1
|
Wang J, Shen Y, Sheng X, Yu H, Song M, Wang Q, Gu H. Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:750. [PMID: 38592746 PMCID: PMC10976094 DOI: 10.3390/plants13060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.
Collapse
Affiliation(s)
- Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Mengfei Song
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China;
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.W.); (Y.S.); (X.S.); (H.Y.); (M.S.)
| |
Collapse
|
2
|
Marothia D, Kaur N, Jhamat C, Sharma I, Pati PK. Plant lectins: Classical molecules with emerging roles in stress tolerance. Int J Biol Macromol 2023:125272. [PMID: 37301347 DOI: 10.1016/j.ijbiomac.2023.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic stresses impose adverse effects on plant's development, growth, and production. For the past many years, researchers are trying to understand the stress induced responses in plants and decipher strategies to produce stress tolerant crops. It has been demonstrated that molecular networks encompassing an array of genes and functional proteins play a key role in generating responses to combat different stresses. Newly, there has been a resurgence of interest to explore the role of lectins in modulating various biological responses in plants. Lectins are naturally occurring proteins that form reversible linkages with their respective glycoconjugates. To date, several plant lectins have been recognized and functionally characterized. However, their involvement in stress tolerance is yet to be comprehensively analyzed in greater detail. The availability of biological resources, modern experimental tools, and assay systems has provided a fresh impetus for plant lectin research. Against this backdrop, the present review provides background information on plant lectins and recent knowledge on their crosstalks with other regulatory mechanisms, which play a remarkable role in plant stress amelioration. It also highlights their versatile role and suggests that adding more information to this under-explored area will usher in a new era of crop improvement.
Collapse
Affiliation(s)
- Deeksha Marothia
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Chetna Jhamat
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Ipsa Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
3
|
Han D, Tan J, Yue Z, Tao P, Lei J, Zang Y, Hu Q, Wang H, Zhang S, Li B, Zhao Y. Genome-Wide Identification and Expression Analysis of ESPs and NSPs Involved in Glucosinolate Hydrolysis and Insect Attack Defense in Chinese Cabbage ( Brassica rapa subsp. pekinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:1123. [PMID: 36903983 PMCID: PMC10005253 DOI: 10.3390/plants12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates are secondary plant metabolites that are part of the plant's defense system against pathogens and pests and are activated via enzymatic degradation by thioglucoside glucohydrolases (myrosinases). Epithiospecifier proteins (ESPs) and nitrile-specifier proteins (NSPs) divert the myrosinase-catalyzed hydrolysis of a given glucosinolate to form epithionitrile and nitrile rather than isothiocyanate. However, the associated gene families have not been explored in Chinese cabbage. We identified three ESP and fifteen NSP genes randomly distributed on six chromosomes in Chinese cabbage. Based on a phylogenetic tree, the ESP and NSP gene family members were divided into four clades and had similar gene structure and motif composition of Brassica rapa epithiospecifier proteins (BrESPs) and B. rapa nitrile-specifier proteins (BrNSPs) in the same clade. We identified seven tandem duplicated events and eight pairs of segmentally duplicated genes. Synteny analysis showed that Chinese cabbage and Arabidopsis thaliana are closely related. We detected the proportion of various glucosinolate hydrolysates in Chinese cabbage and verified the function of BrESPs and BrNSPs in glucosinolate hydrolysis. Furthermore, we used quantitative RT-PCR to analyze the expression of BrESPs and BrNSPs and demonstrated that these genes responded to insect attack. Our findings provide novel insights into BrESPs and BrNSPs that can help further promote the regulation of glucosinolate hydrolysates by ESP and NSP to resist insect attack in Chinese cabbage.
Collapse
Affiliation(s)
- Danni Han
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Jingru Tan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunxiang Zang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China
| | - Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Galádová H, Polozsányi Z, Breier A, Šimkovič M. Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules 2022; 12:biom12030406. [PMID: 35327598 PMCID: PMC8945721 DOI: 10.3390/biom12030406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane and other natural isothiocyanates released from the respective plant glucosinolates by the plant enzyme myrosinase (β-thioglucoside glucohydrolase) show extensive anticancer and antimicrobial effects. In this study, myrosinase from garden cress (Lepidium sativum) seeds was purified to electrophoretic homogeneity by a fast and easy strategy consisting of fractionation by isoelectric precipitation with ammonium sulphate (AS) and affinity chromatography using sulforaphane (SFN) attached to cellulose resin. The overall purification of enzyme with respect to crude extract was 169-fold and recovery of 37%. Under non-reducing conditions, two protein bands exhibiting myrosinase activity with masses of about 114 and 122 kDa, respectively, and a 58 kDa protein band with no activity were detected by SDS-PAGE and zymography on polyacrylamide gel. MALDI-Tof/Tof of tryptic fragments obtained from the respective protein bands detected sequence motifs homologous to the regions responsible for glycoside-substrate binding and similarities to members of the enzyme subfamilies β-glucosidases and myrosinases GH. The enzyme hydrolyzed both the natural (sinigrin, sinalbin, glucoraphanin) and the synthetic (p-nitrophenol-β-D-glucopyranoside (pNPG)) substrates. The highest catalytic activity of purified enzyme was achieved against sinigrin. The KM and Vmax values of the enzyme for sinigrin were found to be 0.57 mM, and 1.3 mM/s, respectively. The enzyme was strongly activated by 30 μM ascorbic acid. The optimum temperature and pH for enzyme was 50 °C and pH 6.0, respectively. The purified enzyme could be stored at 4 °C and slightly acidic pH for at least 45 days without a significant decrease in specific activity.
Collapse
Affiliation(s)
- Helena Galádová
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Zoltán Polozsányi
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
| | - Albert Breier
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (H.G.); (Z.P.); (A.B.)
- Correspondence:
| |
Collapse
|
5
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Barco B, Clay NK. Evolution of Glucosinolate Diversity via Whole-Genome Duplications, Gene Rearrangements, and Substrate Promiscuity. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:585-604. [PMID: 31035830 DOI: 10.1146/annurev-arplant-050718-100152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over several decades, glucosinolates have become a model system for the study of specialized metabolic diversity in plants. The near-complete identification of biosynthetic enzymes, regulators, and transporters has provided support for the role of gene duplication and subsequent changes in gene expression, protein function, and substrate specificity as the evolutionary bases of glucosinolate diversity. Here, we provide examples of how whole-genome duplications, gene rearrangements, and substrate promiscuity potentiated the evolution of glucosinolate biosynthetic enzymes, regulators, and transporters by natural selection. This in turn may have led to the repeated evolution of glucosinolate metabolism and diversity in higher plants.
