1
|
Huang J, Zhang J, Sun J, Gong M, Yuan Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171653. [PMID: 38485023 DOI: 10.1016/j.scitotenv.2024.171653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.
Collapse
Affiliation(s)
- Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
2
|
Sun Y, Huang Y, Hao Z, Zhang S, Tian Q. MRLC controls apoptotic cell death and functions to regulate epidermal development during planarian regeneration and homeostasis. Cell Prolif 2024; 57:e13524. [PMID: 37357415 PMCID: PMC10771114 DOI: 10.1111/cpr.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Collapse
Affiliation(s)
- Yujia Sun
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yongding Huang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhitai Hao
- Department of Biochemistry and Molecular PharmacologyNew York University, School of MedicineNew YorkUSA
| | - Shoutao Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Longhu Laboratory of Advanced ImmunologyZhengzhouHenanChina
| | - Qingnan Tian
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
3
|
Djck1α Is Required for Proper Regeneration and Maintenance of the Medial Tissues in Planarians. Cells 2023; 12:cells12030473. [PMID: 36766815 PMCID: PMC9913719 DOI: 10.3390/cells12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.
Collapse
|
4
|
Gambino G, Iacopetti P, Guidi P, Ippolito C, Linsalata S, Salvetti A, Rossi L. Cell quiescence in planarian stem cells, interplay between p53 and nutritional stimuli. Open Biol 2022; 12:220216. [PMID: 36541101 PMCID: PMC9768645 DOI: 10.1098/rsob.220216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell quiescence appeared early in evolution as an adaptive response to adverse conditions (i.e. nutrient depletion). In metazoans, quiescence has been involved in additional processes like tissue homeostasis, which is made possible by the presence of adult stem cells (ASCs). Cell cycle control machinery is a common hub for quiescence entrance, and evidence indicates a role for p53 in establishing the quiescent state of undamaged cells. Mechanisms responsible for waking up quiescent cells remain elusive, and nutritional stimulus, as a legacy of its original role, still appears to be a player in quiescence exit. Planarians, rich in ASCs, represent a suitable system in which we characterized a quiescent population of ASCs, the dorsal midline cord (DMC) cells, exhibiting unique transcriptional features and maintained quiescent by p53 and awakened upon feeding. The function of DMC cells is puzzling and we speculate that DMC cells, despite retaining ancient properties, might represent a functional drift in which quiescence has been recruited to provide evolutionary advantages.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Azienda Ospedaliera Universitaria Pisana, Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| |
Collapse
|
5
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
6
|
Wu W, Liu S, Wu H, Chen M, Gao L, Zhao B, Liu B, Pang Q. DjPtpn11 is an essential modulator of planarian (Dugesia japonica) regeneration. Int J Biol Macromol 2022; 209:1054-1064. [PMID: 35452697 DOI: 10.1016/j.ijbiomac.2022.04.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Freshwater planarian Dugesia japonica is an excellent model organism for investigating stem cell behavior during regeneration. Despite studies showing that numerous genetic factors are involved in regeneration, much more research is required to fully understand the molecular mechanisms that orchestrate regeneration. In this study, we identified an evolutionarily conserved gene DjPtpn11(DjShp2). DjPtpn11 transcripts are expressed in neoblasts and some differentiated cells, with a high expression at the newly formed blastema. Its silencing by RNA interference (RNAi) affected anterior regeneration and inhibited the regeneration of posterior regions, including cholinergic and serotonergic neuron regeneration. In adult planarians, DjPtpn11 knockdown did not affect neoblast survival and proliferation but might prevent the stem cell migration and differentiation through ERK signaling. DjPtpn11 was demonstrated to be necessary for the anterior blastema cell differentiation partially via regulating ERK-DjMkpA activity. DjPtpn11 also influenced posterior specification via DjIslet, suggesting that DjPtpn11 may be involved in regulating the Wnt signaling pathway during the development of posterior blastema. Together, these data identified that DjPtpn11 is an essential modulator for the regeneration of planarians, and it may influence the appropriate differentiation of blastema cells.
