1
|
Rong N, Huang L, Ye P, Pan H, Hu M, Bai M, Wu H. CgLS mediates limonene synthesis of main essential oil component in secretory cavity cells of Citrus grandis 'Tomentosa' fruits. Int J Biol Macromol 2024; 280:135671. [PMID: 39284463 DOI: 10.1016/j.ijbiomac.2024.135671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
d-Limonene is the predominant component of essential oil from Exocarpium Citri Grandis, known for its antibacterial, antioxidant, insecticidal, and anti-inflammatory properties. The synthesis, transport, and accumulation of d-limonene in Citrus grandis 'Tomentosa' fruits are regulated by limonene synthase (LS) and its associated regulatory genes. This study addresses the gap in understanding the spatiotemporal cytological changes of LS and its regulatory genes. Through cytochemical techniques, we investigated the distribution of essential oil in the plastids, endoplasmic reticulum, and vacuoles of secretory cavity cells. We identified the LS-encoding gene CgLS via transcriptomics and demonstrated in vitro that CgLS catalyzes the formation of d-limonene from geranyl diphosphate (GPP). Transient overexpression of CgLS increased monoterpene limonene accumulation, while TRV virus-induced gene silencing reduced it. CgLS expression levels and d-limonene content showed spatiotemporal consistency with fruit development, with in situ hybridization revealing predominant expression in secretory cavity cells. Immunocytochemical localization indicated that CgLS is primarily located in the endoplasmic reticulum, plastids, and vacuoles. Our findings suggest that CgLS is translated in the endoplasmic reticulum and transported to plastids and vacuoles where d-limonene synthesis occurs. This study provides comprehensive insights into the characteristics of CgLS and its role in d-limonene synthesis at the tissue, cellular, and molecular levels in C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Ning Rong
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingli Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Youchenliu Road, Maoming 525000, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lawas LMF, Kamileen MO, Buell CR, O'Connor SE, Leisner CP. Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry. PLANT DIRECT 2023; 7:e512. [PMID: 37440931 PMCID: PMC10333835 DOI: 10.1002/pld3.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.
Collapse
Affiliation(s)
| | - Mohamed O. Kamileen
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Crop and Soil SciencesInstitute of Plant Breeding, Genetics, & Genomics, University of GeorgiaAthensGeorgiaUSA
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - Courtney P. Leisner
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Geng X, Tang R, Zhang A, Du Z, Yang L, Xu Y, Zhong Y, Yang R, Chen W, Pu C. Mining, expression, and phylogenetic analysis of volatile terpenoid biosynthesis-related genes in different tissues of ten Elsholtzia species based on transcriptomic analysis. PHYTOCHEMISTRY 2022; 203:113419. [PMID: 36055426 DOI: 10.1016/j.phytochem.2022.113419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
We sequenced the leaf and inflorescence transcriptomes of 10 Elsholtzia species to mine genes related to the volatile terpenoid metabolic pathway. A total of 184.68 GB data and 1,231,162,678 clean reads were obtained from 20 Elsholtzia samples, and 333,848 unigenes with an average length of at least 1440 bp were obtained by Trinity assembly. KEGG pathway analysis showed that there were three pathways related to volatile terpene metabolism: terpenoid backbone biosynthesis (No. ko00900), monoterpenoid biosynthesis (No. ko00902), and sesquiterpenoid and triterpenoid biosynthesis (No. ko00909), with 437, 125, and 121 related unigenes, respectively. The essential oil content and composition in 20 Elsholtzia samples were determined by gas chromatography-mass spectrometry. The results showed that there were obvious interspecific differences among the 10 Elsholtzia species, but there were no significant differences between the different tissues among species. The expression levels of seven candidate genes involved in volatile terpenoid biosynthesis in Elsholtzia were further analyzed by quantitative real-time PCR. The results showed that HMGS had the highest expression among all genes, followed by GGPS4. In addition, there was not a significant correlation between the seven genes and the components with high essential oil contents. Combined with the essential oil components detected in this study, the possible biosynthetic pathway of the characteristic components in Elsholtzia plants was speculated to be a metabolic pathway with geraniol as the starting point and elsholtzione as the end product. Phylogenetic analysis was conducted using the nucleotide sequences of the geranyl diphosphate synthase candidate genes, and the results showed that genes related to the volatile terpenoid biosynthetic pathway may be more suitable gene fragments for resolving the Elsholtzia phylogeny.