Collapse
Affiliation(s)
- Brenden Barco
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, Connecticut 06511, USA; ,
| |
Collapse
|
7
|
Chhajed S, Misra BB, Tello N, Chen S. Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution. FRONTIERS IN PLANT SCIENCE 2019; 10:618. [PMID: 31164896 PMCID: PMC6536577 DOI: 10.3389/fpls.2019.00618] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other plant specialized metabolites, their presence does not directly affect the plant survival in terms of growth and development. However, specialized metabolites are essential to combat environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many pungent plants in the order of Brassicales. To date, more than 200 different GLS structures have been characterized and their distribution differs from species to species. GLSs co-exist with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone thiohydroximate-O-sulfonate, which rearranges to produce different degradation products. GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products constitute the GLS-myrosinase (GM) system ("mustard oil bomb"). This review discusses the cellular and subcellular organization of the GM system, its chemodiversity, and functions in different cell types. Although there are many studies on the functions of GLSs and/or myrosinases at the tissue and whole plant levels, very few studies have focused on different single cell types. Single cell type studies will help to reveal specific functions that are missed at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins; (2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase interaction with its interacting proteins, and how it regulates the degradation of GLSs and thus the biological functions (e.g., plant defense against pathogens). Future prospects may include targeted approaches for engineering/breeding of plants and crops in the cell type-specific manner toward enhanced plant defense and nutrition.
Collapse
Affiliation(s)
- Shweta Chhajed
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Biswapriya B. Misra
- Department of Biology, University of Florida, Gainesville, FL, United States
- Section on Molecular Medicine, Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nathalia Tello
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Sixue Chen,
| |
Collapse
|
8
|
Gu J, Chao H, Gan L, Guo L, Zhang K, Li Y, Wang H, Raboanatahiry N, Li M. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1482. [PMID: 27822216 PMCID: PMC5075573 DOI: 10.3389/fpls.2016.01482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Lu Gan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
- *Correspondence: Maoteng Li
| |
Collapse
|
9
|
Pinedo M, Orts F, Carvalho ADO, Regente M, Soares JR, Gomes VM, de la Canal L. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:144-53. [PMID: 26140981 DOI: 10.1016/j.jplph.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 05/25/2023]
Abstract
Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway. Helja mRNA is present in seeds, cotyledons, roots and hypocotyls, but no transcripts were detected in the leaves. Searches for sequence similarity showed that Helja is barely similar to other JRLs present in H. annuus databases and less than 45% identical to other monocot or dicot JRLs. Strikingly, most of the merolectins recovered through data mining using Helja as a query were predicted as apoplastic, although most of these proteins lack the signal peptide required for classical secretion. Thus, Helja is the first bait identified to recover putative unconventionally secreted lectins. Because the recovered JRLs are widely distributed among the plant kingdom, an as yet unknown role for jacalin lectins in the apoplast is emerging.
Collapse
Affiliation(s)
- Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Facundo Orts
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Julia Ribeiro Soares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| |
Collapse
|
10
|
Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J 2013; 30:641-57. [PMID: 23299509 PMCID: PMC3769584 DOI: 10.1007/s10719-012-9464-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Maria A Souza
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | |
Collapse
|
11
|
Badri DV, De-la-Peña C, Lei Z, Manter DK, Chaparro JM, Guimarães RL, Sumner LW, Vivanco JM. Root secreted metabolites and proteins are involved in the early events of plant-plant recognition prior to competition. PLoS One 2012; 7:e46640. [PMID: 23056382 PMCID: PMC3462798 DOI: 10.1371/journal.pone.0046640] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions.
Collapse
Affiliation(s)
- Dayakar V. Badri
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clelia De-la-Peña
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Zhentian Lei
- The Samuel Roberts Noble Foundation, Plant Biology Division, Oklahoma, United States of America
| | - Daniel K. Manter
- U.S. Department of Agriculture - Agricultural Research Service, Soil-Plant-Nutrient Research Unit, Fort Collins, Colorado, United States of America
| | - Jacqueline M. Chaparro
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Lloyd W. Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, Oklahoma, United States of America
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
12
|
Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 2012; 168:1694-717. [PMID: 22983743 DOI: 10.1007/s12010-012-9890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.
Collapse
|
13
|
Novel Concepts About the Role of Lectins in the Plant Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:271-94. [DOI: 10.1007/978-1-4419-7877-6_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Borgen BH, Thangstad OP, Ahuja I, Rossiter JT, Bones AM. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1683-97. [PMID: 20219777 PMCID: PMC2852662 DOI: 10.1093/jxb/erq039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 05/23/2023]
Abstract
Many plant phytochemicals constitute binary enzyme-glucoside systems and function in plant defence. In brassicas, the enzyme myrosinase is confined to specific myrosin cells that separate the enzyme from its substrate; the glucosinolates. The myrosinase-catalysed release of toxic and bioactive compounds such as isothiocyanates, upon activation or tissue damage, has been termed 'the mustard oil bomb' and characterized as a 'toxic mine' in plant defence. The removal of myrosin cells and the enzyme that triggers the release of phytochemicals have been investigated by genetically modifying Brassica napus plants to remove myrosinase-storing idioblasts. A construct with the seed myrosin cell-specific Myr1.Bn1 promoter was used to express a ribonuclease, barnase. Transgenic plants ectopically expressing barnase were embryo lethal. Co-expressing barnase under the control of the Myr1.Bn1 promoter with the barnase inhibitor, barstar, under the control of the cauliflower mosaic virus 35S promoter enabled a selective and controlled death of myrosin cells without affecting plant viability. Ablation of myrosin cells was confirmed with light and electron microscopy, with immunohistological analysis and immunogold-electron microscopy analysis showing empty holes where myrosin cells normally are localized. Further evidence for a successful myrosin cell ablation comes from immunoblots showing absence of myrosinase and negligible myrosinase activity, and autolysis experiments showing negligible production of glucosinolate hydrolysis products. The plants where the myrosin defence cells have been ablated and named 'MINELESS plants'. The epithiospecifier protein profile and glucosinolate levels were changed in MINELESS plants, pointing to localization of myrosinases and a 35 kDa epithiospecifier protein in myrosin cells and a reduced turnover of glucosinolates in MINELESS plants.
