-Amylase inhibitors (α-AIs) target α-amylases and interfere with the carbohydrate digestion of insects. Among different classes of α-AIs, a knottin-type inhibitor from Amaranthus hypochondriacus (AhAI) was found to be specific against coleopteran storage pests. In this report, we have characterized three previously unidentified knottin-type α-AIs from various Amaranthaceae plants namely, Amaranthus hypochondriacus (AhAI2), Alternanthera sessilis (AsAI) and Chenopodium quinoa (CqAI). They contain a signal peptide, pro-peptide, and mature peptide. The mature peptides of the new α-AIs shared 68 to 78% identity with AhAI and have highly variable pro-peptide regions. Along with the cystine-knot fold, they showed conservation of reactive site residues. All recombinant α-AIs were successfully expressed in their active form and native state using an oxidative cytoplasmic environment. Inhibition studies against various amylases revealed that these inhibitors showed selective inhibition of coleopteran recombinant insect α-amylases viz., Tribolium castaneum, and Callosobruchus chinensis. Tribolium castaneum α-amylase inhibition potency was highest for AhAI2 (Ki ~ 15 μM) followed by AsAI (Ki ~ 43 μM) and CqAI (Ki ~ 61 μM). Interaction analysis of these inhibitors illustrated that the reactive site of inhibitors make several non-covalent interactions with the substrate-binding pocket of coleopteran α-amylases. The selectivity of these inhibitors against coleopteran α-amylases highlights their potential in storage grain pest control.
Collapse
Affiliation(s)
- Ashwini S Rane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Varun Venkatesh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Rane AS, Joshi RS, Giri AP. Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors. Biochim Biophys Acta Gen Subj 2020; 1864:129703. [PMID: 32805319 DOI: 10.1016/j.bbagen.2020.129703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND α-Amylase inhibitors (α-AIs) belong to the discrete classes, and exhibited differential specificities against α-amylases from various sources. Several α-amylases and their complexes with inhibitors at the molecular level have been studied in detail. Interestingly, some α-AIs depict specific and selective interactions amid different insect α-amylases. SCOPE OF REVIEW There are studies to understand evolutionary variability and functional differentiation of insect α-amylases and their cognate inhibitors. We have examined sequence, structural, and interaction diversity between various α-amylases and α-AIs. Based on these analyses, we are providing a potential basis for the functional differentiation among certain insect α-amylases concerning mammalian counterparts and their interactions with different proteinaceous α-AIs. MAJOR CONCLUSIONS Insect α-amylases have conserved domain architecture with differences in length, number of disulfide bonds, and secondary structure. Furthermore, few of them exhibit variable characteristics like chloride dependent activity, the presence of N-terminal glutamine residue to protect against proteolytic degradation, and loop variations near the enzyme active site. Conformation of α-AI protein could be an essential factor for their specificity and binding affinities towards target α-amylase(s). Furthermore, variation into the enzyme binding pocket residues might contribute to differential interactions with inhibitors. GENERAL SIGNIFICANCE Molecular insights in the interactions between insect α-amylases and plant α-AI will provide the details of mechanisms assisting the inhibitor specificity. Furthermore, this information will help to design potent and effective α-AIs against specific α-amylase.
Collapse
Affiliation(s)
- Ashwini S Rane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411 008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
11
|
Liu S, Lomate PR, Bonning BC. Tissue-specific transcription of proteases and nucleases across the accessory salivary gland, principal salivary gland and gut of Nezara viridula. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:36-45. [PMID: 30352260 DOI: 10.1016/j.ibmb.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/30/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
The phytophagous stink bug, Nezara viridula (L.) infests multiple plant species and impacts agricultural production worldwide. We analyzed the transcriptomes of N. viridula accessory salivary gland (ASG), principal salivary gland (PSG) and gut, with a focus on putative digestive proteases and nucleases that present a primary obstacle for the stability of protein- or nucleic acid-based stink bug control approaches. We performed high throughput Illumina sequencing followed by de novo transcriptome assemblies. We identified the sequences of 141 unique proteases and 134 nucleases from the N. viridula transcriptomes. Analysis of relative transcript abundance in conjunction with previously reported proteome data (Lomate and Bonning, 2016) supports high levels of serine protease expression in the salivary glands and high cysteine protease expression in the gut. Specifically, trypsin and chymotrypsin transcripts were abundant in the PSG, and cathepsin L-like cysteine protease transcripts were abundant in the gut. Nuclease transcript levels were generally lower than those of the proteases, the exception being abundant transcripts of ribonuclease-C20 in the PSG. The abundance of chymotrypsin, trypsin, and some carboxypeptidase transcripts suggests a significant role for the PSG in production of digestive enzymes. This result is at odds with the premise that the ASG produces watery saliva, which is high in enzymatic activity, while the PSG produces only sheath saliva. We have generated a comprehensive transcriptome sequence dataset from the digestive organs of N. viridula, identified major protease and nuclease genes and confirmed expression of the most abundant enzymes thereby providing greater insight into the digestive physiology of N. viridula.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, Iowa State University, Ames, 50011, IA, USA
| | | | - Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, 50011, IA, USA.
