1
|
Carrió-Seguí À, Brunot-Garau P, Úrbez C, Miskolczi P, Vera-Sirera F, Tuominen H, Agustí J. Weight-induced radial growth in plant stems depends on PIN3. Curr Biol 2024; 34:4285-4293.e3. [PMID: 39260363 DOI: 10.1016/j.cub.2024.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
How multiple growth programs coordinate during development is a fundamental question in biology. During plant stem development, radial growth is continuously adjusted in response to longitudinal-growth-derived weight increase to guarantee stability.1,2,3 Here, we demonstrate that weight-stimulated stem radial growth depends on the auxin efflux carrier PIN3, which, upon weight increase, expands its cellular localization from the lower to the lateral sides of xylem parenchyma, phloem, procambium, and starch sheath cells, imposing a radial auxin flux that results in radial growth. Using the protein synthesis inhibitor cycloheximide (CHX) or the fluorescent endocytic tracer FM4-64, we reveal that this expansion of the PIN3 cellular localization domain occurs because weight increase breaks the balance between PIN3 biosynthesis and removal, favoring PIN3 biosynthesis. Experimentation using brefeldin A (BFA) treatments or arg1 and arl2 mutants further supports this conclusion. Analyses of CRISPR-Cas9 lines for Populus PIN3 orthologs reveals that PIN3 dependence of weight-induced radial growth is conserved at least in these woody species. Altogether, our work sheds new light on how longitudinal and radial growth coordinate during stem development.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain; Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Paula Brunot-Garau
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Pál Miskolczi
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Hannele Tuominen
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València, C/ Ingeniero Fausto Elio s/n, 46011 Valencia, Spain.
| |
Collapse
|
2
|
Hou G, Wu G, Jiang H, Bai X, Chen Y. RNA-Seq Reveals That Multiple Pathways Are Involved in Tuber Expansion in Tiger Nuts ( Cyperus esculentus L.). Int J Mol Sci 2024; 25:5100. [PMID: 38791140 PMCID: PMC11121407 DOI: 10.3390/ijms25105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The tiger nut (Cyperus esculentus L.) is a usable tuber and edible oil plant. The size of the tubers is a key trait that determines the yield and the mechanical harvesting of tiger nut tubers. However, little is known about the anatomical and molecular mechanisms of tuber expansion in tiger nut plants. This study conducted anatomical and comprehensive transcriptomics analyses of tiger nut tubers at the following days after sowing: 40 d (S1); 50 d (S2); 60 d (S3); 70 d (S4); 90 d (S5); and 110 d (S6). The results showed that, at the initiation stage of a tiger nut tuber (S1), the primary thickening meristem (PTM) surrounded the periphery of the stele and was initially responsible for the proliferation of parenchyma cells of the cortex (before S1) and then the stele (S2-S3). The increase in cell size of the parenchyma cells occurred mainly from S1 to S3 in the cortex and from S3 to S4 in the stele. A total of 12,472 differentially expressed genes (DEGs) were expressed to a greater extent in the S1-S3 phase than in S4-S6 phase. DEGs related to tuber expansion were involved in cell wall modification, vesicle transport, cell membrane components, cell division, the regulation of plant hormone levels, signal transduction, and metabolism. DEGs involved in the biosynthesis and the signaling of indole-3-acetic acid (IAA) and jasmonic acid (JA) were expressed highly in S1-S3. The endogenous changes in IAA and JAs during tuber development showed that the highest concentrations were found at S1 and S1-S3, respectively. In addition, several DEGs were related to brassinosteroid (BR) signaling and the G-protein, MAPK, and ubiquitin-proteasome pathways, suggesting that these signaling pathways have roles in the tuber expansion of tiger nut. Finally, we come to the conclusion that the cortex development preceding stele development in tiger nut tubers. The auxin signaling pathway promotes the division of cortical cells, while the jasmonic acid pathway, brassinosteroid signaling, G-protein pathway, MAPK pathway, and ubiquitin protein pathway regulate cell division and the expansion of the tuber cortex and stele. This finding will facilitate searches for genes that influence tuber expansion and the regulatory networks in developing tubers.
Collapse
Affiliation(s)
- Guangshan Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guojiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huawu Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xue Bai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun 666303, China;
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (G.H.); (G.W.); (H.J.)
