1
|
Wang D, Feng Q, Wang X, Sun Y, Zhou W, Zhan X. Indole-3-acetic acid enhances the co-transport of proton and phenanthrene mediated by TaSAUR80-5A in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124522. [PMID: 38986759 DOI: 10.1016/j.envpol.2024.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xuke Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yilei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wenhui Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
2
|
Tan C, Li S, Song J, Zheng X, Zheng H, Xu W, Wan C, Zhang T, Bian Q, Men S. 3,4-Dichlorophenylacetic acid acts as an auxin analog and induces beneficial effects in various crops. Commun Biol 2024; 7:161. [PMID: 38332111 PMCID: PMC10853179 DOI: 10.1038/s42003-024-05848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jia Song
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xianfu Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Hao Zheng
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Weichang Xu
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Cui Wan
- Zhengzhou ZhengShi Chemical Co., Ltd, 450000, Zhengzhou, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
3
|
Wen Y, Jiang X, Li D, Ou Z, Yu Y, Chen R, Chen C, Xu H. Synthesis and characterization of an artificial glucosinolate bearing a chlorthalonil-based aglycon as a potent inhibitor of glucosinolate transporters. PHYTOCHEMISTRY 2023; 212:113726. [PMID: 37207992 DOI: 10.1016/j.phytochem.2023.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GSLs) are specialized metabolites in plants of the order Brassicales. GSL transporters (GTRs) are essential for the redistribution of GSLs and also play a role in controlling the GSL content of seeds. However, specific inhibitors of these transporters have not been reported. In the current study, we described the design and synthesis of 2,3,4,6-tetrachloro-5-cyanophenyl GSL (TCPG), an artificial GSL bearing a chlorothalonil moiety as a potent inhibitor of GTRs, and evaluated its inhibitory effect on the substrate uptake mediated through GTR1 and GTR2. Molecular docking showed that the position of the β-D-glucose group of TCPG was significantly different from that of the natural substrate in GTRs and the chlorothalonil moiety forms halogen bonds with GTRs. Functional assays and kinetic analysis of the transport activity revealed that TCPG could significantly inhibit the transport activity of GTR1 and GTR2 (IC50 values (mean ± SD) being 79 ± 16 μM and 192 ± 14 μM, respectively). Similarly, TCPG could inhibit the uptake and phloem transport of exogenous sinigrin by Arabidopsis thaliana (L.) Heynh leaf tissues, while not affecting that of esculin (a fluorescent surrogate for sucrose). TCPG could also reduce the content of endogenous GSLs in phloem exudates. Together, TCPG was discovered as an undescribed inhibitor of the uptake and phloem transport of GSLs, which brings novel insights into the ligand recognition of GTRs and provides a new strategy to control the GSL level. Further tests on the ecotoxicological and environmental safety of TCPG are needed before using it as an agricultural or horticultural chemical in the future.
Collapse
Affiliation(s)
- Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou, Guangdong, 510640, China
| | - Dehong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ziyue Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ye Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ronghua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
4
|
Nongmaithem S, Devulapalli S, Sreelakshmi Y, Sharma R. Is naphthylphthalamic acid a specific phytotropin? It elevates ethylene and alters metabolic homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110358. [PMID: 31928666 DOI: 10.1016/j.plantsci.2019.110358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In higher plants, phytohormone indole-3-acetic acid is characteristically transported from the apex towards the base of the plant, termed as polar auxin transport (PAT). Among the inhibitors blocking PAT, N-1-naphthylphthalamic acid (NPA) that targets ABCB transporters is most commonly used. NPA-treated light-grown Arabidopsis seedlings show severe inhibition of hypocotyl and root elongation. In light-grown tomato seedlings, NPA inhibited root growth, but contrary to Arabidopsis stimulated hypocotyl elongation. The NPA-stimulation of hypocotyl elongation was milder in blue, red, and far-red light-grown seedlings. The NPA-treatment stimulated emission of ethylene from the seedlings. The scrubbing of ethylene by mercuric perchlorate reduced NPA-stimulated hypocotyl elongation. NPA action on hypocotyl elongation was antagonized by 1-methylcyclopropene, an inhibitor of ethylene action. NPA-treated seedlings had reduced levels of indole-3-butyric acid and higher levels of zeatin in the shoots. NPA did not alter indole-3-acetic levels in shoots. The analysis of metabolic networks indicated that NPA-treatment induced moderate shifts in the networks compared to exogenous ethylene that induced a drastic shift in metabolic networks. Our results indicate that in addition to ethylene, NPA-stimulated hypocotyl elongation in tomato may also involve zeatin and indole-3- butyric acid. Our results indicate that NPA-mediated physiological responses may vary in a species-specific fashion.