Collapse
Affiliation(s)
- Birgit Hafeld Borgen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Ole Petter Thangstad
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - John Trevor Rossiter
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| |
Collapse
|
15
|
Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. THE ARABIDOPSIS BOOK 2010; 8:e0134. [PMID: 22303260 PMCID: PMC3244901 DOI: 10.1199/tab.0134] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glucosinolates are a group of thioglucosides in plants of the Brassicales order. Together with their hydrolytic enzymes, the myrosinases, they constitute the 'mustard oil bomb' involved in plant defense. Here we summarize recent studies in Arabidopsis that have provided molecular evidence that the glucosinolate-myrosinase system is much more than a 'two-component defense system,' and started to unravel the roles of different glucosinolate breakdown pathways in the context of plant responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ute Wittstock
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig
- Address for correspondence:
| | - Meike Burow
- Department of Plant Biology and Biotechnology, VKR Research Centre Pro-Active Plants
| |
Collapse
|
16
|
Lannoo N, Van Damme EJM. Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 2009; 1800:190-201. [PMID: 19647040 DOI: 10.1016/j.bbagen.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the 'classical' plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein-carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | |
Collapse
|
17
|
Kissen R, Bones AM. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. J Biol Chem 2009; 284:12057-70. [PMID: 19224919 DOI: 10.1074/jbc.m807500200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glucosinolates are plant secondary metabolites present in Brassicaceae plants such as the model plant Arabidopsis thaliana. Intact glucosinolates are believed to be biologically inactive, whereas degradation products after hydrolysis have multiple roles in growth regulation and defense. The degradation of glucosinolates is catalyzed by thioglucosidases called myrosinases and leads by default to the formation of isothiocyanates. The interaction of a protein called epithiospecifier protein (ESP) with myrosinase diverts the reaction toward the production of epithionitriles or nitriles depending on the glucosinolate structure. Here we report the identification of a new group of nitrile-specifier proteins (AtNSPs) in A. thaliana able to generate nitriles in conjunction with myrosinase and a more detailed characterization of one member (AtNSP2). Recombinant AtNSP2 expressed in Escherichia coli was used to test its impact on the outcome of glucosinolate hydrolysis using a gas chromatography-mass spectrometry approach. AtNSP proteins share 30-45% sequence homology with A. thaliana ESP. Although AtESP and AtNSP proteins can switch myrosinase-catalyzed degradation of 2-propenylglucosinolate from isothiocyanate to nitrile, only AtESP generates the corresponding epithionitrile. Using the aromatic benzylglucosinolate, recombinant AtNSP2 is also able to direct product formation to the nitrile. Analysis of glucosinolate hydrolysis profiles of transgenic A. thaliana plants overexpressing AtNSP2 confirms its nitrile-specifier activity in planta. In silico expression analysis reveals distinctive expression patterns of AtNSPs, which supports a biological role for these proteins. In conclusion, we show that AtNSPs belonging to a new family of A. thaliana proteins structurally related to AtESP divert product formation from myrosinase-catalyzed glucosinolate hydrolysis and, thereby, likely affect the biological consequences of glucosinolate degradation. We discuss similarities and properties of AtNSPs and related proteins and the biological implications.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | |
Collapse
|
18
|
Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:561-74. [PMID: 18987211 PMCID: PMC2613743 DOI: 10.1104/pp.108.130732] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/31/2008] [Indexed: 05/18/2023]
Abstract
Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.
Collapse
Affiliation(s)
- Meike Burow
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Nagano AJ, Fukao Y, Fujiwara M, Nishimura M, Hara-Nishimura I. Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2008; 49:969-80. [PMID: 18467340 DOI: 10.1093/pcp/pcn075] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
PYK10/BGLU23 is a beta-glucosidase that is a major protein of ER bodies, which are endoplasmic reticulum (ER)-derived organelles that may be involved in defense systems. PYK10 has active and inactive forms. Active PYK10 molecules form large complexes with diameters ranging from 0.65 microm to > 70 microm. We identified three beta-glucosidases (PYK10, BGLU21 and BGLU22), five jacalin-related lectins (JALs) and a GDSL lipase-like protein (GLL) in the purified PYK10 complex. Expression levels of JALs and GLLs were lower in the nai1-1 mutant, which has no ER bodies, than in Col-0. The subcellular localization of PYK10 is predicted to be different from the localizations of JALs and GLLs. This suggests that PYK10 interacts with its partners (JALs and GLLs) when the subcellular structure is destroyed by pathogens. The PYK10 complex was found to be larger in the pbp1-1 and jal22-1 mutants than in Col-0, while it was smaller in the jal23-1, jal31-1 and jal31-2 mutants than in Col-0. These results show that two types of JALs having opposite roles regulate the size of the PYK10 complex antagonistically. We define the two types of lectins as a 'polymerizer-type lectin' and an 'inhibitor-type lectin'. Interestingly, the closest homologs of polymerizer-type lectins (JAL31 and JAL23) were inhibitor-type lectins (PBP1/JAL30 and JAL22). The pairs of polymerizer-type and inhibitor-type lectins reported here are good examples of genes that have evolved new functions after gene duplication (neofunctionalization).
Collapse
Affiliation(s)
- Atsushi J Nagano
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|
20
|
Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. beta-Glucosidases as detonators of plant chemical defense. PHYTOCHEMISTRY 2008; 69:1795-813. [PMID: 18472115 DOI: 10.1016/j.phytochem.2008.03.006] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 05/03/2023]
Abstract
Some plant secondary metabolites are classified as phytoanticipins. When plant tissue in which they are present is disrupted, the phytoanticipins are bio-activated by the action of beta-glucosidases. These binary systems--two sets of components that when separated are relatively inert--provide plants with an immediate chemical defense against protruding herbivores and pathogens. This review provides an update on our knowledge of the beta-glucosidases involved in activation of the four major classes of phytoanticipins: cyanogenic glucosides, benzoxazinoid glucosides, avenacosides and glucosinolates. New aspects of the role of specific proteins that either control oligomerization of the beta-glucosidases or modulate their product specificity are discussed in an evolutionary perspective.
Collapse
Affiliation(s)
- Anne Vinther Morant
- Plant Biochemistry Laboratory, Department of Plant Biology and The VKR Research Centre Proactive Plants, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
21
|
Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmüller R. PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:428-39. [PMID: 18248598 DOI: 10.1111/j.1365-313x.2008.03424.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Piriformospora indica, an endophyte of the Sebacinaceae family, promotes growth and seed production of many plant species, including Arabidopsis. Growth of a T-DNA insertion line in PYK10 is not promoted and the plants do not produce more seeds in the presence of P. indica, although their roots are more colonized by the fungus than wild-type roots. Overexpression of PYK10 mRNA did not affect root colonization and the response to the fungus. PYK10 codes for a root- and hypocotyl-specific beta-glucosidase/myrosinase, which is implicated to be involved in plant defences against herbivores and pathogens. Expression of PYK10 is activated by the basic helix-loop-helix domain containing transcription factor NAI1, and two Arabidopsis lines with mutations in the NAI1 gene show the same response to P. indica as the PYK10 insertion line. PYK10 transcript and PYK10 protein levels are severely reduced in a NAI1 mutant, indicating that PYK10 and not the transcription factor NAI1 is responsible for the response to the fungus. In wild-type roots, the message level for a leucine-rich repeat protein LRR1, but not for plant defensin 1.2 (PDF1.2), is upregulated in the presence of P. indica. In contrast, in lines with reduced PYK10 levels the PDF1.2, but not LRR1, message level is upregulated in the presence of the fungus. We propose that PYK10 restricts root colonization by P. indica, which results in the repression of defence responses and the upregulation of responses leading to a mutualistic interaction between the two symbiotic partners.