Collapse
Affiliation(s)
- Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Shuo Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Hao Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Meishan Chen
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Shenzhen University of Health Science Center, Shenzhen 518060, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
7
|
Sato Y, Shibata N, Hashimoto C, Agata K. Migratory regulation by MTA homologous genes is essential for the uniform distribution of planarian adult pluripotent stem cells. Dev Growth Differ 2022; 64:150-162. [PMID: 35124813 DOI: 10.1111/dgd.12773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022]
Abstract
The migration of adult stem cells in vivo is an important issue, but the complex tissue structures involved, and limited accessibility of the cells hinder a detailed investigation. To overcome these problems, the freshwater planarian Dugesia japonica was used because it has a simple body plan and abundant adult pluripotent stem cells (neoblasts) distributed uniformly throughout its body. To investigate the migratory mechanisms of neoblasts, two planarian homologous genes of metastatic tumor antigen (MTA-A and MTA-B), a protein involved in cancer metastasis that functions through histone deacetylation, were identified, and their function was analyzed using RNA interference (RNAi). MTA-A or MTA-B knockdown disrupted homeostatic tissue turnover and regeneration in planarians. Whereas neoblasts in MTA-A (RNAi) and MTA-B (RNAi) animals were maintained, neoblast differentiation was inhibited. Furthermore, the normal uniform neoblast distribution pattern changed to a branch-like pattern in MTA-A (RNAi) and MTA-B (RNAi) animals. To examine the neoblast migratory ability, a partial X-ray irradiation assay was performed in D. japonica. Using this assay system, the MTA-A knockdown neoblasts migrated collectively in a branch-like pattern, and the MTA-B knockdown neoblasts were not able to migrate. These results indicated that MTA-A was required for the exit of neoblasts from the branch-like region, and that MTA-B was required for neoblast migration. Thus, the migration mediated by MTA-A and MTA-B enabled uniform neoblast distribution and was required for neoblast differentiation to achieve tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Norito Shibata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama, Japan
| | - Chikara Hashimoto
- JT Biohistory Research Hall, Takatsuki, Japan.,Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.,Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
8
|
Lee H, Hikasa K, Umesono Y, Hayashi T, Agata K, Shibata N. Loss of plac8 expression rapidly leads pluripotent stem cells to enter active state during planarian regeneration. Development 2022; 149:274215. [DOI: 10.1242/dev.199449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023]
Abstract
ABSTRACT
The regenerative ability of planarians relies on their adult pluripotent stem cell population. Although all stem cells express a piwi homolog, recently it has become possible to classify the piwi+ stem cell population into specialized subpopulations according to the expression of genes related to differentiation. However, piwi+ stem cells behave practically as a homogeneous population after amputation, during which stem cells show accelerated proliferation, named ‘induced hyperproliferation’. Here, we show that plac8-A was expressed in almost all of the stem cells, and that a decrease of the plac8-A expression level led to induced hyperproliferation uniformly in a broad stem cell subpopulation after amputation. This reduction of plac8-A expression was caused by activated JNK signaling after amputation. Pharmacological inhibition of JNK signaling caused failure to induce hyperproliferation and resulted in regenerative defects. Such defects were abrogated by simultaneous knockdown of plac8-A expression. Thus, JNK-dependent suppression of plac8-A expression is indispensable for stem cell dynamics involved in regeneration. These findings suggest that plac8-A acts as a molecular switch of piwi+ stem cells for entry into the regenerative state after amputation.
Collapse
Affiliation(s)
- Hayoung Lee
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kanon Hikasa
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| | - Yoshihiko Umesono
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsutaro Hayashi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Nishigoaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Norito Shibata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
9
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
10
|
Tian Q, Sun Y, Gao T, Li J, Fang H, Zhang S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int J Mol Sci 2021; 22:ijms222111707. [PMID: 34769140 PMCID: PMC8583885 DOI: 10.3390/ijms222111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
SUMOylation and ubiquitylation are homologous processes catalyzed by homologous enzymes, and they are involved in nearly all aspects of eukaryotic biology. Planarians, which have the remarkable ability to regenerate their central nervous system (CNS), provide an excellent opportunity to investigate the molecular processes of CNS regeneration in vivo. In this study, we analyzed gene expression profiles during head regeneration with an RNA-seq-based screening approach and found that Djnedd4L and Djubc9 were required for head regeneration in planarians. RNA interference targeting of Djubc9 caused the phospho-H3 mitotic cells to decrease in quantity, or even become absent as a part of the Djubc9 RNAi phenotype, which also showed the collapse of the stem cell lineage along with the reduced expression of epidermal differentiation markers. Furthermore, we found that Djnedd4L RNAi induced increased cell division and promoted the premature differentiation during regeneration. Taken together, our findings show that Djubc9 and Djnedd4L are required for stem cell maintenance in the planarian Dugesia japonica, which helps to elucidate the role of SUMOylation and ubiquitylation in regulating the regeneration process.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Correspondence: (H.F.); (S.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou 450001, China
- Correspondence: (H.F.); (S.Z.)
| |
Collapse
|
11
|
Gambino G, Ippolito C, Evangelista M, Salvetti A, Rossi L. Sub-Lethal 5-Fluorouracil Dose Challenges Planarian Stem Cells Promoting Transcriptional Profile Changes in the Pluripotent Sigma-Class Neoblasts. Biomolecules 2021; 11:biom11070949. [PMID: 34206807 PMCID: PMC8301986 DOI: 10.3390/biom11070949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Under physiological conditions, the complex planarian neoblast system is a composite of hierarchically organized stem cell sub-populations with sigma-class neoblasts, including clonogenic neoblasts, endowed with larger self-renewal and differentiation capabilities, thus generating all the other sub-populations and dominating the regenerative process. This complex system responds to differentiated tissue demands, ensuring a continuous cell turnover in a way to replace aged specialized cells and maintain tissue functionality. Potency of the neoblast system can be appreciated under challenging conditions in which these stem cells are massively depleted and the few remaining repopulate the entire body, ensuring animal resilience. These challenging conditions offer the possibility to deepen the relationships among different neoblast sub-populations, allowing to expose uncanonical properties that are negligible under physiological conditions. In this paper, we employ short, sub-lethal 5-fluorouracil treatment to specifically affect proliferating cells passing through the S phase and demonstrate that S-phase slowdown triggers a shift in the transcriptional profile of sigma neoblasts, which reduces the expression of their hallmark sox-P1. Later, some cells reactivate sox-P1 expression, suggesting that some neoblasts in the earlier steps of commitment could modulate their expression profile, reacquiring a wider differentiative potential.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| | | | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
- Correspondence: ; Tel.: +39-0502219108
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.G.); (C.I.); (L.R.)