Collapse
Affiliation(s)
- Sapana Nongmaithem
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sameera Devulapalli
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Advances in Understanding the Mechanism of Action of the Auxin Permease AUX1. Int J Mol Sci 2018; 19:ijms19113391. [PMID: 30380696 PMCID: PMC6275028 DOI: 10.3390/ijms19113391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
In over 40 years of research on the cellular uptake of auxin it is somewhat chastening that we have elaborated so little on the original kinetic descriptions of auxin uptake by plant cells made by Rubery and Sheldrake in 1974. Every aspect of that seminal work has been investigated in detail, and the uptake activity they measured is now known to be attributed to the AUX1/LAX family of permeases. Recent pharmacological studies have defined the substrate specificity of AUX1, biochemical studies have evaluated its permeability to auxin in plant cell membranes, and rigourous kinetic studies have confirmed the affinity of AUX1 for IAA and synthetic auxins. Advances in genome sequencing have provided a rich resource for informatic analysis of the ancestry of AUX1 and the LAX proteins and, along with models of topology, suggest mechanistic links to families of eukaryotic proton co-transporters for which crystal structures have been presented. The insights gained from all the accumulated research reflect the brilliance of Rubery and Sheldrake’s early work, but recent biochemical analyses are starting to advance further our understanding of this vitally important family of auxin transport proteins.
Collapse
|
6
|
Hoyerova K, Hosek P, Quareshy M, Li J, Klima P, Kubes M, Yemm AA, Neve P, Tripathi A, Bennett MJ, Napier RM. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates. THE NEW PHYTOLOGIST 2018; 217:1625-1639. [PMID: 29265374 DOI: 10.1111/nph.14950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/04/2017] [Indexed: 05/10/2023]
Abstract
Developmental responses to auxin are regulated by facilitated uptake and efflux, but detailed molecular understanding of the carrier proteins is incomplete. We have used pharmacological tools to explore the chemical space that defines substrate preferences for the auxin uptake carrier AUX1. Total and partial loss-of-function aux1 mutants were assessed against wild-type for dose-dependent resistance to a range of auxins and analogues. We then developed an auxin accumulation assay with associated mathematical modelling to enumerate accurate IC50 values for a small library of auxin analogues. The structure activity relationship data were analysed using molecular field analyses to create a pharmacophoric atlas of AUX1 substrates. The uptake carrier exhibits a very high level of selectivity towards small substrates including the natural indole-3-acetic acid, and the synthetic auxin 2,4-dichlorophenoxyacetic acid. No AUX1 activity was observed for herbicides based on benzoic acid (dicamba), pyridinyloxyacetic acid (triclopyr) or the 6-arylpicolinates (halauxifen), and very low affinity was found for picolinic acid-based auxins (picloram) and quinolinecarboxylic acids (quinclorac). The atlas demonstrates why some widely used auxin herbicides are not, or are very poor substrates. We list molecular descriptors for AUX1 substrates and discuss our findings in terms of herbicide resistance management.
Collapse
Affiliation(s)
- Klara Hoyerova
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Petr Hosek
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Jun Li
- Department of Pesticide Science, College of Crop Protection, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu Province, China
| | - Petr Klima
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic
| | - Martin Kubes
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
| | - Antony A Yemm
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Paul Neve
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Ashutosh Tripathi
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Malcolm J Bennett
- Plant Sciences Division and Centre for Plant Integrative Biology, School of Biological Sciences, The University of Nottingham, Sutton Bonnington Campus, Loughborough, LE12 5RD, UK
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Klíma P, Laňková M, Zažímalová E. Inhibitors of plant hormone transport. PROTOPLASMA 2016; 253:1391-1404. [PMID: 26494150 DOI: 10.1007/s00709-015-0897-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial 'specificity' to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted.
Collapse
Affiliation(s)
- Petr Klíma
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Martina Laňková
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Eva Zažímalová
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
9
|
Perrineau F, Wimalasekera R, Effendi Y, Scherer GFE. Inhibition of auxin transport and auxin signaling and treatment with far red light induces root coiling in the phospholipase-A mutant ppla-I-1. Significance for surface penetration? JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:53-9. [PMID: 27058428 DOI: 10.1016/j.jplph.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/15/2016] [Accepted: 03/18/2016] [Indexed: 05/10/2023]
Abstract
When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where - at least - gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil.
