1
|
Shao M, Wang C, Zhou L, Peng F, Zhang G, Gao J, Chen S, Zhao Q. Rhizosphere soil properties of waxy sorghum under different row ratio configurations in waxy sorghum-soybean intercropping systems. PLoS One 2023; 18:e0288076. [PMID: 37410726 DOI: 10.1371/journal.pone.0288076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023] Open
Abstract
To overcome the continuous planting obstacle and promote the sustainable production of waxy sorghum, a two-years field experiment was performed to determine the responses of waxy sorghum rhizosphere soil properties to different row ratio configurations in waxy sorghum-soybean intercropping systems. The treatments included five row ratio configurations, which were two rows of waxy sorghum intercropped with one row of soybean (2W1S), two rows of waxy sorghum intercropped with two rows of soybean (2W2S), three rows of waxy sorghum intercropped with one row of soybean (3W1S), three rows of waxy sorghum intercropped with two rows of soybean (3W2S), and three rows of waxy sorghum intercropped with three rows of soybean (3W3S), and sole cropping waxy sorghum (SW) was used as control. The nutrients, enzyme activities, and microbes of waxy sorghum rhizosphere soil were investigated at the jointing, anthesis, and maturity stages. Results showed that rhizosphere soil properties of waxy sorghum were significantly affected by row ratio configurations of waxy sorghum intercropped soybean. Among all treatments, the performances of rhizosphere soil nutrients contents, enzymes activities, and microbes contents were 2W1S > 3W1S > 3W2S > 3W3S > 2W2S > SW. Compared to SW treatment, the 2W1S treatment increased the organic matter, total N, total P, total K, gram-negative bacteria phospholipid fatty acids (PLFAs), and gram-positive bacteria PLFAs contents and catalase, polyphenol oxidase, and urease activities by 20.86%-25.67%, 34.33%-70.05%, 23.98%-33.83%, 44.12%-81.86%, 74.87%-194.32%, 81.59-136.59%, 91.44%-114.07%, 85.35%-146.91%, and 36.32%-63.94%, respectively. Likewise, the available N, available P, available K, total PLFAs, fungus PLFAs, actinomycetes PLFAs, and bacteria PLFAs contents under the 2W1S treatment were 1.53-2.41, 1.32-1.89, 1.82-2.05, 1.96-2.91, 3.59-4.44, 9.11-12.56, and 1.81-2.71 times than those of SW treatment, respectively. Further, the determining factors of soil microbes were total K, catalase, and polyphenol oxidase for total microbes, bacteria, and gram-negative bacteria, total P and available K for fungus, available N, available K, and polyphenol oxidase for actinomycetes, and total K and polyphenol oxidase for gram-positive bacteria. In conclusion, the 2W1S treatment was the optimal row ratio configuration of waxy sorghum intercropped with soybean, which can improve the rhizosphere soil quality and promote the sustainable production of waxy sorghum.
Collapse
Affiliation(s)
- Mingbo Shao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Can Wang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Lingbo Zhou
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Fangli Peng
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Guobing Zhang
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Jie Gao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Siyu Chen
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Qiang Zhao
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Pérez-López J, Feria AB, Gandullo J, de la Osa C, Jiménez-Guerrero I, Echevarría C, Monreal JA, García-Mauriño S. Silencing of Sb PPCK1-3 Negatively Affects Development, Stress Responses and Productivity in Sorghum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2426. [PMID: 37446987 DOI: 10.3390/plants12132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays central roles in photosynthesis, respiration, amino acid synthesis, and seed development. PEPC is regulated by different post-translational modifications. Between them, the phosphorylation by PEPC-kinase (PEPCk) is widely documented. In this work, we simultaneously silenced the three sorghum genes encoding PEPCk (SbPPCK1-3) by RNAi interference, obtaining 12 independent transgenic lines (Ppck1-12 lines), showing different degrees of SbPPCK1-3 silencing. Among them, two T2 homozygous lines (Ppck-2 and Ppck-4) were selected for further evaluation. Expression of SbPPCK1 was reduced by 65% and 83% in Ppck-2 and Ppck-4 illuminated leaves, respectively. Expression of SbPPCK2 was higher in roots and decreased by 50% in Ppck-2 and Ppck-4 in this tissue. Expression of SbPPCK3 was low and highly variable. Despite the incomplete gene silencing, it decreased the degree of phosphorylation of PEPC in illuminated leaves, P-deficient plants, and NaCl-treated plants. Both leaves and seeds of Ppck lines had altered metabolic profiles and a general decrease in amino acid content. In addition, Ppck lines showed delayed flowering, and 20% of Ppck-4 plants did not produce flowers at all. The total amount of seeds was lowered by 50% and 36% in Ppck-2 and Ppck-4 lines, respectively. The quality of seeds was lower in Ppck lines: lower amino acid content, including Lys, and higher phytate content. These data confirm the relevance of the phosphorylation of PEPC in sorghum development, stress responses, yield, and quality of seeds.