| |
Collapse
|
12
|
Kimoto C, Nakagawa H, Hasegawa R, Nodono H, Matsumoto M. Co-localization of DrPiwi-1 and DrPiwi-2 in the oogonial cytoplasm is essential for oocyte differentiation in sexualized planarians. Cells Dev 2021; 167:203710. [PMID: 34171535 DOI: 10.1016/j.cdev.2021.203710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
P-Element-induced wimpy testis (Piwi) subfamily proteins form complexes that bind to Piwi-interacting RNA. This interaction is crucial for stem cell regulation and formation, maintenance of germline stem cells, and gametogenesis in several metazoans. Planarians are effective models for studying stem cells. In the planarian Dugesia ryukyuensis, DrPiwi-1 is essential for the development of germ cells, but not somatic cells and sexual organs. DrPiwi-2 is indispensable for regeneration. In this study, we aimed to investigate the effects of Piwi on the differentiation of germ cells using monoclonal antibodies against DrPiwi-1 and DrPiwi-2. DrPiwi-1 and DrPiwi-2 co-localized more in immature germ cells than in mature germ cells in the ovary. DrPiwi-1 was found in the cytoplasm of early oogonia as undifferentiated germ cells, whereas DrPiwi-2 was found to localize not only in the nuclei but also in the cytoplasm of early oogonia. In descendant germ cells (oocytes), DrPiwi-2 was not present in the cytoplasm, but was strongly detected in the nucleolus. Moreover, we found that DrPiwi-1 forms a complex with DrPiwi-2. The cause of DrPiwi-1 depletion may be the severe reduction in the DrPiwi-2 level in the cytoplasm of oogonia. These results suggest that the formation of the DrPiwi-1 and DrPiwi-2 complex in the cytoplasm of oogonia is essential for oocyte differentiation. Our findings support the conclusion that DrPiwi-1 forms a complex with DrPiwi-2 in the cytoplasm of undifferentiated germ cells, and it signifies the start of gametogenesis. In contrast, in the testes, Drpiwi-1 was found in undifferentiated germ cells (spermatogonia), whereas DrPiwi-2 was found in descendant germ cells (spermatocytes). The process of germ cell differentiation from adult stem cells in planarians may be regulated in different ways in female and male germ lines by the Piwi family.
Collapse
Affiliation(s)
- Chiaki Kimoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Nakagawa
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Reiko Hasegawa
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Hanae Nodono
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Midori Matsumoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
13
|
Maezawa T, Ishikawa M, Sekii K, Nagamatsu G, Furukawa R, Kobayashi K. D-Tryptophan enhances the reproductive organ-specific expression of the amino acid transporter homolog Dr-SLC38A9 involved in the sexual induction of planarian Dugesia ryukyuensis. ZOOLOGICAL LETTERS 2021; 7:4. [PMID: 33743841 PMCID: PMC7981857 DOI: 10.1186/s40851-021-00173-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Many animals switch between asexual and sexual reproduction in nature. We previously established a system for the sexual induction of planarian Dugesia ryukyuensis by feeding asexual planarians with minced sexual planarians. We identified DL-tryptophan (Trp) as one of the sex-inducing substances. DL-Trp can induce ovarian development, the first and essential step of sexual induction. D-Trp must act as a principal bioactive compound in terms of ovarian development, because the ovary-inducing activity of D-Trp was 500 times more potent than that of L-Trp. However, how Trp controls sexual induction is still unknown. RESULTS In this study, qRT-PCR analyses suggested that the putative amino acid transporter gene Dr-SLC38A9 is highly expressed in sexual worms, especially in the yolk glands. In situ hybridization analyses showed that Dr-SLC38A9 is expressed in the ovarian primordia of asexual worms and in the mature ovaries, testes, and yolk glands of sexual worms. In addition, Dr-SLC38A9 RNA interference during sexual induction resulted in the suppression of the development of reproductive organs. These results suggest that Dr-SLC38A9 is involved in the development of these organs. Moreover, we demonstrated that the reproductive organ-specific expression of Dr-SLC38A9 is enhanced by the addition of D-Trp. CONCLUSION We propose that D-Trp activates the expression of Dr-SLC38A9 to promote sexual induction in the planarian D. ryukyuensis.