Collapse
Affiliation(s)
- F Perrineau
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany; Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften, Biologie, Biozentrum Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany.
| | - R Wimalasekera
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | - Y Effendi
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany; Al Azhar Indonesia University, Department of Biology, Sisingamangaraja, 12110 Jakarta, Indonesia.
| | - G F E Scherer
- Leibniz Universität Hannover, Institut für Gartenbauliche Produktionssysteme, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|
10
|
Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2015; 38:2208-22. [PMID: 25311360 DOI: 10.1111/pce.12467] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/01/2014] [Indexed: 05/06/2023]
Abstract
Polar auxin transport, mediated by influx and efflux transporters, controls many aspects of plant growth and development. The auxin influx carriers in Arabidopsis have been shown to control lateral root development and gravitropism, but little is known about these proteins in rice. This paper reports on the functional characterization of OsAUX1. Three OsAUX1 T-DNA insertion mutants and RNAi knockdown transgenic plants reduced lateral root initiation compared with wild-type (WT) plants. OsAUX1 overexpression plants exhibited increased lateral root initiation and OsAUX1 was highly expressed in lateral roots and lateral root primordia. Similarly, the auxin reporter, DR5-GUS, was expressed at lower levels in osaux1 than in the WT plants, which indicated that the auxin levels in the mutant roots had decreased. Exogenous 1-naphthylacetic acid (NAA) treatment rescued the defective phenotype in osaux1-1 plants, whereas indole-3-acetic acid (IAA) and 2,4-D could not, which suggested that OsAUX1 was a putative auxin influx carrier. The transcript levels of several auxin signalling genes and cell cycle genes significantly declined in osaux1, hinting that the regulatory role of OsAUX1 may be mediated by auxin signalling and cell cycle genes. Overall, our results indicated that OsAUX1 was involved in polar auxin transport and functioned to control auxin-mediated lateral root initiation in rice.
Collapse
Affiliation(s)
- Heming Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tengfei Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Haoli Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongsheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Seifertová D, Skůpa P, Rychtář J, Laňková M, Pařezová M, Dobrev PI, Hoyerová K, Petrášek J, Zažímalová E. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:429-37. [PMID: 24594395 DOI: 10.1016/j.jplph.2013.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 05/21/2023]
Abstract
Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.
Collapse
Affiliation(s)
- Daniela Seifertová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petr Skůpa
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Rychtář
- Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 130 Petty Building, NC 27403, USA.
| | - Martina Laňková
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Markéta Pařezová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Petre I Dobrev
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Klára Hoyerová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | - Eva Zažímalová
- Institute of Experimental Botany ASCR, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
12
|
Auxin transport and activity regulate stomatal patterning and development. Nat Commun 2014; 5:3090. [DOI: 10.1038/ncomms4090] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/11/2013] [Indexed: 11/09/2022] Open
|
13
|
Barbez E, Laňková M, Pařezová M, Maizel A, Zažímalová E, Petrášek J, Friml J, Kleine-Vehn J. Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC PLANT BIOLOGY 2013; 13:20. [PMID: 23379388 PMCID: PMC3598821 DOI: 10.1186/1471-2229-13-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/31/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. RESULTS We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. CONCLUSIONS This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin.