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Solé-Gil A, López A, Ombrosi D, Urbez C, Brumós J, Agustí J. Identification of MeC3HDZ1/MeCNA as a potential regulator of cassava storage root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111938. [PMID: 38072332 DOI: 10.1016/j.plantsci.2023.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The storage root (SR) of cassava is the main staple food in sub-Saharan Africa, where it feeds over 500 million people. However, little is known about the genetic and molecular regulation underlying its development. Unraveling such regulation would pave the way for biotechnology approaches aimed at enhancing cassava productivity. Anatomical studies indicate that SR development relies on the massive accumulation of xylem parenchyma, a cell-type derived from the vascular cambium. The C3HDZ family of transcription factors regulate cambial cells proliferation and xylem differentiation in Arabidopsis and other species. We thus aimed at identifying C3HDZ proteins in cassava and determining whether any of them shows preferential activity in the SR cambium and/or xylem. Using phylogeny and synteny studies, we identified eight C3HDZ proteins in cassava, namely MeCH3DZ1-8. We observed that MeC3HDZ1 is the MeC3HDZ gene displaying the highest expression in SR and that, within that organ, the gene also shows high expression in cambium and xylem. In-silico analyses revealed the existence of a number of potential C3HDZ targets displaying significant preferential expression in the SR. Subsequent Y1H analyses proved that MeC3HDZ1 can bind canonical C3HDZ binding sites, present in the promoters of these targets. Transactivation assays demonstrated that MeC3HDZ1 can regulate the expression of genes downstream of promoters harboring such binding sites, thereby demonstrating that MeC3HDZ1 has C3HDZ transcription factor activity. We conclude that MeC3HDZ1 may be a key factor for the regulation of storage root development in cassava, holding thus great promise for future biotechnology applications.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Anselmo López
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Damiano Ombrosi
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Cristina Urbez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain
| | - Javier Brumós
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain.
| | - Javier Agustí
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de Valencia, Camino de Vera S/N, 46022 València, Spain.
| |
Collapse
|
4
|
Sukko N, Kalapanulak S, Saithong T. Trehalose metabolism coordinates transcriptional regulatory control and metabolic requirements to trigger the onset of cassava storage root initiation. Sci Rep 2023; 13:19973. [PMID: 37968317 PMCID: PMC10651926 DOI: 10.1038/s41598-023-47095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Cassava storage roots (SR) are an important source of food energy and raw material for a wide range of applications. Understanding SR initiation and the associated regulation is critical to boosting tuber yield in cassava. Decades of transcriptome studies have identified key regulators relevant to SR formation, transcriptional regulation and sugar metabolism. However, there remain uncertainties over the roles of the regulators in modulating the onset of SR development owing to the limitation of the widely applied differential gene expression analysis. Here, we aimed to investigate the regulation underlying the transition from fibrous (FR) to SR based on Dynamic Network Biomarker (DNB) analysis. Gene expression analysis during cassava root initiation showed the transition period to SR happened in FR during 8 weeks after planting (FR8). Ninety-nine DNB genes associated with SR initiation and development were identified. Interestingly, the role of trehalose metabolism, especially trehalase1 (TRE1), in modulating metabolites abundance and coordinating regulatory signaling and carbon substrate availability via the connection of transcriptional regulation and sugar metabolism was highlighted. The results agree with the associated DNB characters of TRE1 reported in other transcriptome studies of cassava SR initiation and Attre1 loss of function in literature. The findings help fill the knowledge gap regarding the regulation underlying cassava SR initiation.
Collapse
Affiliation(s)
- Nattavat Sukko
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
5
|
Duan W, Zhang H, Wang Q, Xie B, Zhang L. Regulation of root development in nitrogen-susceptible and nitrogen-tolerant sweet potato cultivars under different nitrogen and soil moisture conditions. BMC PLANT BIOLOGY 2023; 23:454. [PMID: 37759166 PMCID: PMC10537907 DOI: 10.1186/s12870-023-04461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Due to unreasonable nitrogen (N) application and water supply, sweet potato vines tend to grow excessively. Early development of storage roots is conducive to inhibiting vine overgrowth. Hence, we investigated how N and soil moisture affect early root growth and development. RESULTS A pot experiment was conducted using the sweet potato cultivars Jishu26 (J26, N-susceptible) and Xushu32 (X32, N-tolerant). Two N application rates of 50 (N1) and 150 mg kg- 1 (N2) and two water regimes, drought stress (DS) (W1) and normal moisture (W2), were applied to each cultivar. For J26, the lowest expansion root weight was observed in the N2W2 treatment, while for X32, the N1W2 and N2W2 treatments resulted in higher root weights compared to other treatments. The interaction between N rates and water regimes significantly affected root surface area and volume in J26. Root cross-sections revealed that N2W2 increased the percentage of root area covered by xylem vessels and decreased the amount of secondary xylem vessels (SXV) in J26. However, in X32, it increased the number of SXV. A high N rate reduced the 13 C distribution ratio in J26 expansion roots, but had no significant effect on X32. In J26, N2W2 inhibited starch synthesis in roots by downregulating the expression of AGPa, AGPb, GBSS I, and SBE I. CONCLUSION The observed effects were more pronounced in J26. For X32, relatively high N and moisture levels did not significantly impact storage root development. Therefore, special attention should be paid to N supply and soil moisture for N-susceptible cultivars during the early growth stage.