Collapse
Affiliation(s)
- Irena Sherameti
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bellostas N, Petersen IL, Sørensen JC, Sørensen H. A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds. ACTA ACUST UNITED AC 2008; 70:918-25. [DOI: 10.1016/j.jprot.2007.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/30/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
23
|
Lannoo N, Vandenborre G, Miersch O, Smagghe G, Wasternack C, Peumans WJ, Van Damme EJM. The jasmonate-induced expression of the Nicotiana tabacum leaf lectin. PLANT & CELL PHYSIOLOGY 2007; 48:1207-18. [PMID: 17623741 DOI: 10.1093/pcp/pcm090] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Previous experiments with tobacco (Nicotiana tabacum L. cv Samsun NN) plants revealed that jasmonic acid methyl ester (JAME) induces the expression of a cytoplasmic/nuclear lectin in leaf cells and provided the first evidence that jasmonates affect the expression of carbohydrate-binding proteins in plant cells. To corroborate the induced accumulation of relatively large amounts of a cytoplasmic/nuclear lectin, a detailed study was performed on the induction of the lectin in both intact tobacco plants and excised leaves. Experiments with different stress factors demonstrated that the lectin is exclusively induced by exogeneously applied jasmonic acid and JAME, and to a lesser extent by insect herbivory. The lectin concentration depends on leaf age and the position of the tissue in the leaf. JAME acts systemically in intact plants but very locally in excised leaves. Kinetic analyses indicated that the lectin is synthesized within 12 h exposure time to JAME, reaching a maximum after 60 h. After removal of JAME, the lectin progressively disappears from the leaf tissue. The JAME-induced accumulation of an abundant nuclear/cytoplasmic lectin is discussed in view of the possible role of this lectin in the plant.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Jung C, Lyou SH, Yeu S, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong JJ. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. PLANT CELL REPORTS 2007; 26:1053-63. [PMID: 17297615 DOI: 10.1007/s00299-007-0311-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 01/09/2007] [Accepted: 01/18/2007] [Indexed: 05/13/2023]
Abstract
Jasmonates comprise a family of plant hormones that regulate gene expression to modulate diverse developmental and defensive processes. To screen a set of jasmonate-responsive Arabidopsis genes, we performed a microarray analysis using an Affymetrix GeneChip containing about 8,300 gene probes synthesized in situ. External treatment with 100 microM methyl jasmonate resulted in significant changes (more than twofold increases or decreases) in the expression levels of 137 genes in the rosette leaves of 5-week-old Arabidopsis plants. Of these, 74 genes were up-regulated, including those involved in jasmonate biosynthesis, defense responses, oxidative stress responses, senescence, and cell wall modification. In contrast, the expression of genes involved in chlorophyll constitution and photosynthesis was down-regulated. Most importantly, the jasmonate treatment significantly reduced transcripts of abscisic acid-responsive cold/drought-stress genes, which suggests that an antagonistic interaction occurs between the jasmonate and abscisic acid signaling pathways in abiotic stress responses. Northern blot analysis of some selected genes revealed that the jasmonate-responsive genes exhibited unique time-course expression patterns after the external jasmonate treatment. Based on the basic clustering of the genes, we established a likely regulation scenario: the genes induced early after treatment are involved in signaling mechanisms that activate or repress other genes, whereas intermediate- and late-accumulating genes are activated by the signaling mechanisms and are subsequently involved in the ultimate jasmonate-modulated cellular responses.
Collapse
Affiliation(s)
- Choonkyun Jung
- School of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sarosh BR, Meijer J. Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate, wounding and insect attack in Brassica napus. PLANT MOLECULAR BIOLOGY 2007; 64:425-38. [PMID: 17401749 DOI: 10.1007/s11103-007-9164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/04/2007] [Indexed: 05/14/2023]
Abstract
Plants exploit a broad range of defense mechanisms to effectively combat invasion by pathogens or herbivores. Each environmental stress activates multiple signal transduction pathways to ensure an effective spatial and temporal defense response. A detailed transcriptome analysis using the cDNA-AFLP technique was performed to identify genes that are differentially expressed in oilseed rape (Brassica napus cv. Westar) leaves upon treatment with methyl jasmonate, mechanical wounding, or feeding by diamondback moth larvae (Plutella xylostella). In total, 16 different primer combinations were used, generating cDNA fragments ranging from 50 bp to 500 bp in size. This technique generated an average of 60 amplification products per reaction and therefore a total number of 5,600 fragments per treatment. Out of 16,800 bands, 124 showed qualitative differences among the treated and their respective control samples, including 95 up-regulated and 29 down-regulated bands. Expression of a selected subset of differentially expressed genes was confirmed by Northern blot analysis. Sequencing of fragments grouped many of the expressed genes in the categories of signaling and wound or pathogen response with examples like Jacalin, Strictosidine synthase and MD-2-LPS homologs. Genes with altered expression in distal tissue included those involved in cellular housekeeping functions, suggesting modified resource allocation needed to respond to different stress conditions. Differences in local and systemic response as well as among the three different challenges were observed. Several new transcripts were identified that may play a role in insect attack and other signal transduction pathways.
Collapse
Affiliation(s)
- Bejai R Sarosh
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, Uppsala, 750 07, Sweden.
| | | |
Collapse
|
26
|
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 2007; 20:3407-25. [PMID: 17182867 PMCID: PMC1698448 DOI: 10.1101/gad.1476406] [Citation(s) in RCA: 969] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of heterochromatic small interfering RNAs (siRNAs) associated with DNA silencing in that they were preferentially 24 nucleotides long and mapped to intergenic regions. Their density was greatest in the proximal and distal pericentromeric regions, with only a slightly preferential propensity to match repetitive elements. Also present were 38 newly identified microRNAs (miRNAs) and dozens of other plausible candidates. One miRNA mapped within an intron of DICER-LIKE 1 (DCL1), suggesting a second homeostatic autoregulatory mechanism for DCL1 expression; another defined the phase for siRNAs deriving from a newly identified trans-acting siRNA gene (TAS4); and two depended on DCL4 rather than DCL1 for their accumulation, indicating a second pathway for miRNA biogenesis in plants. More generally, our results revealed the existence of a layer of miRNA-based control beyond that found previously that is evolutionarily much more fluid, employing many newly emergent and diverse miRNAs, each expressed in specialized tissues or at low levels under standard growth conditions.