Collapse
Affiliation(s)
- Elke Barbez
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, 9052, Gent, Belgium
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| | - Martina Laňková
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, 16502, Praha 6, Czech Republic
| | - Markéta Pařezová
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, 16502, Praha 6, Czech Republic
| | - Alexis Maizel
- Department of Stem Cell Biology, Center for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Eva Zažímalová
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, 16502, Praha 6, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, 16502, Praha 6, Czech Republic
| | - Jiří Friml
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, 9052, Gent, Belgium
- Department of Functional Genomics and Proteomics, Faculty of Science, and CEITEC, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Jürgen Kleine-Vehn
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Genetics, Ghent University, 9052, Gent, Belgium
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Vienna, Austria
| |
Collapse
|
14
|
Garrett JJT, Meents MJ, Blackshaw MT, Blackshaw LC, Hou H, Styranko DM, Kohalmi SE, Schultz EA. A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation. PLANTA 2012; 236:297-312. [PMID: 22349732 DOI: 10.1007/s00425-012-1607-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Leaf vein pattern is proposed to be specified by directional auxin transport through presumptive vein cells. Activation of auxin response, which induces downstream genes that entrain auxin transport and lead to vascular differentiation, occurs through a set of transcription factors, the auxin response factors. In the absence of auxin, auxin response factors are inactive because they interact with repressor proteins, the Aux/IAA proteins. One member of the auxin response factor protein family, Auxin Response Factor 5/MONOPTEROS (MP), is critical to vein formation as indicated by reduced vein formation in loss-of-function MP alleles. We have identified a semi-dominant, gain-of-function allele of MP, autobahn or mp ( abn ), which results in vein proliferation in leaves and cotyledons. mp ( abn ) is predicted to encode a truncated product that lacks domain IV required for interaction with its Aux/IAA repressor BODENLOS (BDL). We show that the truncated product fails to interact with BDL in yeast two-hybrid assays. Ectopic expression of MP targets including the auxin efflux protein PINFORMED1 (PIN1) further supports the irrepressible nature of mp ( abn ). Asymmetric PIN1:GFP cellular localization does not occur within the enlarged PIN1:GFP expression domains, suggesting the asymmetry requires differential auxin response in neighbouring cells. Organ initiation from mp ( abn ) meristems is altered, consistent with disruption to source/sink relationships within the meristem and possible changes in gene expression. Finally, mp ( abn ) anthers fail to dehisce and their indehiscence can be relieved by jasmonic acid treatment, suggesting a specific role for MP in late anther development.
Collapse
Affiliation(s)
- Jasmine J T Garrett
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, TIK 3M4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hošek P, Kubeš M, Laňková M, Dobrev PI, Klíma P, Kohoutová M, Petrášek J, Hoyerová K, Jiřina M, Zažímalová E. Auxin transport at cellular level: new insights supported by mathematical modelling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3815-27. [PMID: 22438304 PMCID: PMC3388834 DOI: 10.1093/jxb/ers074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 05/20/2023]
Abstract
The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.
Collapse
Affiliation(s)
- Petr Hošek
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná 3105, 272 01 Kladno 2, Czech Republic
| | - Martin Kubeš
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Martina Laňková
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Petr Klíma
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Milada Kohoutová
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná 3105, 272 01 Kladno 2, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Klára Hoyerová
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Marcel Jiřina
- Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Nám. Sítná 3105, 272 01 Kladno 2, Czech Republic
| | - Eva Zažímalová
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| |
Collapse
|
16
|
Tsuda E, Yang H, Nishimura T, Uehara Y, Sakai T, Furutani M, Koshiba T, Hirose M, Nozaki H, Murphy AS, Hayashi KI. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters. J Biol Chem 2010; 286:2354-64. [PMID: 21084292 DOI: 10.1074/jbc.m110.171165] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.
Collapse
Affiliation(s)
- Etsuko Tsuda
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Laňková M, Smith RS, Pešek B, Kubeš M, Zažímalová E, Petrášek J, Hoyerová K. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3589-98. [PMID: 20595238 PMCID: PMC2921198 DOI: 10.1093/jxb/erq172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/26/2010] [Accepted: 05/25/2010] [Indexed: 05/21/2023]
Abstract
The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.
Collapse
Affiliation(s)
- Martina Laňková
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Richard S. Smith
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Bedřich Pešek
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Martin Kubeš
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Eva Zažímalová
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| | - Klára Hoyerová
- Institute of Experimental Botany, the Academy of Sciences of the Czech Republic, Rozvojová 263, CZ-165 02 Prague 6, Czech Republic
| |
Collapse
|
18
|
Zhao Y, Hasenstein KH. Physiological interactions of antiauxins with auxin in roots. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:879-884. [PMID: 20149478 DOI: 10.1016/j.jplph.2010.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 05/28/2023]
Abstract
The compound 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA) typically promotes root elongation but inhibits hypocotyl elongation and therefore can be described as antiauxin. We compared the mode of action of TFIBA with the classical antiauxin p-chlorophenoxyisobutyric acid (PCIB). TFIBA, more than PCIB, promoted primary root elongation in young flax (Linum usitatissimum) roots on plain agar, but inhibited root growth in older seedlings in the presence of nutrients. The root content of indole-3-acetic acid (IAA) after TFIBA and PCIB treatment increased almost two-fold. Abscisic acid was affected only by supraoptimal TFIBA, but increased after PCIB application. TFIBA inhibited acropetal auxin transport at concentrations higher than optimal for root elongation while PCIB had no effect. Basipetal auxin transport was promoted at less than 0.1mM but inhibited at 1mM TFIBA. In contrast, PCIB promoted basipetal auxin transport between 0.1 and 0.5mM; higher concentrations had no effect. Gravitropism was promoted by TFIBA at concentrations optimal for growth, but inhibited by higher concentrations. PCIB inhibited root gravitropism in a concentration dependent manner. The selective effect of TFIBA on IAA but not ABA and the interference with auxin transport and gravicurvature indicate that the mode of action of TFIBA is different from that of PCIB despite similar functions.