Collapse
Affiliation(s)
- Takanobu Maezawa
- Advanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama, Okayama, 708-8509, Japan.
| | - Masaki Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kiyono Sekii
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - Kazuya Kobayashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
14
|
Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'Innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111113. [DOI: 10.1016/j.msec.2020.111113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022]
|
15
|
Kashima M, Agata K, Shibata N. What is the role of PIWI family proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians. Dev Growth Differ 2020; 62:407-422. [PMID: 32621324 DOI: 10.1111/dgd.12688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called "neoblasts." Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara Chuo Ku, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Norito Shibata
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama-City, Japan
| |
Collapse
|
16
|
Gambino G, Ippolito C, Modeo L, Salvetti A, Rossi L. 5-Fluorouracil-treated planarians, a versatile model system for studying stem cell heterogeneity and tissue aging. Biol Cell 2020; 112:335-348. [PMID: 32640042 DOI: 10.1111/boc.202000040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Planarians are a sound, well-established model system for molecular studies in the field of stem cells, cell differentiation, developmental biology and translational research. Treated stem cell-less planarians produced by X-ray treatment are commonly used to study stem cell transcriptional profile and their role in planarian biological processes. X-ray induces oxidative and DNA damage to differentiated cells, requires expensive radiation machines that are not available in most of the research centres and demand rigorous risk management and dedicated staff. RESULTS We tested the use of the well-known antimetabolite genotoxic drug 5-fluorouracil which mainly affects proliferating cells in way to demonstrate its use in replacing X-ray treatment. We succeeded in demonstrating ability of high doses of 5-fluorouracil to deplete Dugesia japonica stem cells and in identifying a 5-fluorouracil transiently resistant population of lineage committed stem cells. CONCLUSIONS AND SIGNIFICANCE Our results encourage the use of 5-fluorouracil-treated planarians as a model system for studying mechanisms of resistance to genotoxicants, planarian stem cell heterogeneity and molecular cascades of tissue aging.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Letizia Modeo
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Alessandra Salvetti
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Leonardo Rossi
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
17
|
Wang C, Yang ZZ, Guo FH, Shi S, Han XS, Zeng A, Lin H, Jing Q. Heat shock protein DNAJA1 stabilizes PIWI proteins to support regeneration and homeostasis of planarian Schmidtea mediterranea. J Biol Chem 2019; 294:9873-9887. [PMID: 31076507 DOI: 10.1074/jbc.ra118.004445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI proteins are key regulators of germline and somatic stem cells throughout different evolutionary lineages. However, how PIWI proteins themselves are regulated remains largely unknown. To identify candidate proteins that interact with PIWI proteins and regulate their stability, here we established a yeast two-hybrid (Y2H) assay in the planarian species Schmidtea mediterranea We show that DNAJA1, a heat shock protein 40 family member, interacts with the PIWI protein SMEDWI-2, as validated by the Y2H screen and co-immunoprecipitation assays. We found that DNAJA1 is enriched in planarian adult stem cells, the nervous system, and intestinal tissues. DNAJA1-knockdown abolished planarian regeneration and homeostasis, compromised stem cell maintenance and PIWI-interacting RNA (piRNA) biogenesis, and deregulated SMEDWI-1/2 target genes. Mechanistically, we observed that DNAJA1 is required for the stability of SMEDWI-1 and SMEDWI-2 proteins. Furthermore, we noted that human DNAJA1 binds to Piwi-like RNA-mediated gene silencing 1 (PIWIL1) and is required for PIWIL1 stability in human gastric cancer cells. In summary, our results reveal not only an evolutionarily conserved functional link between PIWI and DNAJA1 that is essential for PIWI protein stability and piRNA biogenesis, but also an important role of DNAJA1 in the control of proteins involved in stem cell regulation.
Collapse
Affiliation(s)
- Chen Wang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Zhen-Zhen Yang
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Fang-Hao Guo
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shuo Shi
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Shuai Han
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - An Zeng
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Haifan Lin
- From the Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China, .,the Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut 06511
| | - Qing Jing
- the CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
18
|
Alessandra S, Rossi L. Planarian Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:39-54. [PMID: 31016594 DOI: 10.1007/978-3-030-11096-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planarian (Platyhelminthes, Triclads) are free-living flatworms endowed with extraordinary regenerative capabilities, i.e., the ability to rebuild any missing body parts also from small fragments. Planarian regenerative capabilities fascinated scientific community since early 1800, including high-standing scientists such as J.T. Morgan and C. M. Child. Today, it is known that planarian regeneration is due to the presence of a wide population of stem cells, the so-called neoblasts. However, the understanding of the nature of cells orchestrating planarian regeneration was a long journey, and several questions still remain unanswered. In this chapter, beginning from the definition of the classical concept of neoblast, we review progressive discoveries that have brought to the modern view of these cells as a highly heterogeneous population of stem cells including pluripotent stem cells and undifferentiated populations of committed progenies.