Collapse
Affiliation(s)
- Jesús Pérez-López
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Jacinto Gandullo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012 Seville, Spain
| |
Collapse
|
3
|
Application of Plant Growth-Promoting Bacteria from Cape Verde to Increase Maize Tolerance to Salinity. Antioxidants (Basel) 2023; 12:antiox12020488. [PMID: 36830045 PMCID: PMC9952022 DOI: 10.3390/antiox12020488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Salinity constitutes a major abiotic factor that negatively affects crop productivity. Inoculation with plant growth-promoting bacteria (PGPB) is proven to increase plant tolerance to abiotic stresses and enhance plant growth, development and productivity. The present study aims to increase the resilience of crops to salinity using bacteria from the microbiome of plants growing in saline environments. For that, the halotolerance of bacteria present in the roots of natural plants growing on Sal Island, which is characterized by its arid environment and maritime influence, was determined, with some strains having extreme halotolerance. Their ability to produce plant growth-promoting traits was evaluated, with most strains increasing indole acetic acid (26-418%), siderophore (>300%) and alginate (2-66%) production and phosphate solubilization (13-100%) under salt stress. The strains evidencing the best performance were inoculated in maize (Zea mays L.) plants and their influence on plant growth and biochemical status was evaluated. Results evidenced bacterial ability to especially increase proline (55-191%), whose osmotic, antioxidant and protein-protecting properties reduced protein damage in salt-stressed maize plants, evidencing the potential of PGPB to reduce the impact of salinity on crops. Enhanced nutrition, phytohormone production and osmolyte synthesis along with antioxidant response all contribute to increasing plant tolerance to salt stress.
Collapse
|
4
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
5
|
Wang C, Zhou L, Gao J, Zhang G, Peng F, Zhang C, Zhao Q, Peng Q, Shao M. Changes in Nutrient Accumulation and Transportation of Waxy Sorghum in Waxy Sorghum-Soybean Intercropping Systems Under Different Row Ratio Configurations. FRONTIERS IN PLANT SCIENCE 2022; 13:921860. [PMID: 35937366 PMCID: PMC9355604 DOI: 10.3389/fpls.2022.921860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
To determine the optimal row ratio configuration of waxy sorghum-soybean intercropping systems, a field experiment with seven treatments, including sole waxy sorghum (SW), sole soybean (SS), two rows of waxy sorghum alternated with one row of soybean (2W1S), two rows of waxy sorghum alternated with two rows of soybean (2W2S), three rows of waxy sorghum alternated with one row of soybean (3W1S), three rows of waxy sorghum alternated with two rows of soybean (3W2S), and three rows of waxy sorghum alternated with three rows of soybean (3W3S), was conducted during 2019 and 2020 in Guiyang, China. Accumulation and transportation of nitrogen (N), phosphorus (P), and potassium (K) in waxy sorghum were investigated. The results showed that the row ratio configurations had significant effects on the N, P, and K accumulation and transportation of waxy sorghum. On the one hand, compared to SW treatment, intercropping treatments showed higher N, P, and K contents and accumulation amounts, N, P, and K transportation amounts before anthesis, N, P, and K transportation rates before anthesis, and contribution rates of N, P, and K transportation before anthesis to the grain of each organ in waxy sorghum. Similarly, the waxy sorghum-soybean intercropping system increased the yield components (including spike length, grain number per spike, and 1,000-grain weight) of waxy sorghum. In addition, the yields of waxy sorghum and soybean among all treatments were in the sequence of SW (SS) > 2W1S > 3W1S > 3W2S > 3W3S > 2W2S. Besides, the 2W1S treatment showed the highest land equivalent ratio and economic benefit. On the whole, the waxy sorghum-soybean intercropping system can increase the N, P, and K absorption among organs and promote the N, P, and K transportation from vegetative organs to grain in waxy sorghum so as to promote the growth and development of spike in waxy sorghum to obtain higher land equivalent ratio and economic benefits. The 2W1S treatment was recommended as the optimal row ratio configuration of the waxy sorghum-soybean system to achieve the maximum utilization of nutrient resources.