Collapse
Affiliation(s)
- Yingchun Zhao
- Biology Department, University of Louisiana Lafayette, LA 70504-2451, USA
| | | |
Collapse
|
19
|
Abstract
Plant development is characterized by the continuous initiation of tissues and organs. The meristems, which are small stem cell populations, are involved in this process. The shoot apical meristem produces lateral organs at its flanks and generates the growing stem. These lateral organs are arranged in a stereotyped pattern called phyllotaxis. Organ initiation in the peripheral zone of the meristem involves accumulation of the plant hormone auxin. Auxin is transported in a polar way by influx and efflux carriers located at cell membranes. Polar localization of the PIN1 efflux carrier in meristematic cells generates auxin concentration gradients and PIN1 localization depends, in turn, on auxin gradients: this feedback loop generates a dynamic auxin distribution which controls phyllotaxis. Furthermore, PIN-dependent local auxin gradients represent a common module for organ initiation, in the shoot and in the root.
Collapse
Affiliation(s)
- Isabelle Bohn-Courseau
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, route de Saint-Cyr, Versailles cedex, France.
| |
Collapse
|
20
|
Abstract
This protocol allows the measurement of auxin transport in roots, hypocotyls and inflorescences of Arabidopsis thaliana plants by examining transport of radiolabeled auxin or movement of an auxin-induced gene expression signal. The protocol contains four stages: seedling growth, auxin application, a transport period of variable length, and quantification of auxin movement or reporter expression. Beyond the time for plant growth, the transport assay can be completed within 4-18 h. Auxin is applied to seedlings in agar cylinders or droplets, which does not require specialized liquid-handling equipment or micromanipulators, in contrast with methods that apply auxin in liquid droplets. Spatial control of auxin application is reduced, but this method has the advantages of being technically more feasible for most laboratories and allowing agar containing radioactive auxin to be removed for pulse chase assays that determine transport rates. These methods allow investigation of genetic and environmental factors that control auxin transport.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
21
|
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JDG, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 2008; 10:946-54. [PMID: 18622388 DOI: 10.1038/ncb1754] [Citation(s) in RCA: 500] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/23/2008] [Indexed: 12/24/2022]
Abstract
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
Collapse
Affiliation(s)
- Kamal Swarup
- School of Biosciences & Centre for Plant Integrative Biology, University of Nottingham, LE12 5RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hoyerová K, Perry L, Hand P, Lanková M, Kocábek T, May S, Kottová J, Paces J, Napier R, Zazímalová E. Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems. PLANT PHYSIOLOGY 2008; 146:1128-41. [PMID: 18184737 PMCID: PMC2259084 DOI: 10.1104/pp.107.109371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/21/2007] [Indexed: 05/21/2023]
Abstract
We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants.
Collapse
Affiliation(s)
- Klára Hoyerová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. MOLECULAR PLANT 2008; 1:129-44. [PMID: 20031920 DOI: 10.1093/mp/ssm013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling, leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if co-irradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations--map1 (modifier of arf7 phenotypes 1)--was found to represent a missense allele of AUX1--a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmacological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.
Collapse
Affiliation(s)
- Bethany B Stone
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kerr ID, Bennett MJ. New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J 2007; 401:613-22. [PMID: 17209803 PMCID: PMC1770846 DOI: 10.1042/bj20061411] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transport of the plant hormone auxin has been under intense investigation since its identification 80 years ago. Studies have gradually refined our understanding of the importance of auxin transport in many aspects of plant signalling and development, and the focus has intensified in recent years towards the identification of the proteins involved in auxin transport and their functional mechanism. Within the past 18 months, the field has progressed rapidly, with confirmation that several distinct classes of proteins, previously dubbed as 'putative auxin permeases' or 'auxin transport facilitators', are bona fide transporters of IAA (indol-3-ylacetic acid). In this review we will appraise the recent transport data and highlight likely future research directions, including the characterization of auxiliary proteins necessary for the regulation of auxin transporters.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
25
|
Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. PLANT PHYSIOLOGY 2006; 142:542-52. [PMID: 16920877 PMCID: PMC1586033 DOI: 10.1104/pp.106.085969] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components.