Collapse
Affiliation(s)
- Wenxue Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Haiyan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China.
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Beitao Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China
- Scientific Observation and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China
| | - Liming Zhang
- Shandong Engineering Laboratory for Characteristic Crops, Jinan, 250100, China.
- Shandong Academy of Agricultural Sciences, No.202 Gongyebei Road, Jinan, 250100, Shandong, P. R. China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
6
|
Xufeng X, Yuanfeng H, Ming Z, Shucheng S, Haonan Z, Weifeng Z, Fei G, Caijun W, Shuying F. Transcriptome profiling reveals the genes involved in tuberous root expansion in Pueraria (Pueraria montana var. thomsonii). BMC PLANT BIOLOGY 2023; 23:338. [PMID: 37365513 DOI: 10.1186/s12870-023-04303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Pueraria is a dry root commonly used in Traditional Chinese Medicine or as food and fodder, and tuberous root expansion is an important agronomic characteristic that influences its yield. However, no specific genes regulating tuberous root expansion in Pueraria have been identified. Therefore, we aimed to explore the expansion mechanism of Pueraria at six developmental stages (P1-P6), by profiling the tuberous roots of an annual local variety "Gange No.1" harvested at 105, 135, 165, 195, 225, and 255 days after transplanting. RESULTS Observations of the tuberous root phenotype and cell microstructural morphology revealed that the P3 stage was a critical boundary point in the expansion process, which was preceded by a thickening diameter and yield gain rapidly of the tuberous roots, and followed by longitudinal elongation at both ends. A total of 17,441 differentially expressed genes (DEGs) were identified by comparing the P1 stage (unexpanded) against the P2-P6 stages (expanded) using transcriptome sequencing; 386 differential genes were shared across the six developmental stages. KEGG pathway enrichment analysis showed that the DEGs shared by P1 and P2-P6 stages were mainly involved in pathways related to the "cell wall and cell cycle", "plant hormone signal transduction", "sucrose and starch metabolism", and "transcription factor (TF)". The finding is consistent with the physiological data collected on changes in sugar, starch, and hormone contents. In addition, TFs including bHLHs, AP2s, ERFs, MYBs, WRKYs, and bZIPs were involved in cell differentiation, division, and expansion, which may relate to tuberous root expansion. The combination of KEGG and trend analyses revealed six essential candidate genes involved in tuberous root expansion; of them, CDC48, ARF, and EXP genes were significantly upregulated during tuberous root expansion while INV, EXT, and XTH genes were significantly downregulated. CONCLUSION Our findings provide new insights into the complex mechanisms of tuberous root expansion in Pueraria and candidate target genes, which can aid in increasing Pueraria yield.
Collapse
Affiliation(s)
- Xiao Xufeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Hu Yuanfeng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhang Ming
- Department of Biological Engineering, Jiangxi Biotech Vocational College, Nanchang, 330200, China
| | - Si Shucheng
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhou Haonan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhu Weifeng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ge Fei
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wu Caijun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Fan Shuying
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Abstract
Vanderschuren and Agusti introduce plant storage roots.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Tropical Crop Improvement Laboratory, Biosystems Department, KU Leuven, Belgium; Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| | - Javier Agusti
- IBMCP, Departament de Producció Vegetal, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
8
|
Silva LMA, Alves Filho EG, Martins RM, Oliveira WJDJ, Vidal CS, de Oliveira LA, de Brito ES. NMR-Based Metabolomic Approach for Evaluation of the Harvesting Time and Cooking Characteristics of Different Cassava Genotypes. Foods 2022; 11:foods11111651. [PMID: 35681401 PMCID: PMC9180251 DOI: 10.3390/foods11111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cassava is an important staple food for low-income countries. However, its cooking characteristics are especially affected by genotype. In this study, two groups of genotypes, namely hard to cook (HTC) and easy to cook (ETC), were harvested at different times (9 and 15 months), and evaluated by NMR coupled to chemometrics. Additionally, lignin of these materials was studied by 1H-13C HSQC NMR. The carbohydrates were the most important class of compounds to differentiate the cassava genotypes. The correlation of NMR with cooking time and starch content showed that the higher content of primary metabolites, mostly glucose, can be associated with longer cooking times and reduction of starch, corroborating the metabolic pathways analysis. Furthermore, it was observed that the lignin from cell walls did not differentiate the cooking performance of the genotypes.