Collapse
Affiliation(s)
- Salvetti Alessandra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
19
|
Ma K, Zhang Y, Song G, Wu M, Chen G. Identification of Autophagy-Related Gene 7 and Autophagic Cell Death in the Planarian Dugesia japonica. Front Physiol 2018; 9:1223. [PMID: 30233400 PMCID: PMC6131670 DOI: 10.3389/fphys.2018.01223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Planarians undergo continuous body size remodeling under starvation or during regeneration. This process likely involves autophagy and autophagic cell death, but this hypothesis is supported by few studies. To test this hypothesis, we cloned and characterized autophagy-related gene 7 (Atg7) from the planarian Dugesia japonica (DjAtg7). The full-length cDNA of DjAtg7 measures 2272 bp and includes a 2082-bp open reading frame encoding 693 amino acids with a molecular weight of 79.06 kDa. The deduced amino acid sequence of DjAtg7 contains a conserved ATP-binding site and a catalytic active site of an E1-like enzyme belonging to the ATG7 superfamily. DjAtg7 transcripts are mainly expressed in intestinal tissues of the intact animals. After amputation, DjAtg7 was highly expressed at the newly regenerated intestinal branch on days 3-7 of regeneration and in the old tissue of the distal intestinal branch on day 10 of regeneration. However, knockdown of DjAtg7 by RNAi did not affect planarian regeneration and did not block autophagosome formation, which indicates that autophagy is more complex than previously expected. Interestingly, TEM clearly confirmed that autophagy and autophagic cell death occurred in the old tissues of the newly regenerated planarians and clearly revealed that the dying cell released vesicles containing cellular cytoplasmic contents into the extracellular space. Therefore, the autophagy and autophagic cell death that occurred in the old tissue not only met the demand for body remodeling but also met the demand for energy supply during planarian regeneration. Collectively, our work contributes to the understanding of autophagy and autophagic cell death in planarian regeneration and body remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Guangwen Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
20
|
Gene Delivery System Using Droplet Injector and Temperature-Controlled Planarian Holder. INVENTIONS 2018. [DOI: 10.3390/inventions3030057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A microinjection system for gene delivery to a planarian was presented with materials widely used by manufacturers. The system consists of a nanoliter droplet generator/injector and a planarian holder. Glass capillary needles were used to consistently generate droplets and to inject droplets into a planarian. The holder provides a low-temperature environment that immobilizes the planarian for injection. Our system was tested and showed successful injections of microbeads and droplets with double-stranded RNA into the planarian. The results demonstrated the capability of our system as an alternative for gene delivery for studying gene functions in planarians or other living objects for regenerative medicine studies.
Collapse
|
21
|
Dong Z, Yang Y, Chen G, Liu D. Identification of runt family genes involved in planarian regeneration and tissue homeostasis. Gene Expr Patterns 2018; 29:24-31. [PMID: 29649632 DOI: 10.1016/j.gep.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
The runt family genes play important roles in physiological processes in eukaryotic organisms by regulation of protein transcription, such as hematopoietic system, proliferation of gastric epithelial cells and neural development. However, it remains unclear about the specific functions of these genes. In this study, the full-length cDNA sequences of two runt genes are first cloned from Dugesia japonica, and their roles are investigated by WISH and RNAi. The results show that: (1) the Djrunts are conserved during evolution; (2) the Djrunts mRNA are widely expressed in intact and regenerative worms, and their expression levels are up-regulated significantly on day 1 after amputation; (3) loss of Djrunts function lead to lysis or regeneration failure in the intact and regenerating worms. Overall, the data suggests that Djrunts play important roles in regeneration and homeostatic maintenance in planarians.
Collapse
Affiliation(s)
- Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Yibo Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007 Henan, China
| |
Collapse
|
22
|
Lai AG, Aboobaker AA. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol 2018; 433:118-131. [PMID: 29198565 DOI: 10.1016/j.ydbio.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
How do animals regenerate specialised tissues or their entire body after a traumatic injury, how has this ability evolved and what are the genetic and cellular components underpinning this remarkable feat? While some progress has been made in understanding mechanisms, relatively little is known about the evolution of regenerative ability. Which elements of regeneration are due to lineage specific evolutionary novelties or have deeply conserved roots within the Metazoa remains an open question. The renaissance in regeneration research, fuelled by the development of modern functional and comparative genomics, now enable us to gain a detailed understanding of both the mechanisms and evolutionary forces underpinning regeneration in diverse animal phyla. Here we review existing and emerging model systems, with the focus on invertebrates, for studying regeneration. We summarize findings across these taxa that tell us something about the evolution of adult stem cell types that fuel regeneration and the growing evidence that many highly regenerative animals harbor adult stem cells with a gene expression profile that overlaps with germline stem cells. We propose a framework in which regenerative ability broadly evolves through changes in the extent to which stem cells generated through embryogenesis are maintained into the adult life history.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
23
|
Almazan EMP, Lesko SL, Markey MP, Rouhana L. Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers. Dev Biol 2018; 433:433-447. [PMID: 28774726 PMCID: PMC5750089 DOI: 10.1016/j.ydbio.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G. dorotocephala. Akin to orthologs in other planarian species, G. dorotocephala Piwi1 (GdPiwi1) was found to be a robust marker of the planarian stem cell population and GdPiwi2 an essential component for stem cell-driven regeneration. Identification of G. dorotocephala homologs of the early stem cell descendent marker PROG-1 revealed a family of lysine-rich proteins expressed during epithelial cell differentiation. Sequences from the MA-C2 transcriptome were found to be 98-99% identical to nucleotide sequences from G. dorotocephala populations with different chromosomal number, demonstrating strong conservation regardless of karyotype evolution. Altogether, this work establishes G. dorotocephala as a viable and accessible option for analysis of gene function in North America.