Collapse
Affiliation(s)
- Terence A Walsh
- Dow AgroSciences, Discovery Research, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:788-801. [PMID: 16923017 DOI: 10.1111/j.1365-313x.2006.02832.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D), a chemical analogue of indole-3-acetic acid (IAA), is widely used as a growth regulator and exogenous source of auxin. Because 2,4-D evokes physiological and molecular responses similar to those evoked by IAA, it is believed that they share a common response pathway. Here, we show that a mutant, antiauxin resistant1 (aar1), identified in a screen for resistance to the anti-auxin p-chlorophenoxy-isobutyric acid (PCIB), is resistant to 2,4-D, yet nevertheless responds like the wild-type to IAA and 1-napthaleneacetic acid in root elongation and lateral root induction assays. That the aar1 mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the DR5:GUS and HS:AXR3NT-GUS backgrounds, as well as by real-time PCR quantification of IAA11 expression. The two characterized aar1 alleles both harbor multi-gene deletions; however, 2,4-D responsiveness was restored by transformation with one of the genes missing in both alleles, and the 2,4-D-resistant phenotype was reproduced by decreasing the expression of the same gene in the wild-type using an RNAi construct. The gene encodes a small, acidic protein (SMAP1) with unknown function and present in plants, animals and invertebrates but not in fungi or prokaryotes. Taken together, these results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D, and that responses to 2,4-D and IAA are partially distinct.
Collapse
Affiliation(s)
- Abidur Rahman
- Research Group for Plant Resource Application, Japan Atomic Energy Research Institute, Takasaki 370-1292, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shinohara N, Sugiyama M, Fukuda H. Higher extracellular pH suppresses tracheary element differentiation by affecting auxin uptake. PLANTA 2006; 224:394-404. [PMID: 16450170 DOI: 10.1007/s00425-006-0224-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/06/2006] [Indexed: 05/06/2023]
Abstract
In an optimized liquid medium containing auxin and cytokinin, mesophyll cells isolated from Zinnia elegans L. seedlings can be induced to differentiate into tracheary elements (TEs) at high frequency. However, it is known that buffering the medium at neutral pH severely suppresses TE differentiation. In the process of modifying the medium, we found that excessive administration of auxin restored the suppression. Based on this finding, we physiologically characterized auxin actions involved in TE differentiation by focusing on the influence of extracellular pH. First, dose/response relationships between auxin [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] concentrations and differentiated cell ratios were determined under various extracellular pH conditions. Secondly, intracellular concentrations of free forms and metabolites of auxin species were determined by analyzing extracts from cells cultured with radiolabeled NAA and 2,4-D under different extracellular pH conditions with liquid scintillation counting and thin-layer chromatography autoradiograms. Higher extracellular pH was found to reduce both the auxin potency for inducing TE differentiation and intracellular auxin accumulation. Reduction levels correlatively varied depending on the auxin species. These results suggest that the weakening in auxin potency at higher extracellular pH is ascribed to lower auxin uptake, which leads to decreased intracellular perception of the auxin signal. A model to predict auxin action that considers membrane transport, metabolism, and the perception of auxin is also presented.