Collapse
|
6
|
de la Osa C, Pérez‐López J, Feria A, Baena G, Marino D, Coleto I, Pérez‐Montaño F, Gandullo J, Echevarría C, García‐Mauriño S, Monreal JA. Knock-down of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (Sorghum bicolor L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:231-249. [PMID: 35488514 PMCID: PMC9539949 DOI: 10.1111/tpj.15789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism. Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isozymes, especially with respect to their physiological functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isozyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production. In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of molecules with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiology and metabolism in roots and leaves, negatively affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.
Collapse
Affiliation(s)
- Clara de la Osa
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Jesús Pérez‐López
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Ana‐Belén Feria
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Daniel Marino
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Inmaculada Coleto
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco (UPV/EHU)LeioaSpain
| | | | - Jacinto Gandullo
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - Sofía García‐Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| | - José A. Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
| |
Collapse
|
7
|
Emamverdian A, Ding Y, Barker J, Mokhberdoran F, Ramakrishnan M, Liu G, Li Y. Nitric Oxide Ameliorates Plant Metal Toxicity by Increasing Antioxidant Capacity and Reducing Pb and Cd Translocation. Antioxidants (Basel) 2021; 10:1981. [PMID: 34943084 PMCID: PMC8750146 DOI: 10.3390/antiox10121981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, nitric oxide (NO) has been reported to increase plant resistance to heavy metal stress. In this regard, an in vitro tissue culture experiment was conducted to evaluate the role of the NO donor sodium nitroprusside (SNP) in the alleviation of heavy metal toxicity in a bamboo species (Arundinaria pygmaea) under lead (Pb) and cadmium (Cd) toxicity. The treatment included 200 µmol of heavy metals (Pb and Cd) alone and in combination with 200 µM SNP: NO donor, 0.1% Hb, bovine hemoglobin (NO scavenger), and 50 µM L-NAME, N(G)-nitro-L-arginine methyl ester (NO synthase inhibitor) in four replications in comparison to controls. The results demonstrated that the addition of L-NAME and Hb as an NO synthase inhibitor and NO scavenger significantly increased oxidative stress and injured the cell membrane of the bamboo species. The addition of sodium nitroprusside (SNP) for NO synthesis increased antioxidant activity, protein content, photosynthetic properties, plant biomass, and plant growth under heavy metal (Pb and Cd) toxicity. It was concluded that NO can increase plant tolerance for metal toxicity with some key mechanisms, such as increasing antioxidant activities, limiting metal translocation from roots to shoots, and diminishing metal accumulation in the roots, shoots, and stems of bamboo species under heavy metal toxicity (Pb and Cd).
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (F.M.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (F.M.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Farzad Mokhberdoran
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (F.M.); (M.R.)
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (F.M.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (F.M.); (M.R.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| |
Collapse
|
8
|
Caburatan L, Park J. Differential Expression, Tissue-Specific Distribution, and Posttranslational Controls of Phosphoenolpyruvate Carboxylase. PLANTS (BASEL, SWITZERLAND) 2021; 10:1887. [PMID: 34579420 PMCID: PMC8468890 DOI: 10.3390/plants10091887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme, which is crucial for plant carbon metabolism. PEPC participates in photosynthesis by catalyzing the initial fixation of atmospheric CO2 and is abundant in both C4 and crassulacean acid metabolism leaves. PEPC is differentially expressed at different stages of plant development, mostly in leaves, but also in developing seeds. PEPC is known to show tissue-specific distribution in leaves and in other plant organs, such as roots, stems, and flowers. Plant PEPC undergoes reversible phosphorylation and monoubiquitination, which are posttranslational modifications playing important roles in regulatory processes and in protein localization. Phosphorylation activates the PEPC enzyme, making it more sensitive to glucose-6-phosphate and less sensitive to malate or aspartate. PEPC phosphorylation is known to be diurnally regulated and delicately changed in response to various environmental stimuli, in addition to light. PEPCs belong to a small gene family encoding several plant-type and distantly related bacterial-type PEPCs. This paper provides a minireview of the general information on PEPCs in both C4 and C3 plants.