Collapse
Affiliation(s)
- Eugene Matthew P Almazan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Sydney L Lesko
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Michael P Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|
24
|
Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 2017; 17:215. [PMID: 28893179 PMCID: PMC5594548 DOI: 10.1186/s12862-017-1061-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide. Electronic supplementary material The online version of this article (10.1186/s12862-017-1061-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay
| | - Gabriel Rinaldi
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.
| |
Collapse
|
25
|
Ma X, Ji A, Zhang Z, Yang D, Liang S, Wang Y, Qin Z. Piwi1 is essential for gametogenesis in mollusk Chlamys farreri. PeerJ 2017; 5:e3412. [PMID: 28652931 PMCID: PMC5483327 DOI: 10.7717/peerj.3412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/14/2017] [Indexed: 11/23/2022] Open
Abstract
Piwi (P-element induced wimpy testis) is an important gene involved in stem cell maintenance and gametogenesis in vertebrates. However, in most invertebrates, especially mollusks, the function of Piwi during gametogenesis remains largely unclear. To further understand the function of Piwi during gametogenesis, full-length cDNA of Piwi1 from scallop Chlamys farreri (Cf-Piwi1) was characterized, which consisted of a 2,637 bp open reading frame encoding an 878-amino acid protein. Cf-Piwi1 mRNA was mainly localized in the spermatogonia, spermatocytes, oogonia, oocytes of early development and intra-gonadal somatic cells. Additionally, the knockdown of Cf-Piwi1 by injection of Cf-Piwi1-dsRNA (double-stranded RNA) into scallop adductor led to a loss of germ cells in C. farreri gonads. Apoptosis was observed mainly in spermatocytes and oocytes of early development, as well as in a small number of spermatogonia and oogonia. Our findings indicate that Cf-Piwi1 is essential for gametogenesis in the scallop C. farreri.
Collapse
Affiliation(s)
- Xiaoshi Ma
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Aichang Ji
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Dandan Yang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaoshuai Liang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Yuhan Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenkui Qin
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Stimulating Neoblast-Like Cell Proliferation in Juvenile Fasciola hepatica Supports Growth and Progression towards the Adult Phenotype In Vitro. PLoS Negl Trop Dis 2016; 10:e0004994. [PMID: 27622752 PMCID: PMC5021332 DOI: 10.1371/journal.pntd.0004994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
Fascioliasis (or fasciolosis) is a socioeconomically important parasitic disease caused by liver flukes of the genus Fasciola. Flukicide resistance has exposed the need for new drugs and/or a vaccine for liver fluke control. A rapidly improving ‘molecular toolbox’ for liver fluke encompasses quality genomic/transcriptomic datasets and an RNA interference platform that facilitates functional genomics approaches to drug/vaccine target validation. The exploitation of these resources is undermined by the absence of effective culture/maintenance systems that would support in vitro studies on juvenile fluke development/biology. Here we report markedly improved in vitro maintenance methods for Fasciola hepatica that achieved 65% survival of juvenile fluke after 6 months in standard cell culture medium supplemented with 50% chicken serum. We discovered that this long-term maintenance was dependent upon fluke growth, which was supported by increased proliferation of cells resembling the “neoblast” stem cells described in other flatworms. Growth led to dramatic morphological changes in juveniles, including the development of the digestive tract, reproductive organs and the tegument, towards more adult-like forms. The inhibition of DNA synthesis prevented neoblast-like cell proliferation and inhibited growth/development. Supporting our assertion that we have triggered the development of juveniles towards adult-like fluke, mass spectrometric analyses showed that growing fluke have an excretory/secretory protein profile that is distinct from that of newly-excysted juveniles and more closely resembles that of ex vivo immature and adult fluke. Further, in vitro maintained fluke displayed a transition in their movement from the probing behaviour associated with migrating stage worms to a slower wave-like motility seen in adults. Our ability to stimulate neoblast-like cell proliferation and growth in F. hepatica underpins the first simple platform for their long-term in vitro study, complementing the recent expansion in liver fluke resources and facilitating in vitro target validation studies of the developmental biology of liver fluke. Parasitic worms require a host organism in order to survive and reproduce. As such, it is difficult to study them outside of a host. Some parasites can be maintained in vitro using cell culture methods; in the case of F. hepatica, previously-reported methods are unsatisfactory because they are difficult to reproduce and unable to support long term growth and development. Here we have developed a new set of methods for maintaining F. hepatica juveniles in vitro. These methods use simple, commonly available reagents and techniques, enabling us to keep fluke alive in vitro for at least 6 months, as well as stimulating the development of characteristics that resemble adult parasites. Over time, our in vitro fluke show changes in the structure and complexity of individual tissues, and the proteins they produce, such that they are more reminiscent of adult, than juvenile fluke. Additionally, we demonstrate that fluke growth is supported by the division of cells resembling stem cells, which have not been reported previously for F. hepatica. This work will support the study of liver fluke, enabling the development of new drugs and vaccines for the treatment of liver fluke infections of humans and animals.