Collapse
Affiliation(s)
- Xiuwen Geng
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Renhua Tang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Aili Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhizhi Du
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lipan Yang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yuqi Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yiling Zhong
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Run Yang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Wenyun Chen
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Chunxia Pu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Soorni J, Kazemitabar SK, Kahrizi D, Dehestani A, Bagheri N. Genetic analysis of freezing tolerance in camelina [Camelina sativa (L.) Crantz] by diallel cross of winter and spring biotypes. PLANTA 2021; 253:9. [PMID: 33389162 DOI: 10.1007/s00425-020-03521-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Camelina biotypes had different responses to freezing stress, which was mainly inherited by additive gene effects and can be reliably used in breeding programs and for a better understanding of freezing tolerance mechanisms in camelina plants. Camelina [Camelina sativa (L.) Crantz] is a frost-tolerant oilseed plant that is cultivated as an autumn crop in semi-arid regions. However, camelina establishment in these areas is limited by low temperatures in winter that results in decreased seed yield. In the present study, genetic basis of freezing tolerance (FT) in spring and winter biotypes of camelina was analyzed at seedling stage using a diallel cross experiment. The parents consisted of two winter doubled haploid (DH) lines with high (DH34 and DH31), two spring lines with medium (DH19 and DH26), and two spring lines with low FT (DH08 and DH91). For this purpose, the parents along with F1 entries were subjected to freezing stress and survival percentage, electrolyte leakage, and lethal temperature for 50% mortality (LT50) of the lines were measured. Results showed that although both additive and non-additive effects of the genes determine the FT, further analyses indicated that it was mainly controlled by the additive effects. Therefore, selection-based methods may be more efficient for improving FT in camelina genotypes. The results of specific combining ability (SCA) and heterosis analysis among various DH lines suggested that more tolerant cultivars of camelina could be developed by targeted crossings. When a tolerant winter line and a susceptible spring line were crossed, their progenies showed a higher FT compared with the progenies of a cross between two susceptible spring lines indicating FT is controlled by additive effects of the genes in camelina plants. These findings provided new insight into the genetic basis of freezing-related traits in camelina and could be used for more sophisticated breeding programs.
Collapse
Affiliation(s)
- Jahad Soorni
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), P.O. Box 576, Sari, Iran.
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31535-1897, Karaj, Iran.
| | - Seyed Kamal Kazemitabar
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), P.O. Box 576, Sari, Iran
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Razi University, P.O. Box 85438-67156, Kermanshah, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), P.O. Box 576, Sari, Iran
| | - Nadali Bagheri
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU), P.O. Box 576, Sari, Iran
| |
Collapse
|
5
|
Clancy MV, Haberer G, Jud W, Niederbacher B, Niederbacher S, Senft M, Zytynska SE, Weisser WW, Schnitzler JP. Under fire-simultaneous volatilome and transcriptome analysis unravels fine-scale responses of tansy chemotypes to dual herbivore attack. BMC PLANT BIOLOGY 2020; 20:551. [PMID: 33297957 PMCID: PMC7724791 DOI: 10.1186/s12870-020-02745-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tansy plants (Tanacetum vulgare L.) are known for their high intraspecific chemical variation, especially of volatile organic compounds (VOC) from the terpenoid compound group. These VOCs are closely involved in plant-insect interactions and, when profiled, can be used to classify plants into groups known as chemotypes. Tansy chemotypes have been shown to influence plant-aphid interactions, however, to date no information is available on the response of different tansy chemotypes to simultaneous herbivory by more than one insect species. RESULTS Using a multi-cuvette system, we investigated the responses of five tansy chemotypes to feeding by sucking and/or chewing herbivores (aphids and caterpillars; Metopeurum fuscoviride Stroyan and Spodoptera littoralis Boisduval). Herbivory by caterpillars following aphid infestation led to a plant chemotype-specific change in the patterns of terpenoids stored in trichome hairs and in VOC emissions. The transcriptomic analysis of a plant chemotype represents the first de novo assembly of a transcriptome in tansy and demonstrates priming effects of aphids on a subsequent herbivory. Overall, we show that the five chemotypes do not react in the same way to the two herbivores. As expected, we found that caterpillar feeding increased VOC emissions, however, a priori aphid infestation only led to a further increase in VOC emissions for some chemotypes. CONCLUSIONS We were able to show that different chemotypes respond to the double herbivore attack in different ways, and that pre-treatment with aphids had a priming effect on plants when they were subsequently exposed to a chewing herbivore. If neighbouring chemotypes in a field population react differently to herbivory/dual herbivory, this could possibly have effects from the individual level to the group level. Individuals of some chemotypes may respond more efficiently to herbivory stress than others, and in a group environment these "louder" chemotypes may affect the local insect community, including the natural enemies of herbivores, and other neighbouring plants.
Collapse
Affiliation(s)
- Mary V Clancy
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Fundamental and Applied Research in Chemical Ecology (FARCE Lab), Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Georg Haberer
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Neuherberg, Germany
| | - Werner Jud
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Bishu Niederbacher
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Simon Niederbacher
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Matthias Senft
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Sharon E Zytynska
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Neuherberg, Germany
- Department of Ecology, University of Liverpool, Evolution and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany.