| |
Collapse
|
12
|
Lomate PR, Dewangan V, Mahajan NS, Kumar Y, Kulkarni A, Wang L, Saxena S, Gupta VS, Giri AP. Integrated Transcriptomic and Proteomic Analyses Suggest the Participation of Endogenous Protease Inhibitors in the Regulation of Protease Gene Expression in Helicoverpa armigera. Mol Cell Proteomics 2018; 17:1324-1336. [PMID: 29661852 DOI: 10.1074/mcp.ra117.000533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/16/2018] [Indexed: 11/06/2022] Open
Abstract
Insects adapt to plant protease inhibitors (PIs) present in their diet by differentially regulating multiple digestive proteases. However, mechanisms regulating protease gene expression in insects are largely enigmatic. Ingestion of multi-domain recombinant Capsicum annuum protease inhibitor-7 (CanPI-7) arrests growth and development of Helicoverpa armigera (Lepidoptera: Noctuidae). Using de novo RNA sequencing and proteomic analysis, we examined the response of H. armigera larvae fed on recombinant CanPI-7 at different time intervals. Here, we present evidence supporting a dynamic transition in H. armigera protease expression on CanPI-7 feeding with general down-regulation of protease genes at early time points (0.5 to 6 h) and significant up-regulation of specific trypsin, chymotrypsin and aminopeptidase genes at later time points (12 to 48 h). Further, coexpression of H. armigera endogenous PIs with several digestive protease genes were apparent. In addition to the differential expression of endogenous H. armigera PIs, we also observed a distinct novel isoform of endogenous PI in CanPI-7 fed H. armigera larvae. Based on present and earlier studies, we propose potential mechanism of protease regulation in H. armigera and subsequent adaptation strategy to cope with anti-nutritional components of plants.
Collapse
Affiliation(s)
- Purushottam R Lomate
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Veena Dewangan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Neha S Mahajan
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Yashwant Kumar
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Abhijeet Kulkarni
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Li Wang
- ¶Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames 50011, IA
| | - Smita Saxena
- §Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, MS, India
| | - Vidya S Gupta
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Ashok P Giri
- From the ‡Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India;
| |
Collapse
|
13
|
Labreuche Y, Chenivesse S, Jeudy A, Le Panse S, Boulo V, Ansquer D, Pagès S, Givaudan A, Czjzek M, Le Roux F. Nigritoxin is a bacterial toxin for crustaceans and insects. Nat Commun 2017; 8:1248. [PMID: 29093459 PMCID: PMC5665878 DOI: 10.1038/s41467-017-01445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022] Open
Abstract
The Tetraconata (Pancrustacea) concept proposes that insects are more closely related to aquatic crustaceans than to terrestrial centipedes or millipedes. The question therefore arises whether insects have kept crustacean-specific genetic traits that could be targeted by specific toxins. Here we show that a toxin (nigritoxin), originally identified in a bacterial pathogen of shrimp, is lethal for organisms within the Tetraconata and non-toxic to other animals. X-ray crystallography reveals that nigritoxin possesses a new protein fold of the α/β type. The nigritoxin N-terminal domain is essential for cellular translocation and likely encodes specificity for Tetraconata. Once internalized by eukaryotic cells, nigritoxin induces apoptotic cell death through structural features that are localized in the C-terminal domain of the protein. We propose that nigritoxin will be an effective means to identify a Tetraconata evolutionarily conserved pathway and speculate that nigritoxin holds promise as an insecticidal protein. The Tetraconata concept suggests that insects and crustaceans may share evolutionarily conserved pathways. Here, the authors describe the animal tropism and structure-function relationship of nigritoxin, showing that this protein is lethal for insects and crustaceans but harmless to other animals.
Collapse
Affiliation(s)
- Yannick Labreuche
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sabine Chenivesse
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Alexandra Jeudy
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Sophie Le Panse
- CNRS, FR 2424, Plateforme Merimage, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, F-29688, Roscoff cedex, France
| | - Viviane Boulo
- Département Lagons, Ecosystèmes et Aquaculture Durables en Nouvelle-Calédonie, IFREMER, BP 2059, 98846, Nouméa cedex, New Caledonia
| | - Dominique Ansquer
- Département Lagons, Ecosystèmes et Aquaculture Durables en Nouvelle-Calédonie, IFREMER, BP 2059, 98846, Nouméa cedex, New Caledonia
| | - Sylvie Pagès
- UMR 1333 "Diversité, Génomes & Interactions Microorganismes - Insectes" Université Montpellier 2 - Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Alain Givaudan
- UMR 1333 "Diversité, Génomes & Interactions Microorganismes - Insectes" Université Montpellier 2 - Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280, Plouzané, France. .,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.