Collapse
Affiliation(s)
- Ramya Rajagopalan
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Hervé Vaucheret
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France
| | - Jerry Trejo
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - David P. Bartel
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Corresponding author.E-MAIL ; FAX (617) 258-6768
| |
Collapse
|
27
|
Terp N, Göbel C, Brandt A, Feussner I. Lipoxygenases during Brassica napus seed germination. PHYTOCHEMISTRY 2006; 67:2030-40. [PMID: 16884747 DOI: 10.1016/j.phytochem.2006.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/18/2006] [Accepted: 06/19/2006] [Indexed: 05/11/2023]
Abstract
The peroxidation of polyunsaturated fatty acids is mostly catalyzed by members of the lipoxygenase enzyme family. Lipoxygenase products can be metabolized further in the oxylipin pathway and are known as signalling substances that play a role in plant development as well as in plant responses to wounding and pathogen attack. Apart from accumulating data in model plants like Arabidopsis, information on the relevance of lipid peroxide metabolism in the crop plant oilseed rape is scarce. Thus we aimed to analyze lipoxygenases and oxylipin patterns in seedlings of oilseed rape. RNA isolated from 3 day etiolated seedlings contains mRNAs for at least two different lipoxygenases. These have been cloned as cDNAs and named Bn-Lox-1fl and Bn-Lox-2fl. The protein encoded by Bn-Lox-2fl was identified as a 13-lipoxygenase by expression in Escherichia coli. The Bn-Lox-1fl yielded an inactive protein when expressed in E. coli. Based on Bn-Lox-1fl active site determinants and on sequence homology the Bn-Lox-1fl is most likely a 9-lipoxygenase. Both genes are expressed in light-grown and etiolated cotyledons as well as in leaves. Bn-Lox-2fl protein is more abundant in cotyledons of etiolated seedlings than in cotyledons of green seedlings. Both 13- and 9-lipoxygenase-derived hydroperoxides can be detected during germination. Etiolated seedlings contain more lipoxygenase-derived hydroperoxides in non esterified fatty acids than green seedlings. The 13-lipoxygenase derivatives are 6-8-fold more abundant than the 9-derivatives. Lipoxygenase-derived hydroperoxides in esterified lipids are almost not present during germination. These results suggest that 13-lipoxygenases acting on free fatty acids dominate during B. napus seed germination.
Collapse
Affiliation(s)
- Nina Terp
- Carlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. PLANT PHYSIOLOGY 2006; 141:910-23. [PMID: 16679420 PMCID: PMC1489900 DOI: 10.1104/pp.106.082057] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.
Collapse
Affiliation(s)
- Loïc Rajjou
- Centre National de la Recherche Scientifique, Bayer CropScience Joint Laboratory, Unité Mixte de Recherche 2847, F-69263 Lyon cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya KI, Shibata D, Ohta H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:653-68. [PMID: 16262714 DOI: 10.1111/j.1365-313x.2005.02560.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively termed jasmonates, are ubiquitous plant signalling compounds. Several types of stress conditions, such as wounding and pathogen infection, cause endogenous JA accumulation and the expression of jasmonate-responsive genes. Although jasmonates are important signalling components for the stress response in plants, the mechanism by which jasmonate signalling contributes to stress tolerance has not been clearly defined. A comprehensive analysis of jasmonate-regulated metabolic pathways in Arabidopsis was performed using cDNA macroarrays containing 13516 expressed sequence tags (ESTs) covering 8384 loci. The results showed that jasmonates activate the coordinated gene expression of factors involved in nine metabolic pathways belonging to two functionally related groups: (i) ascorbate and glutathione metabolic pathways, which are important in defence responses to oxidative stress, and (ii) biosynthesis of indole glucosinolate, which is a defence compound occurring in the Brassicaceae family. We confirmed that JA induces the accumulation of ascorbate, glutathione and cysteine and increases the activity of dehydroascorbate reductase, an enzyme in the ascorbate recycling pathway. These antioxidant metabolic pathways are known to be activated under oxidative stress conditions. Ozone (O3) exposure, a representative oxidative stress, is known to cause activation of antioxidant metabolism. We showed that O3 exposure caused the induction of several genes involved in antioxidant metabolism in the wild type. However, in jasmonate-deficient Arabidopsis 12-oxophytodienoate reductase 3 (opr3) mutants, the induction of antioxidant genes was abolished. Compared with the wild type, opr3 mutants were more sensitive to O3 exposure. These results suggest that the coordinated activation of the metabolic pathways mediated by jasmonates provides resistance to environmental stresses.
Collapse
Affiliation(s)
- Yuko Sasaki-Sekimoto
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama, Kanagawa, 226-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rabijns A, Barre A, Van Damme EJM, Peumans WJ, De Ranter CJ, Rougé P. Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. FEBS J 2005; 272:3725-32. [PMID: 16008570 DOI: 10.1111/j.1742-4658.2005.04801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structures of MornigaM and the MornigaM-mannose complex have been determined at 1.8 A and 2.0 A resolution, respectively. Both structures adopt the typical beta-prism motif found in other jacalin-related lectins and their tetrameric assembly closely resembles that of jacalin. The carbohydrate-binding cavity of MornigaM readily binds mannose. No major structural rearrangements can be observed in MornigaM upon binding of mannose. These results allow corroboration of the structure-function relationships within the small group of Moraceae lectins.
Collapse
Affiliation(s)
- Anja Rabijns
- Laboratory of Analytical Chemistry and Medicinal Physicochemistry, Faculty of Pharmaceutical Sciences, K. U. Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
Abebe T, Skadsen RW, Kaeppler HF. A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene. PLANTA 2005; 221:170-183. [PMID: 15605240 DOI: 10.1007/s00425-004-1429-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/12/2004] [Indexed: 05/24/2023]
Abstract
The lemma and palea (lemma/palea), which form the husk of barley (Hordeum vulgare L.) seeds, constitutively express high levels of defense-related genes, relative to leaves [Abebe et al. (2004) Crop Sci 44:942-950]. One of these genes, Lem2, is expressed mainly in the lemma/palea and coleoptile and is strongly upregulated by salicylic acid (SA) and its functional analog 2,6-dichloroisonicotinic acid . Induction by SA was rapid, occurring within 4 h of treatment. However, Lem2 is not responsive to methyl jasmonate (MeJA) or wounding and is downregulated by drought, dehydration, and abscisic acid. These results suggest that Lem2 is involved in systemic acquired resistance. Sequence analysis showed that LEM2 is a jacalin-related lectin (JRL)-like protein with two domains. Consistent with northern and western blot data, transient expression analyses using Lem2::gfp constructs showed strong expression in lemmas and a trace expression in leaves. Successive 5' deletions of the 1,414 bp upstream region gradually weakened promoter strength, as measured by real-time PCR. Promoter deletion studies also revealed that the -75/+70 region (containing the TATA box, 5' UTR, and a SA-response element) determines tissue specificity and that the distal promoter region simply enhances expression. Southern analysis indicated that Morex barley has at least three copies of the Lem2 gene arranged in tandem on chromosome 5(1H) Bin 02, near the short arm telomere. Lem2 is not present in the barley cultivars Steptoe, Harrington, Golden Promise, and Q21861.