Collapse
|
27
|
Gehrke AR, Srivastava M. Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev 2016; 40:131-137. [PMID: 27498025 DOI: 10.1016/j.gde.2016.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/02/2016] [Accepted: 07/13/2016] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms underlying whole-body regeneration are best understood in the planarian flatworm Schmidtea mediterranea, where a heterogeneous population of somatic stem cells called neoblasts provides new tissue for regeneration of essentially any missing body part. Studies on Schmidtea have provided a detailed description of neoblasts and their role in regeneration, but comparatively little is known about the evolutionary history of these cells and their underlying developmental programs. Acoels, an understudied group of aquatic worms that are also capable of extensive whole-body regeneration, have arisen as an attractive group to study the evolution of regenerative processes due to their phylogenetically distant position relative to flatworms. Here, we review the phylogenetic distribution of neoblast cells and compare their anatomical locations, transcriptional profiles, and roles during regeneration in flatworms and acoels to understand the evolution of whole-body regeneration. While the general role of neoblasts appears conserved in species separated by 550 million years of evolution, the extrinsic inputs they receive during regeneration can vary, making the distinction between homology and convergence of mechanism unclear. A more detailed understanding of the precise mechanisms behind whole-body regeneration in diverse phyla is necessary to understand the evolutionary history of this powerful process.
Collapse
Affiliation(s)
- Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
(Neo)blast from the past: new insights into planarian stem cell lineages. Curr Opin Genet Dev 2016; 40:74-80. [PMID: 27379899 DOI: 10.1016/j.gde.2016.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Collectively, planarian stem cells (neoblasts) are totipotent and are required for tissue homeostasis and regeneration. Recent work has begun to test the long-standing question of whether all neoblasts have the same potential, or whether they actually represent molecularly distinct subpopulations with distinct tissue restriction. Here, we summarize the current state of the field in neoblast lineage organization. It is clear that at least some neoblasts are totipotent, whereas other neoblasts represent functionally distinct molecular subclasses with restricted potential. In addition to neoblast subclasses, tissue-specific progenitors have also been identified, though their ability to proliferate is largely unknown. Together, neoblast lineage development, subclasses, and cell hierarchies are becoming elucidated, showing the complex regulation required for proper tissue homeostasis and regeneration in planarians.
Collapse
|
29
|
Kashima M, Kumagai N, Agata K, Shibata N. Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarianDugesia japonica. Dev Growth Differ 2016; 58:225-37. [DOI: 10.1111/dgd.12268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/18/2015] [Accepted: 12/31/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Kashima
- Department of Biophysics; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake Sakyo-ku Kyoto 606-8502 Japan
| | - Nobuyoshi Kumagai
- Department of Biophysics; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake Sakyo-ku Kyoto 606-8502 Japan
| | - Kiyokazu Agata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake Sakyo-ku Kyoto 606-8502 Japan
| | - Norito Shibata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
30
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
31
|
Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. Int J Mol Sci 2015; 16:27865-96. [PMID: 26610482 PMCID: PMC4661923 DOI: 10.3390/ijms161126065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Fallon Durant
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Jennifer Hammelman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Nicholas Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia;
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France;
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Kaylinnette Pinet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | | | - Daniel Lobo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
- Correspondence: ; Tel.: +1-617-627-6161; Fax: +1-617-627-6121
| |
Collapse
|
32
|
Epigenetics and Shared Molecular Processes in the Regeneration of Complex Structures. Stem Cells Int 2015; 2016:6947395. [PMID: 26681954 PMCID: PMC4670690 DOI: 10.1155/2016/6947395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/30/2015] [Indexed: 12/27/2022] Open
Abstract
The ability to regenerate complex structures is broadly represented in both plant and animal kingdoms. Although regenerative abilities vary significantly amongst metazoans, cumulative studies have identified cellular events that are broadly observed during regenerative events. For example, structural damage is recognized and wound healing initiated upon injury, which is followed by programmed cell death in the vicinity of damaged tissue and a burst in proliferation of progenitor cells. Sustained proliferation and localization of progenitor cells to site of injury give rise to an assembly of differentiating cells known as the regeneration blastema, which fosters the development of new tissue. Finally, preexisting tissue rearranges and integrates with newly differentiated cells to restore proportionality and function. While heterogeneity exists in the basic processes displayed during regenerative events in different species—most notably the cellular source contributing to formation of new tissue—activation of conserved molecular pathways is imperative for proper regulation of cells during regeneration. Perhaps the most fundamental of such molecular processes entails chromatin rearrangements, which prime large changes in gene expression required for differentiation and/or dedifferentiation of progenitor cells. This review provides an overview of known contributions to regenerative processes by noncoding RNAs and chromatin-modifying enzymes involved in epigenetic regulation.