Collapse
Affiliation(s)
- Lorena Mara A. Silva
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, Pici 2270, Fortaleza 60511-110, Brazil;
| | - Elenilson G. Alves Filho
- Departamento de Engenharia de Alimentos, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil;
| | - Robson M. Martins
- Departamento de Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil; (R.M.M.); (W.J.D.J.O.); (C.S.V.)
| | - Willyane J. D. J. Oliveira
- Departamento de Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil; (R.M.M.); (W.J.D.J.O.); (C.S.V.)
| | - Cristine S. Vidal
- Departamento de Química, Campus do Pici, Universidade Federal do Ceará, Fortaleza 60440-900, Brazil; (R.M.M.); (W.J.D.J.O.); (C.S.V.)
| | | | - Edy S. de Brito
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, Pici 2270, Fortaleza 60511-110, Brazil;
- Correspondence:
| |
Collapse
|
9
|
Identification and Characterization of the Homeobox Gene Family in Fusarium pseudograminearum Reveal Their Roles in Pathogenicity. Biochem Genet 2022; 60:1601-1614. [DOI: 10.1007/s10528-021-10150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2021] [Indexed: 11/02/2022]
|
10
|
Singh V, Zemach H, Shabtai S, Aloni R, Yang J, Zhang P, Sergeeva L, Ligterink W, Firon N. Proximal and Distal Parts of Sweetpotato Adventitious Roots Display Differences in Root Architecture, Lignin, and Starch Metabolism and Their Developmental Fates. FRONTIERS IN PLANT SCIENCE 2021; 11:609923. [PMID: 33552103 PMCID: PMC7855870 DOI: 10.3389/fpls.2020.609923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 06/10/2023]
Abstract
Sweetpotato is an important food crop globally, serving as a rich source of carbohydrates, vitamins, fiber, and micronutrients. Sweetpotato yield depends on the modification of adventitious roots into storage roots. The underlying mechanism of this developmental switch is not fully understood. Interestingly, storage-root formation is manifested by formation of starch-accumulating parenchyma cells and bulking of the distal part of the root, while the proximal part does not show bulking. This system, where two parts of the same adventitious root display different developmental fates, was used by us in order to better characterize the anatomical, physiological, and molecular mechanisms involved in sweetpotato storage-root formation. We show that, as early as 1 and 2 weeks after planting, the proximal part of the root exhibited enhanced xylem development together with increased/massive lignin deposition, while, at the same time, the distal root part exhibited significantly elevated starch accumulation. In accordance with these developmental differences, the proximal root part exhibited up-regulated transcript levels of sweetpotato orthologs of Arabidopsis vascular-development regulators and key genes of lignin biosynthesis, while the distal part showed up-regulation of genes encoding enzymes of starch biosynthesis. All these recorded differences between proximal and distal root parts were further enhanced at 5 weeks after planting, when storage roots were formed at the distal part. Our results point to down-regulation of fiber formation and lignification, together with up-regulation of starch biosynthesis, as the main events underlying storage-root formation, marking/highlighting several genes as potential regulators, providing a valuable database of genes for further research.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Hanita Zemach
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Sara Shabtai
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Jun Yang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Peng Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Nurit Firon
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Le-Zion, Israel
| |
Collapse
|
11
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
12
|
Hoang NV, Park C, Kamran M, Lee JY. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:762. [PMID: 32625220 PMCID: PMC7313660 DOI: 10.3389/fpls.2020.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/13/2020] [Indexed: 05/23/2023]
Abstract
The plasticity of plant development relies on its ability to balance growth and stress resistance. To do this, plants have established highly coordinated gene regulatory networks (GRNs) of the transcription factors and signaling components involved in developmental processes and stress responses. In root crops, yields of storage roots are mainly determined by secondary growth driven by the vascular cambium. In relation to this, a dynamic yet intricate GRN should operate in the vascular cambium, in coordination with environmental changes. Despite the significance of root crops as food sources, GRNs wired to mediate secondary growth in the storage root have just begun to emerge, specifically with the study of the radish. Gene expression data available with regard to other important root crops are not detailed enough for us directly to infer underlying molecular mechanisms. Thus, in this review, we provide a general overview of the regulatory programs governing the development and functions of the vascular cambium in model systems, and the role of the vascular cambium on the growth and yield potential of the storage roots in root crops. We then undertake a reanalysis of recent gene expression data generated for major root crops and discuss common GRNs involved in the vascular cambium-driven secondary growth in storage roots using the wealth of information available in Arabidopsis. Finally, we propose future engineering schemes for improving root crop yields by modifying potential key nodes in GRNs.