| |
Collapse
|
14
|
Möller AL, Kaulfuss U, Lee DE, Wappler T. High richness of insect herbivory from the early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ 2017; 5:e2985. [PMID: 28224051 PMCID: PMC5316282 DOI: 10.7717/peerj.2985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
Plants and insects are key components of terrestrial ecosystems and insect herbivory is the most important type of interaction in these ecosystems. This study presents the first analysis of associations between plants and insects for the early Miocene Hindon Maar fossil lagerstätte, Otago, New Zealand. A total of 584 fossil angiosperm leaves representing 24 morphotypes were examined to determine the presence or absence of insect damage types. Of these leaves, 73% show signs of insect damage; they comprise 821 occurrences of damage from 87 damage types representing all eight functional feeding groups. In comparison to other fossil localities, the Hindon leaves display a high abundance of insect damage and a high diversity of damage types. Leaves of Nothofagus(southern beech), the dominant angiosperm in the fossil assemblage, exhibit a similar leaf damage pattern to leaves from the nearby mid to late Miocene Dunedin Volcano Group sites but display a more diverse spectrum and much higher percentage of herbivory damage than a comparable dataset of leaves from Palaeocene and Eocene sites in the Antarctic Peninsula.
Collapse
Affiliation(s)
- Anna Lena Möller
- Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, Rheinische Friedrich-Wilhelms Universität Bonn , Bonn , Germany
| | - Uwe Kaulfuss
- Department of Geology, University of Otago , Dunedin , New Zealand
| | - Daphne E Lee
- Department of Geology, University of Otago , Dunedin , New Zealand
| | - Torsten Wappler
- Steinmann Institute for Geology, Mineralogy and Palaeontology, Division Palaeontology, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany; Current affiliation: Hessisches Landesmuseum Darmstadt, Darmstadt, Germany
| |
Collapse
|
15
|
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP. Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:157-169. [PMID: 27697374 DOI: 10.1016/j.jenvman.2016.09.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
Collapse
Affiliation(s)
- Neha Khandelwal
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Ranjit S Barbole
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Shashwat S Banerjee
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Govind P Chate
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India
| | - Ankush V Biradar
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, Bhavnagar 364002, Gujarat, India
| | - Jayant J Khandare
- Maharashtra Institute of Medical Education and Research (MIMER) Medical College, Talegaon Dabhade, Dist Pune 410507, India; Maharashtra Institute of Pharmacy, MIT Campus, Pune 411038, Maharashtra, India.
| | - Ashok P Giri
- Plant Molecular Biology, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
16
|
Jadhav AR, War AR, Nikam AN, Adhav AS, Gupta VS, Sharma HC, Giri AP, Tamhane VA. Capsicum annuum proteinase inhibitor ingestion negatively impacts the growth of sorghum pest Chilo partellus and promotes differential protease expression. Biochem Biophys Rep 2016; 8:302-309. [PMID: 28955969 PMCID: PMC5614469 DOI: 10.1016/j.bbrep.2016.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023] Open
Abstract
Background Chilo partellus is an important insect pest infesting sorghum and maize. The larvae internalize in the stem, rendering difficulties in pest management. We investigated the effects of Capsicum annuum proteinase inhibitors (CanPIs) on C. partellus larvae by in-vitro and in-vivo experiments. Methods Recombinant CanPI-7 (with four-Inhibitory Repeat Domains, IRDs), -22 (two-IRDs) and insect proteinase activities were estimated by proteinase assays, dot blot assays and in gel activity assays. Feeding bioassays of lab reared C. partellus with CanPI-7 and -22 were performed. C. partellus proteinase gene expression was done by RT-PCR. In-silico structure prediction of proteinases and CanPI IRDs was carried out, their validation and molecular docking was done for estimating the interaction strength. Results Larval proteinases of C. partellus showed higher activity at alkaline pH and expressed few proteinase isoforms. Both CanPIs showed strong inhibition of C. partellus larval proteinases. Feeding bioassays of C. partellus with CanPIs revealed a dose dependent retardation of larval growth, reduction of pupal mass and fecundity, while larval and pupal periods increased significantly. Ingestion of CanPIs resulted in differential up-regulation of C. partellus proteinase isoforms, which were sensitive to CanPI-7 but were insensitive to CanPI-22. In-silico interaction studies indicated the strong interaction of IRD-9 (of CanPI-22) with Chilo proteinases tested. Conclusions Of the two PIs tested, CanPI-7 prevents induction of inhibitor insensitive proteinases in C. partellus so it can be explored for developing C. partellus tolerance in sorghum. General significance Ingestion of CanPIs, effectively retards C. partellus growth; while differentially regulating the proteinases. CanPI-7 and -22 ingestion led to dose-dependent growth and development retardation in Chilo partellus. Ingestion of CanPIs showed up-regulation of proteinase activity and differential proteinase isoforms in C. partellus. CanPI-7/-22 induced differential proteinases of C. partellus were sensitive to CanPI-7 and were insensitive to CanPI-22. Molecular interaction studies of C. partellus proteinases and CanPIs identified a potent inhibitor.
Collapse
Affiliation(s)
- Abhilash R Jadhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Abdul R War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashwini N Nikam
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Anmol S Adhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| |
Collapse
|