Collapse
Affiliation(s)
- Tilahun Abebe
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
32
|
Gillespie J, Rogers SW, Deery M, Dupree P, Rogers JC. A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:429-441. [PMID: 15659101 DOI: 10.1111/j.1365-313x.2004.02303.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The protein storage vacuole (PSV) is a specialized organelle in plant seeds that accumulates storage proteins and phytate during seed development. In many plant species, such as tomato and tobacco, the PSV contains two types of microscopically visible intra-organellar inclusions: a large crystalline lattice of membranes and proteins, the crystalloid, and one or a few large phytate crystals, the globoids. In seeds of the family Brassicaceae, the PSVs lack visible crystalloids and have many small globoids dispersed throughout. We biochemically fractionated PSVs from Brassica napus and defined a crystalloid-like fraction that contained integral membrane protein markers found in crystalloids of other plants. Protein analyses identified a previously undescribed family of proteins, the Brassicaceae PSV-embedded proteins (BPEPs), associated with 'crystalloid' and globoid fractions. The defining characteristics of the BPEPs are an N-terminal signal peptide and tandem MATH domains, which may mediate protein-protein interactions. Database analyses indicated that the BPEPs are unique to Brassicaceae. Immunofluorescence studies using anti-BPEP antibodies and antibodies to other biochemical markers to label B. napus and Arabidopsis thaliana seed sections localized the BPEPs to structures within the PSVs, whose appearance was consistent with a diffuse network of internalized membranes and globoids. These results demonstrate that Brassicaceae PSVs contain internalized membranes, and raise the possibility that BPEPs modify these internal membrane structures to yield a PSV morphology different from that of tomato or tobacco.
Collapse
Affiliation(s)
- Jane Gillespie
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
33
|
Van Damme EJM, Barre A, Rougé P, Peumans WJ. Cytoplasmic/nuclear plant lectins: a new story. TRENDS IN PLANT SCIENCE 2004; 9:484-9. [PMID: 15465683 DOI: 10.1016/j.tplants.2004.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | | | | | | |
Collapse
|
34
|
Barre A, Peumans WJ, Rossignol M, Borderies G, Culerrier R, Van Damme EJM, Rougé P. Artocarpin is a polyspecific jacalin-related lectin with a monosaccharide preference for mannose. Biochimie 2004; 86:685-91. [PMID: 15556279 DOI: 10.1016/j.biochi.2004.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 09/02/2004] [Indexed: 11/25/2022]
Abstract
A reinvestigation of the carbohydrate-binding properties revealed that artocarpin, a previously described mannose-specific lectin from jackfruit (Artocarpus integrifolia) seeds, behaves as a polyspecific lectin. Surface plasmon resonance hapten inhibition experiments demonstrated that artocarpin readily interacted with a wide range of monosaccharides covering galactose, N-acetylgalactosamine, mannose, glucose, sialic acid and N-acetylmuramic acid. Molecular docking confirmed this unexpected ability of artocarpin to interact with structurally different sugars. The biological significance of the polyspecificity of the lectin is discussed in terms of the broadening of the range of potential target glycans present on the surface of plant phytopathogens or predators.
Collapse
Affiliation(s)
- Annick Barre
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR-CNRS 5546, Pôle de Biotechnologie Végétale, 24 chemin de Borde-Rouge, BP 17, Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Yong WD, Xu YY, Xu WZ, Wang X, Li N, Wu JS, Liang TB, Chong K, Xu ZH, Tan KH, Zhu ZQ. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. PLANTA 2003; 217:261-270. [PMID: 12783334 DOI: 10.1007/s00425-003-0994-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 01/11/2003] [Indexed: 05/24/2023]
Abstract
A vernalization-related gene VER2 was isolated from winter wheat ( Triticum aestivum L.) using a differential screening approach. The deduced VER2 is a lectin-like protein of 300 amino acids, which contains the presence of a jacalin-like GWG domain. RNA in situ hybridization results demonstrated that VER2 gene expression is restricted to the marginal meristems of immature leaves in vernalized wheat seedlings. No hybridization signal was detected in the epidermal tissue and vascular bundles. However, "devernalization" resulted in the silencing of VER2 gene activity. The gene expression pattern of VER2 induced by jasmonate was similar to that induced by vernalization. Antisense inhibition of VER2 in transgenic wheat showed that heading and maturation time were delayed up to 6 weeks compared with non-transformed wheat and the pBI121empty-vector-transformed wheat. Tissue degeneration at the top of the spike was also noticed in the antisense inhibited transgenic wheat. These results suggest that VER2 plays an important role in vernalization signaling and spike development in winter wheat.
Collapse
Affiliation(s)
- Wei-dong Yong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A structural basis for the difference in specificity between the two jacalin-related lectins from mulberry (Morus nigra) bark. Biochem Biophys Res Commun 2003; 304:91-7. [PMID: 12705889 DOI: 10.1016/s0006-291x(03)00538-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activity and specificity of a galactose-specific and a mannose-specific jacalin-related lectin from the bark of the black mulberry (Morus nigra) tree has been re-investigated using different experimental approaches. Both lectins definitely behave as polyspecific lectins recognizing galactose, mannose, and glucose even though MornigaG and MornigaM interact preferentially with galactose and mannose, respectively. The exceptionally extended size of the carbohydrate-binding site of both lectins apparently accounts for their polyspecific character. Parallel studies with other mannose-specific jacalin-related lectins confirmed that their exclusive specificity towards mannose/glucose relies on a reduced size of their carbohydrate-binding site.
Collapse
|
37
|
Chapter four Localization of plant myrosinases and glucosinolates. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0079-9920(03)80019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
38
|
Houlès Astoul C, Peumans WJ, van Damme EJM, Barre A, Bourne Y, Rougé P. The size, shape and specificity of the sugar-binding site of the jacalin-related lectins is profoundly affected by the proteolytic cleavage of the subunits. Biochem J 2002; 367:817-24. [PMID: 12169094 PMCID: PMC1222947 DOI: 10.1042/bj20020856] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 07/17/2002] [Accepted: 08/08/2002] [Indexed: 11/17/2022]
Abstract
Mannose-specific lectins with high sequence similarity to jacalin and the Maclura pomifera agglutinin have been isolated from species belonging to the families Moraceae, Convolvulaceae, Brassicaceae, Asteraceae, Poaceae and Musaceae. Although these novel mannose-specific lectins are undoubtedly related to the galactose-specific Moraceae lectins there are several important differences. Apart from the obvious differences in specificity, the mannose- and galactose-specific jacalin-related lectins differ in what concerns their biosynthesis and processing, intracellular location and degree of oligomerization of the protomers. Taking into consideration that the mannose-specific lectins are widely distributed in higher plants, whereas their galactose-specific counterparts are confined to a subgroup of the Moraceae sp. one can reasonably assume that the galactose-specific Moraceae lectins are a small-side group of the main family. The major change that took place in the structure of the binding site of the diverging Moraceae lectins concerns a proteolytic cleavage close to the N-terminus of the protomer. To corroborate the impact of this change, the specificity of jacalin was re-investigated using surface plasmon resonance analysis. This approach revealed that in addition to galactose and N -acetylgalactosamine, the carbohydrate-binding specificity of jacalin extends to mannose, glucose, N -acetylmuramic acid and N -acetylneuraminic acid. Owing to this broad carbohydrate-binding specificity, jacalin is capable of recognizing complex glycans from plant pathogens or predators.