Collapse
Affiliation(s)
- Naoki Shinohara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, 113-0033 Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Yoshida S, Kuriyama H, Fukuda H. Inhibition of Transdifferentiation into Tracheary Elements by Polar Auxin Transport Inhibitors Through Intracellular Auxin Depletion. ACTA ACUST UNITED AC 2005; 46:2019-28. [PMID: 16230330 DOI: 10.1093/pcp/pci217] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polar auxin transport is essential for the formation of continuous vascular strands in the plant body. To understand its mechanism, polar auxin transport inhibitors have often been used. However, the role of auxin in vascular differentiation at the unicellular level has remained elusive. Using a Zinnia elegans cell culture system, in which single mesophyll cells transdifferentiate into tracheary elements (TEs), we demonstrated that auxin transport inhibitors prevented TE differentiation and that high concentrations of 1-naphthaleneacetic acid (NAA) and IAA overcame the repression of TE differentiation. Measurements of NAA accumulation with 3H-labeled NAA in the presence or absence of 1-N-naphthylphthalamic acid (NPA) revealed enhanced NAA accumulation within the cell. In the NPA-treated cells, intracellular free NAA decreased, while its metabolites increased. Therefore, the polar auxin transport inhibitors may prevent auxin efflux and consequently promote NAA accumulation in Zinnia cells. The excess intracellular NAA may also activate NAA metabolism, resulting in a decrease in free NAA levels. This depletion of free NAA may prevent TE differentiation. The decreased auxin activity in NPA-treated cells was confirmed by the fact that the DR5 (a synthetic auxin-inducible promoter)-mediated expression of a reporter protein was suppressed in such cells. Gene expression analysis indicated that NPA suppressed TE differentiation at an early process of transdifferentiation into TEs. Based on these results, the inter-relationship between auxin and vascular cell development at a cellular level is discussed.
Collapse
Affiliation(s)
- Saiko Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | |
Collapse
|
29
|
Jambois A, Ditengou FA, Kawano T, Delbarre A, Lapeyrie F. The indole alkaloids brucine, yohimbine, and hypaphorine are indole-3-acetic acid-specific competitors which do not alter auxin transport. PHYSIOLOGIA PLANTARUM 2004; 120:501-508. [PMID: 15032848 DOI: 10.1111/j.0031-9317.2004.00268.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The indole alkaloids brucine and yohimbine, just like hypaphorine, counteract indole-3-acetic acid (IAA) activity in seedling roots, root hairs and shoots, but do not appear to alter auxin transport in roots or in cultured cells. In roots, the interactions between IAA and these three alkaloids appear competitive and specific since these molecules interact with IAA but with neither 1-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D), two synthetic auxins. The data reported further support the hypothesis that hypaphorine brucine and yohimbine compete with IAA on some auxin-binding proteins likely to be auxin receptors and that 2,4-D and NAA are not always perceived by the same receptor as IAA or the same component of that receptor. At certain steps of plant development and in certain cells, endogenous indole alkaloids could be involved in IAA activity regulation together with other well-described mechanisms such as conjugation or degradation. Hypaphorine with other active indole alkaloids remaining to be identified, might be regarded as a new class of IAA antagonists.
Collapse
Affiliation(s)
- Anne Jambois
- Unité Mixte de Recherche INRA-UHP Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique, F-54280 Champenoux, France
| | | | | | | | | |
Collapse
|
30
|
Renaudin JP. Growth and Physiology of Suspension-Cultured Plant Cells: the Contribution of Tobacco BY-2 Cells to the Study of Auxin Action. TOBACCO BY-2 CELLS 2004. [DOI: 10.1007/978-3-662-10572-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi KI, Tanaka A, Uchimiya H. p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. PLANT PHYSIOLOGY 2003; 133:1135-47. [PMID: 14526108 PMCID: PMC281609 DOI: 10.1104/pp.103.027847] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 06/26/2003] [Accepted: 07/29/2003] [Indexed: 05/18/2023]
Abstract
p-Chlorophenoxyisobutyric acid (PCIB) is known as a putative antiauxin and is widely used to inhibit auxin action, although the mechanism of PCIB-mediated inhibition of auxin action is not characterized very well at the molecular level. In the present work, we showed that PCIB inhibited BA::beta-glucuronidase (GUS) expression induced by indole-3-acetic acid (IAA), 2,4-dichlorophenoxyacetic acid, and 1-naphthaleneacetic acid. PCIB also inhibited auxin-dependent DR5::GUS expression. RNA hybridization and quantitative reverse transcriptase-polymerase chain reaction analyses suggested that PCIB reduced auxin-induced accumulation of transcripts of Aux/IAA genes. In addition, PCIB relieved the reduction of GUS activity in HS::AXR3NT-GUS transgenic line in which auxin inhibits GUS activity by promoting degradation of the AXR3NT-GUS fusion protein. Physiological analysis revealed that PCIB inhibited lateral root production, gravitropic response of roots, and growth of primary roots. These results suggest that PCIB impairs auxin-signaling pathway by regulating Aux/IAA protein stability and thereby affects the auxin-regulated Arabidopsis root physiology.