Collapse
Affiliation(s)
- Nam V. Hoang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chulmin Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Muhammad Kamran
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Young Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
14
|
Solé-Gil A, Hernández-García J, López-Gresa MP, Blázquez MA, Agustí J. Conservation of Thermospermine Synthase Activity in Vascular and Non-vascular Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:663. [PMID: 31244864 PMCID: PMC6579911 DOI: 10.3389/fpls.2019.00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and non-vascular plants. Here, we verify the activity of the thermospermine synthase genes and the presence of thermospermine in vascular and non-vascular land plants as well as in the aquatic plant Chlamydomonas reinhardtii. In addition, we provide information about differential content of thermospermine in diverse organs at different developmental stages in some vascular species that suggest that, although the major role of thermospermine in vascular plants is likely to be xylem development, other potential roles in development and/or responses to stress conditions could be associated to such polyamine. In summary, our results in vascular and non-vascular species indicate that the capacity to synthesize thermospermine is conserved throughout the entire plant kingdom.
Collapse
|
15
|
Singh V, Sergeeva L, Ligterink W, Aloni R, Zemach H, Doron-Faigenboim A, Yang J, Zhang P, Shabtai S, Firon N. Gibberellin Promotes Sweetpotato Root Vascular Lignification and Reduces Storage-Root Formation. FRONTIERS IN PLANT SCIENCE 2019; 10:1320. [PMID: 31849998 PMCID: PMC6897044 DOI: 10.3389/fpls.2019.01320] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 05/11/2023]
Abstract
Sweetpotato yield depends on a change in the developmental fate of adventitious roots into storage-roots. The mechanisms underlying this developmental switch are still unclear. We examined the hypothesis claiming that regulation of root lignification determines storage-root formation. We show that application of the plant hormone gibberellin increased stem elongation and root gibberellin levels, while having inhibitory effects on root system parameters, decreasing lateral root number and length, and significantly reducing storage-root number and diameter. Furthermore, gibberellin enhanced root xylem development, caused increased lignin deposition, and, at the same time, decreased root starch accumulation. In accordance with these developmental effects, gibberellin application upregulated expression levels of sweetpotato orthologues of Arabidopsis vascular development regulators (IbNA075, IbVND7, and IbSND2) and of lignin biosynthesis genes (IbPAL, IbC4H, Ib4CL, IbCCoAOMT, and IbCAD), while downregulating starch biosynthesis genes (IbAGPase and IbGBSS) in the roots. Interestingly, gibberellin downregulated root expression levels of orthologues of the Arabidopsis BREVIPEDICELLUS transcription factor (IbKN2 and IbKN3), regulator of meristem maintenance. The results substantiate our hypothesis and mark gibberellin as an important player in regulation of sweetpotato root development, suggesting that increased fiber formation and lignification inhibit storage-root formation and yield. Taken together, our findings provide insight into the mechanisms underlying sweetpotato storage-root formation and provide a valuable database of genes for further research.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hanita Zemach
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Jun Yang
- Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Peng Zhang
- Institute of Plant Physiology & Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Sara Shabtai
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Nurit Firon
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
- *Correspondence: Nurit Firon,
| |
Collapse
|
16
|
Que F, Wang GL, Li T, Wang YH, Xu ZS, Xiong AS. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Funct Integr Genomics 2018; 18:685-700. [PMID: 29909521 DOI: 10.1007/s10142-018-0624-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023]
Abstract
The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|