Collapse
Affiliation(s)
- Lorrenne Caburatan
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
9
|
Gandullo J, Álvarez R, Feria AB, Monreal JA, Díaz I, Vidal J, Echevarría C. A conserved C-terminal peptide of sorghum phosphoenolpyruvate carboxylase promotes its proteolysis, which is prevented by Glc-6P or the phosphorylation state of the enzyme. PLANTA 2021; 254:43. [PMID: 34355288 PMCID: PMC8342391 DOI: 10.1007/s00425-021-03692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION A synthetic peptide from the C-terminal end of C4-phosphoenolpyruvate carboxylase is implicated in the proteolysis of the enzyme, and Glc-6P or phosphorylation of the enzyme modulate this effect. Phosphoenolpyruvate carboxylase (PEPC) is a cytosolic, homotetrameric enzyme that performs a variety of functions in plants. Among them, it is primarily responsible for CO2 fixation in the C4 photosynthesis pathway (C4-PEPC). Here we show that proteolysis of C4-PEPC by cathepsin proteases present in a semi-purified PEPC fraction was enhanced by the presence of a synthetic peptide containing the last 19 amino acids from the C-terminal end of the PEPC subunit (pC19). Threonine (Thr)944 and Thr948 in the peptide are important requirements for the pC19 effect. C4-PEPC proteolysis in the presence of pC19 was prevented by the PEPC allosteric effector glucose 6-phosphate (Glc-6P) and by phosphorylation of the enzyme. The role of these elements in the regulation of PEPC proteolysis is discussed in relation to the physiological context.
Collapse
Affiliation(s)
- Jacinto Gandullo
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - José-Antonio Monreal
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Autovía M40 (km 38), Pozuelo de Alarcón, 28034, Madrid, Spain
| | - Jean Vidal
- Institut de Biotechnologie des Plantes, UMR8618, Bâtiment 630, Université de Paris-Sud 11, 91405, Orsay, Cedex, France
| | - Cristina Echevarría
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain.
| |
Collapse
|
10
|
Baena G, Feria AB, Hernández-Huertas L, Gandullo J, Echevarría C, Monreal JA, García-Mauriño S. Genetic and Pharmacological Inhibition of Autophagy increases the Monoubiquitination of Non-Photosynthetic Phospho enolpyruvate Carboxylase. PLANTS 2020; 10:plants10010012. [PMID: 33374865 PMCID: PMC7823769 DOI: 10.3390/plants10010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is an enzyme with key roles in carbon and nitrogen metabolisms. The mechanisms that control enzyme stability and turnover are not well known. This paper investigates the degradation of PEPC via selective autophagy, including the role of the monoubiquitination of the enzyme in this process. In Arabidopsis, the genetic inhibition of autophagy increases the amount of monoubiquitinated PEPC in the atg2, atg5, and atg18a lines. The same is observed in nbr1, which is deficient in a protein that recruits monoubiquitinated substrates for selective autophagy. In cultured tobacco cells, the chemical inhibition of the degradation of autophagic substrates increases the quantity of PEPC proteins. When the formation of the autophagosome is blocked with 3-methyladenine (3-MA), monoubiquitinated PEPC accumulates as a result. Finally, pull-down experiments with a truncated version of NBR1 demonstrate the recovery of intact and/or fragmented PEPC in Arabidopsis leaves and roots, as well as cultured tobacco cells. Taken together, the results show that a fraction of PEPC is cleaved via selective autophagy and that the monoubiquitination of the enzyme has a role in its recruitment towards this pathway. Although autophagy seems to be a minor pathway, the results presented here increase the knowledge about the role of monoubiquitination and the regulation of PEPC degradation.