| |
Collapse
|
6
|
Zhang T, Guo Y, Shi X, Yang Y, Chen J, Zhang Q, Sun M. Overexpression of LiTPS2 from a cultivar of lily (Lilium 'Siberia') enhances the monoterpenoids content in tobacco flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:391-399. [PMID: 32278293 DOI: 10.1016/j.plaphy.2020.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 05/17/2023]
Abstract
Lily, a famous cut flower with highly fragrance, has high ornamental and economic values. Monoterpenes are the main components contributing to its fragrance, and terpene synthase (TPS) genes play critical roles in the biosynthesis of monoterpenoids. To understand the function of TPS and to explore the molecular mechanism of floral scent in cultivar Lilium 'Siberia', transcriptomes of petal at different flowering stages and leaf were obtained by RNA sequencing and three unigenes related to TPS genes were selected for further validation. Quantitative real-time PCR showed that the expression level of LiTPS2 was greater than that of the other two TPS genes. Phylogenetic analysis indicated that LiTPS2 belonged to the TPSb subfamily, which was responsible for monoterpenes synthesis. Subcellular localization demonstrated that LiTPS2 was located in the chloroplasts. Furthermore, functional characterization showed that LiTPS2 utilized both geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) to produce monoterpenoids such as linalool and sesquiterpenes like trans-nerolidol, respectively. Ectopic expression in transgenic tobacco plants suggested that the amount of linalool from the flowers of transgenic plants was 2-3 fold higher than that of wild-type plants. And the emissions of myrcene and (E)-β-ocimene were also accumulated from the flowers of LiTPS2 transgenic lines. Surprisingly, these three compounds were the main fragrance components of oriental lily hybrids. Our results indicated that LiTPS2 contributed to the production of monoterpenes and could effectively regulate the aroma of Lilium cultivars, laying the foundation for biotechnological modification of floral scent profiles.
Collapse
Affiliation(s)
- Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xuejun Shi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yongjuan Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juntong Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
7
|
Du F, Wang T, Fan JM, Liu ZZ, Zong JX, Fan WX, Han YH, Grierson D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. HORTICULTURE RESEARCH 2019; 6:110. [PMID: 31645964 PMCID: PMC6804824 DOI: 10.1038/s41438-019-0192-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 05/12/2023]
Abstract
Lily is a well-known ornamental plant with a diversity of fragrant types. Basic information on lily floral scent compounds has been obtained for only a few accessions, and little is known about Lilium aroma types, the terpene synthase genes that may play roles in the production of key volatiles, or the range of monoterpenes that these genes produce. In this study, 41 cultivars were analyzed for volatile emissions, and a total of 46 individual volatile compounds were identified, 16 for the first time in lilies. Lily accessions were classified into six groups according to the composition of major scent components: faint-scented, cool, fruity, musky, fruity-honey, and lily. Monoterpenes were one of the main groups of volatiles identified, and attention was focused on terpene synthase (TPS) genes, which encode enzymes that catalyze the last steps in monoterpene synthesis. Thirty-two candidate monoterpene synthase cDNAs were obtained from 66 lily cultivars, and 64 SNPs were identified. Two InDels were also shown to result from variable splicing, and sequence analysis suggested that different transcripts arose from the same gene. All identified nucleotide substitution sites were highly correlated with the amounts of myrcene emitted, and InDel site 230 was highly correlated with the emission of all major monoterpenoid components, especially (E)-β-ocimene. Heterologous expression of five cDNAs cloned from faint-scented and strong-scented lilies showed that their corresponding enzymes could convert geranyl diphosphate to (E)-β-ocimene, α-pinene, and limonene. The findings from this study provide a major resource for the assessment of lily scent volatiles and will be helpful in breeding of improved volatile components.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jun-miao Fan
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
- College of Horticulture, Nanjing Agricultural University, 210095 Nangjing, Jiangsu China
| | - Zhi-zhi Liu
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jia-xin Zong
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Wei-xin Fan
- Experimental Teaching Center, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Yuan-huai Han
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
8
|
Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in Tripterygium wilfordii. Biochem J 2018; 475:2713-2725. [DOI: 10.1042/bcj20180353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Cryptomeridiol, a typical eudesmane diol, is the active principle component of the antispasmodic Proximol. Although it has been used for many years, the biosynthesis pathway of cryptomeridiol has remained blur. Among terpenoid natural products, terpenoid cyclases are responsible for cyclization and generation of hydrocarbon backbones. The cyclization is mediated by carbocationic cascades and ultimately terminated via deprotonation or nucleophilic capture. Isoprene precursors are, respectively, converted into hydrocarbons or hydroxylated backbones. A sesquiterpene cyclase in Tripterygium wilfordii (TwCS) was determined to directly catalyze (E,E)-farnesyl pyrophosphate (FPP) to unexpected eudesmane diols, primarily cryptomeridiol. The function of TwCS was characterized by a modular pathway engineering system in Saccharomyces cerevisiae. The major product determined by NMR spectroscopy turned out to be cryptomeridiol. This unprecedented production was further investigated in vitro, which verified that TwCS can directly produce eudesmane diols from FPP. Some key residues for TwCS catalysis were screened depending on the molecular model of TwCS and mutagenesis studies. As cryptomeridiol showed a small amount of volatile and medicinal properties, the biosynthesis of cryptomeridiol was reconstructed in S. cerevisiae. Optimized assays including modular pathway engineering and the CRISPR–cas9 system were successfully used to improve the yield of cryptomeridiol in the S. cerevisiae. The best engineered strain TE9 (BY4741 erg9::Δ-200-176 rox1::mut/pYX212-IDI + TwCS/p424-tHMG1) ultimately produced 19.73 mg/l cryptomeridiol in a shake flask culture.
Collapse
|