Collapse
Affiliation(s)
- Yutaka Oono
- Department of Ion-beam-applied Biology, Japan Atomic Energy Research Institute, Takasaki 370-1292, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. PLANT PHYSIOLOGY 2002; 130:1908-17. [PMID: 12481073 PMCID: PMC166701 DOI: 10.1104/pp.010546] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 07/15/2002] [Accepted: 09/02/2002] [Indexed: 05/18/2023]
Abstract
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.
Collapse
Affiliation(s)
- Abidur Rahman
- Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Stieger PA, Reinhardt D, Kuhlemeier C. The auxin influx carrier is essential for correct leaf positioning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:509-517. [PMID: 12445122 DOI: 10.1046/j.1365-313x.2002.01448.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.
Collapse
Affiliation(s)
- Pia A Stieger
- Institute of Plant Sciences, University of Berne, Switzerland
| | | | | |
Collapse
|
34
|
Basu S, Sun H, Brian L, Quatrano RL, Muday GK. Early embryo development in Fucus distichus is auxin sensitive. PLANT PHYSIOLOGY 2002; 130:292-302. [PMID: 12226509 PMCID: PMC166562 DOI: 10.1104/pp.004747] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 04/05/2002] [Accepted: 05/21/2002] [Indexed: 05/19/2023]
Abstract
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.
Collapse
Affiliation(s)
- Swati Basu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109-7325, USA
| | | | | | | | | |
Collapse
|
35
|
Friml J, Palme K. Polar auxin transport--old questions and new concepts? PLANT MOLECULAR BIOLOGY 2002; 49:273-284. [PMID: 12036254 DOI: 10.1007/978-94-010-0377-3_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polar auxin transport controls multiple aspects of plant development including differential growth, embryo and root patterning and vascular tissue differentiation. Identification of proteins involved in this process and availability of new tools enabling 'visualization' of auxin and auxin routes in planta largely contributed to the significant progress that has recently been made. New data support classical concepts, but several recent findings are likely to challenge our view on the mechanism of auxin transport. The aim of this review is to provide a comprehensive overview of the polar auxin transport field. It starts with classical models resulting from physiological studies, describes the genetic contributions and discusses the molecular basis of auxin influx and efflux. Finally, selected questions are presented in the context of developmental biology, integrating available data from different fields.
Collapse
Affiliation(s)
- Jirí Friml
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Germany.
| | | |
Collapse
|
36
|
Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B. Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 2002; 12:329-34. [PMID: 11864575 DOI: 10.1016/s0960-9822(02)00654-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coordination of cell and tissue polarity commonly involves directional signaling. In the Arabidopsis root epidermis, cell polarity is revealed by basal, root tip-oriented, hair outgrowth from hair-forming cells (trichoblasts). The plant hormone auxin displays polar movements and accumulates at maximum concentration in the root tip. The application of polar auxin transport inhibitors evokes changes in trichoblast polarity only at high concentrations and after long-term application. Thus, it remains open whether components of the auxin transport machinery mediate establishment of trichoblast polarity. Here we report that the presumptive auxin influx carrier AUX1 contributes to apical-basal hair cell polarity. AUX1 function is required for polarity changes induced by exogenous application of the auxin 2,4-D, a preferential influx carrier substrate. Similar to aux1 mutants, the vesicle trafficking inhibitor brefeldin A (BFA) interferes with polar hair initiation, and AUX1 function is required for BFA-mediated polarity changes. Consistently, BFA inhibits membrane trafficking of AUX1, trichoblast hyperpolarization induced by 2,4-D, and alters the distal auxin maximum. Our results identify AUX1 as one component of a novel BFA-sensitive auxin transport pathway polarizing cells toward a hormone maximum.
Collapse
Affiliation(s)
- Markus Grebe
- Department of Molecular Cell Biology and, 3584 CH, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rahman A, Ahamed A, Amakawa T, Goto N, Tsurumi S. Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. PLANT PHYSIOLOGY 2001; 125:990-1000. [PMID: 11161055 PMCID: PMC64899 DOI: 10.1104/pp.125.2.990] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Revised: 06/12/2000] [Accepted: 09/12/2000] [Indexed: 05/21/2023]
Abstract
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.
Collapse
Affiliation(s)
- A Rahman
- Graduate School of Science and Technology, Kobe University, Rokkodai, Nadaku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:399-406. [PMID: 11260496 DOI: 10.1046/j.1365-313x.2001.00970.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.
Collapse
Affiliation(s)
- G Parry
- Division of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|