Collapse
Affiliation(s)
- Corinne Houlès Astoul
- Institut de Pharmacologie et Biologie Structurale, UMR-CNRS 5089, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|
39
|
Van Damme EJM, Hause B, Hu J, Barre A, Rougé P, Proost P, Peumans WJ. Two distinct jacalin-related lectins with a different specificity and subcellular location are major vegetative storage proteins in the bark of the black mulberry tree. PLANT PHYSIOLOGY 2002; 130:757-69. [PMID: 12376642 PMCID: PMC166604 DOI: 10.1104/pp.005892] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 04/17/2002] [Accepted: 06/18/2002] [Indexed: 05/21/2023]
Abstract
Using a combination of protein isolation/characterization and molecular cloning, we have demonstrated that the bark of the black mulberry tree (Morus nigra) accumulates large quantities of a galactose-specific (MornigaG) and a mannose (Man)-specific (MornigaM) jacalin-related lectin. MornigaG resembles jacalin with respect to its molecular structure, specificity, and co- and posttranslational processing indicating that it follows the secretory pathway and eventually accumulates in the vacuolar compartment. In contrast, MornigaM represents a novel type of highly active Man-specific jacalin-related lectin that is synthesized without signal peptide or other vacuolar targeting sequences, and accordingly, accumulates in the cytoplasm. The isolation and cloning, and immunocytochemical localization of MornigaG and MornigaM not only demonstrates that jacalin-related lectins act as vegetative storage proteins in bark, but also allows a detailed comparison of a vacuolar galactose-specific and a cytoplasmic Man-specific jacalin-related lectin from a single species. Moreover, the identification of MornigaM provides the first evidence, to our knowledge, that bark cells accumulate large quantities of a cytoplasmic storage protein. In addition, due to its high activity, abundance, and ease of preparation, MornigaM is of great potential value for practical applications as a tool and bioactive protein in biological and biomedical research.
Collapse
Affiliation(s)
- Els J M Van Damme
- Laboratory for Phytopathology and Plant Protection, Catholic University Leuven, 2001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Eriksson S, Andréasson E, Ekbom B, Granér G, Pontoppidan B, Taipalensuu J, Zhang J, Rask L, Meijer J. Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. PLANT PHYSIOLOGY 2002; 129:1592-9. [PMID: 12177471 PMCID: PMC166746 DOI: 10.1104/pp.003285] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The enzyme myrosinase (EC 3.2.3.1) degrades the secondary compounds glucosinolates upon wounding and serves as a defense to generalist pests in Capparales. Certain myrosinases are present in complexes together with other proteins such as myrosinase-binding proteins (MBP) in extracts of oilseed rape (Brassica napus) seeds. Immunhistochemical analysis of wild-type seeds showed that MBPs were present in most cells but not in the myrosin cells, indicating that the complex formation observed in extracts is initiated upon tissue disruption. To study the role of MBP in complex formation and defense, oilseed rape antisense plants lacking the seed MBPs were produced. Western blotting and immunohistochemical staining confirmed depletion of MBP in the transgenic seeds. The exclusive expression of myrosinase in idioblasts (myrosin cells) of the seed was not affected by the down-regulation of MBP. Using size-exclusion chromatography, we have shown that myrosinases with subunit molecular masses of 62 to 70 kD were present as free dimers from the antisense seed extract, whereas in the wild type, they formed complexes. In accordance with this, MBPs are necessary for myrosinase complex formation of the 62- to 70-kD myrosinases. The product formed from sinalbin hydrolysis by myrosinase was the same whether MBP was present or not. The performance of a common beetle generalist (Tenebrio molitor) fed with seeds, herbivory by flea beetles (Phyllotreta undulata) on cotyledons, or growth rate of the Brassica fungal pathogens Alternaria brassicae or Lepthosphaeria maculans in the presence of seed extracts were not affected by the down-regulation of MBP, leaving the physiological function of this protein family open.
Collapse
Affiliation(s)
- Susanna Eriksson
- Department of Plant Biology, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Härtel FV, Brandt A. Characterization of a Brassica napus myrosinase expressed and secreted by Pichia pastoris. Protein Expr Purif 2002; 24:221-6. [PMID: 11858716 DOI: 10.1006/prep.2001.1562] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Brassica napus three different gene families with different temporal and tissue-specific expression and distribution patterns encode myrosinases (thioglucoside glucohydrolases, EC 3.2.3.1). Myrosinases encoded by the MA gene family are found as free and soluble dimers, while myrosinases encoded by the MB and MC gene families are mainly found in large insoluble complexes associated with myrosinase-binding proteins and myrosinase-associated proteins. These large complexes impede purification and characterization of MB and MC myrosinases from the plant. We used Pichia pastoris to express and secrete functional recombinant MYR1 myrosinase from B. napus to allow further characterization of myrosinase belonging to the MB gene family. The purified recombinant myrosinase hydrolyzes sinigrin with a K(m) of 1.0 mM; the specific activity and calculated k(cat)/K(m) were 175 U/mg and 1.9 x 10(5) s(-1) M(-1), respectively. A novel in-gel staining method for myrosinase activity is presented.