Collapse
|
11
|
Terrón-Camero LC, Rodríguez-Serrano M, Sandalio LM, Romero-Puertas MC. Nitric oxide is essential for cadmium-induced peroxule formation and peroxisome proliferation. PLANT, CELL & ENVIRONMENT 2020; 43:2492-2507. [PMID: 32692422 DOI: 10.1111/pce.13855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and nitrosylated derivatives are produced in peroxisomes, but the impact of NO metabolism on organelle functions remains largely uncharacterised. Double and triple NO-related mutants expressing cyan florescent protein (CFP)-SKL (nox1 × px-ck and nia1 nia2 × px-ck) were generated to determine whether NO regulates peroxisomal dynamics in response to cadmium (Cd) stress using confocal microscopy. Peroxule production was compromised in the nia1 nia2 mutants, which had lower NO levels than the wild-type plants. These findings show that NO is produced early in the response to Cd stress and was involved in peroxule production. Cd-induced peroxisomal proliferation was analysed using electron microscopy and by the accumulation of the peroxisomal marker PEX14. Peroxisomal proliferation was inhibited in the nia1 nia2 mutants. However, the phenotype was recovered by exogenous NO treatment. The number of peroxisomes and oxidative metabolism were changed in the NO-related mutant cells. Furthermore, the pattern of oxidative modification and S-nitrosylation of the catalase (CAT) protein was changed in the NO-related mutants in both the absence and presence of Cd stress. Peroxisome-dependent signalling was also affected in the NO-related mutants. Taken together, these results show that NO metabolism plays an important role in peroxisome functions and signalling.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
12
|
Souri Z, Karimi N, Farooq MA, Sandalio LM. Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv. Shoots by enhancing antioxidant defenses. CHEMOSPHERE 2020; 239:124523. [PMID: 31499308 DOI: 10.1016/j.chemosphere.2019.124523] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a toxic metalloid that severely hampers plant growth and also poses health risks for humans through the food chain. Although nitric oxide (NO) is known to improve plant resistance to multiple stresses including metal toxicity, little is known about its role in the As tolerance of hyperaccumulator plants. This study investigates the role of the exogenously applied NO donor, sodium nitroprusside (SNP), in improving the As tolerance of Isatis cappadocica, which has been reported to hyperaccumulate As. Exposure to toxic As concentrations significantly increases NO production and damages the cell membrane, as indicated by increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations, thereby reducing plant growth. However, the addition of SNP improves growth and alleviates As-induced oxidative stress by enhancing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), as well as proline and thiol concentrations, thereby confirming the beneficial role played by NO in increasing As stress tolerance. Furthermore, the As-induced decrease in growth and the increase in oxidative stress were more marked in the presence of bovine hemoglobin (Hb; a NO scavenger) and N(G)-nitro-l-arginine methyl ester (l-NAME; a NO synthase inhibitor), thus demonstrating the protective role of NO against As toxicity. The reduction in NO concentrations by l-NAME suggests that NOS-like activity is involved in the generation of NO in response to As in I. cappadocica.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Muhammad Ansar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Luisa M Sandalio
- Laboratory for Reactive Oxygen and Nitrogen Species Signaling Under Plant Stress Conditions, Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
13
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int J Mol Sci 2019; 20:E4881. [PMID: 31581473 PMCID: PMC6801620 DOI: 10.3390/ijms20194881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid β-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Luis C Romero
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
14
|
Corpas FJ, Del Río LA, Palma JM. A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles? Subcell Biochem 2018; 89:473-493. [PMID: 30378037 DOI: 10.1007/978-981-13-2233-4_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant peroxisomes are organelles with a very active participation in the cellular regulation of the metabolism of reactive oxygen species (ROS). However, during the last two decades peroxisomes have been shown to be also a relevant source of nitric oxide (NO) and other related molecules designated as reactive nitrogen species (RNS). ROS and RNS have been mainly associated to nitro-oxidative processes; however, some members of these two families of molecules such as H2O2, NO or S-nitrosoglutathione (GSNO) are also involved in the mechanism of signaling processes mainly through post-translational modifications. Peroxisomes interact metabolically with other cell compartments such as chloroplasts, mitochondria or oil bodies in different pathways including photorespiration, glyoxylate cycle or β-oxidation, but peroxisomes are also involved in the biosynthesis of phytohormones including auxins and jasmonic acid (JA). This review will provide a comprehensive overview of peroxisomal RNS metabolism with special emphasis in the identified protein targets of RNS inside and outside these organelles. Moreover, the potential interconnectivity between peroxisomes and other plant organelles, such as mitochondria or chloroplasts, which could have a regulatory function will be explored, with special emphasis on photorespiration.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|