Collapse
Affiliation(s)
- Frauke V Härtel
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| | | |
Collapse
|
42
|
Andréasson E, Bolt Jørgensen L, Höglund AS, Rask L, Meijer J. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. PLANT PHYSIOLOGY 2001; 127:1750-63. [PMID: 11743118 PMCID: PMC133578 DOI: 10.1104/pp.010334] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 06/18/2001] [Accepted: 08/29/2001] [Indexed: 05/18/2023]
Abstract
Myrosinase (EC 3.2.3.1) is a glucosinolate-degrading enzyme mainly found in special idioblasts, myrosin cells, in Brassicaceae. This two-component system of secondary products and degradative enzymes is important in plant-insect interactions. Immunocytochemical analysis of Arabidopsis localized myrosinase exclusively to myrosin cells in the phloem parenchyma, whereas no myrosin cells were detected in the ground tissue. In Brassica napus, myrosinase could be detected in myrosin cells both in the phloem parenchyma and in the ground tissue. The myrosin cells were similar in Arabidopsis and B. napus and were found to be different from the companion cells and the glucosinolate-containing S-cells present in Arabidopsis. Confocal laser scanning immunomicroscopy analysis of myrosin cells in B. napus embryos showed that the myrosin grains constitute a continuous reticular system in the cell. These findings indicate that in the two species studied, initial cells creating the ground tissue have different potential for making idioblasts and suggest that the myrosinase-glucosinolate system has at least partly different functions. Several myrosinases in B. napus extracts are recovered in complex together with myrosinase-binding protein (MBP), and the localization of MBP was therefore studied in situ. The expression of MBP was highest in germinating seedlings of B. napus and was found in every cell except the myrosin cells of the ground tissue. Rapid disappearance of the MBP from the non-myrosin cells and emergence of MBP in the myrosin cells resulted in an apparent colocalization of MBP and myrosinase in 7-d-old seedlings.
Collapse
Affiliation(s)
- E Andréasson
- Department of Evolutionary Botany, Botanical Institute, University of Copenhagen, Gothersgade 140, DK-1123 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Andreasson E, Wretblad S, Granér G, Wu X, Zhang J, Dixelius C, Rask L, Meijer J. The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. MOLECULAR PLANT PATHOLOGY 2001; 2:281-6. [PMID: 20573016 DOI: 10.1046/j.1464-6722.2001.00076.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
summary Leptosphaeria maculans causes blackleg disease, and resistance to this fungal pathogen is an important trait in the breeding of oilseed rape. A better comprehension of the role of the myrosinase-glucosinolate system in this context is of great value. The present study is the first to address effects on multiple components of this complex system, including concentrations of individual glucosinolates, product formation, myrosinase isoform distribution and activity, and levels of myrosinase binding proteins during the infection process. One resistant B. napus cultivar (Maluka) and one susceptible cultivar (Westar) were compared in the investigation. Our results show that the two cultivars had the same histological distribution, isoform expression, and activity of the myrosinase enzymes. The glucosinolate levels were also similar, with the exception of glucobrassicin and neoglucobrassicin, which were significantly lower in the resistant cultivar at 11 days post-infection. Growth of the fungus on the plant tissues did not alter glucosinolate levels, suggesting that L. maculans does not degrade these compounds. When the plants were starved of sulphur, and thereby depleted of glucosinolates, no increased susceptibility was observed. Hence, we suggest that the myrosinase-glucosinolate system does not determine the outcome of the interaction between B. napus and L. maculans.
Collapse
Affiliation(s)
- E Andreasson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, SE-750 07 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We introduce the use of Arabidopsis thaliana callus culture as a system for proteomic analysis of plant organelles using liquid-grown callus. This callus is relatively homogeneous, reproducible and cytoplasmically rich, and provides organelles in sufficient quantities for proteomic studies. A database was generated of mitochondrial, endoplasmic reticulum (ER), Golgi/prevacuolar compartment and plasma membrane (PM) markers using two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (2-D SDS-PAGE) and peptide sequencing or mass spectrometric methods. The major callus membrane-associated proteins were characterised as being integral or peripheral by Triton X-114 phase partitioning. The database was used to define specific proteins at the Arabidopsis callus plasma membrane. This database of organelle proteins provides the basis for future characterisation of the expression and localisation of novel plant proteins.
Collapse
Affiliation(s)
- T A Prime
- Department of Biochemistry, Cambridge, UK
| | | | | | | | | |
Collapse
|
45
|
Peumans WJ, Hause B, Van Damme EJ. The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Lett 2000; 477:186-92. [PMID: 10908718 DOI: 10.1016/s0014-5793(00)01801-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A galactose-specific and a mannose-specific lectin of the family of the jacalin-related lectins have been localized by immunofluorescence microscopy. The present localization studies provide for the first time unambiguous evidence for the cytoplasmic location of the mannose-specific jacalin-related lectin from rhizomes of Calystegia sepium, which definitely differs from the vacuolar location of the galactose-specific jacalin from Artocarpus integrifolia. These observations support the hypothesis that the galactose-specific jacalin-related lectins evolved from their mannose-specific homologues through the acquisition of vacuolar targeting sequences.
Collapse
Affiliation(s)
- W J Peumans
- Laboratory for Phytopathology, Katholieke Universiteit Leuven, Willen de Croylaan 42, 3001 Leuven, Belgium
| | | | | |
Collapse
|
46
|
Bernardi R, Negri A, Ronchi S, Palmieri S. Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett 2000; 467:296-8. [PMID: 10675557 DOI: 10.1016/s0014-5793(00)01179-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epithiospecifier protein (ESP) is a myrosinase (MYR) cofactor, which is necessary to drive the MYR-catalyzed hydrolysis of some specific glucosinolates towards the production of cyanoepithioalkanes instead of isothiocyanates and nitriles. ESP was isolated from Brassica napus seeds by anionic exchange and gel filtration chromatography. ESP showed a molecular weight of about 39 kDa and pI 5.3. The amino acid sequence of several tryptic peptides of ESP (accounting for about 50% of the total sequence) made it possible to establish the high similarity (81% identity) with a hypothetical 37 kDa protein (TrEMBL data base accession number Q39104) and several jasmonate-inducible proteins from Arabidopsis thaliana. This observation suggests that ESP is likely to be involved in jasmonate-mediated defence and disease resistance mechanisms.
Collapse
Affiliation(s)
- R Bernardi
- Istituto Sperimentale per le Colture Industriali, MiPAF, Via di Corticella 133, 40129, Bologna, Italy
| | | | | | | |
Collapse
|
47
|
Chisholm ST, Mahajan SK, Whitham SA, Yamamoto ML, Carrington JC. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci U S A 2000; 97:489-94. [PMID: 10618445 PMCID: PMC26690 DOI: 10.1073/pnas.97.1.489] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the alpha-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.
Collapse
Affiliation(s)
- S T Chisholm
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | |
Collapse
|
48
|
Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. PLANT MOLECULAR BIOLOGY 2000. [PMID: 10688132 DOI: 10.1007/978-94-011-4221-2_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Glucosinolates are a category of secondary products present primarily in species of the order Capparales. When tissue is damaged, for example by herbivory, glucosinolates are degraded in a reaction catalyzed by thioglucosidases, denoted myrosinases, also present in these species. Thereby, toxic compounds such as nitriles, isothiocyanates, epithionitriles and thiocyanates are released. The glucosinolate-myrosinase system is generally believed to be part of the plant's defense against insects, and possibly also against pathogens. In this review, the evolution of the system and its impact on the interaction between plants and insects are discussed. Further, data suggesting additional functions in the defense against pathogens and in sulfur metabolism are reviewed.
Collapse
Affiliation(s)
- L Rask
- Dept. of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|