Collapse
|
33
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
34
|
Rossi L, Bonuccelli L, Iacopetti P, Evangelista M, Ghezzani C, Tana L, Salvetti A. Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells. Stem Cell Rev Rep 2015; 10:871-87. [PMID: 24974103 DOI: 10.1007/s12015-014-9540-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prohibitins are pleiotropic proteins, whose multiple roles are emerging as key elements in the regulation of cell survival and proliferation. Indeed, prohibitins interact with several intracellular proteins strategically involved in the regulation of cell cycle progression in response to extracellular growth signals. Prohibitins also have regulatory functions in mitochondrial fusion and cristae morphogenesis, phenomena related to the ability of self-renewing embryonic stem cells to undergo differentiation, during which mitochondria develop numerous cristae, increase in number, and generate an extensive reticular network. We recently identified a Prohibitin 2 homolog (DjPhb2) that is expressed in adult stem cells (neoblasts) of planarians, a well-known model system for in vivo studies on stem cells and tissue regeneration. Here, we show that in DjPhb2 silenced planarians, most proliferating cells disappear, with the exception of a subpopulation of neoblasts localized along the dorsal body midline. Neoblast depletion impairs regeneration and, finally, leads animals to death. Our in vivo findings demonstrate that prohibitin 2 plays an important role in regulating stem cell biology, being involved in both the control of cell cycle progression and mitochondrial cristae morphogenesis.
Collapse
Affiliation(s)
- Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Sturm Á, Ivics Z, Vellai T. The mechanism of ageing: primary role of transposable elements in genome disintegration. Cell Mol Life Sci 2015; 72:1839-47. [PMID: 25837999 PMCID: PMC11113528 DOI: 10.1007/s00018-015-1896-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 01/11/2023]
Abstract
Understanding the molecular basis of ageing remains a fundamental problem in biology. In multicellular organisms, while the soma undergoes a progressive deterioration over the lifespan, the germ line is essentially immortal as it interconnects the subsequent generations. Genomic instability in somatic cells increases with age, and accumulating evidence indicates that the disintegration of somatic genomes is accompanied by the mobilisation of transposable elements (TEs) that, when mobilised, can be mutagenic by disrupting coding or regulatory sequences. In contrast, TEs are effectively silenced in the germ line by the Piwi-piRNA system. Here, we propose that TE repression transmits the persistent proliferation capacity and the non-ageing phenotype (e.g., preservation of genomic integrity) of the germ line. The Piwi-piRNA pathway also operates in tumorous cells and in somatic cells of certain organisms, including hydras, which likewise exhibit immortality. However, in somatic cells lacking the Piwi-piRNA pathway, gradual chromatin decondensation increasingly allows the mobilisation of TEs as the organism ages. This can explain why the mortality rate rises exponentially throughout the adult life in most animal species, including humans.
Collapse
Affiliation(s)
- Ádám Sturm
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, Hungary
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, Hungary
| |
Collapse
|
36
|
van Wolfswinkel JC. Piwi and Potency: PIWI Proteins in Animal Stem Cells and Regeneration. Integr Comp Biol 2014; 54:700-13. [DOI: 10.1093/icb/icu084] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
How might flukes and tapeworms maintain genome integrity without a canonical piRNA pathway? Trends Parasitol 2014; 30:123-9. [PMID: 24485046 DOI: 10.1016/j.pt.2014.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/29/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Surveillance by RNA interference is central to controlling the mobilization of transposable elements (TEs). In stem cells, Piwi argonaute (Ago) proteins and associated proteins repress mobilization of TEs to maintain genome integrity. This defense mechanism targeting TEs is termed the Piwi-interacting RNA (piRNA) pathway. In this opinion article, we draw attention to the situation that the genomes of cestodes and trematodes have lost the piwi and vasa genes that are hallmark characters of the germline multipotency program. This absence of Piwi-like Agos and Vasa helicases prompts the question: how does the germline of these flatworms withstand mobilization of TEs? Here, we present an interpretation of mechanisms likely to defend the germline integrity of parasitic flatworms.
Collapse
|
38
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
39
|
Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida). Dev Genes Evol 2013; 223:329-34. [DOI: 10.1007/s00427-013-0444-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
|
40
|
Abstract
Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.
Collapse
Affiliation(s)
- Jochen C Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
41
|
The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 2012; 223:23-38. [PMID: 23053625 DOI: 10.1007/s00427-012-0417-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
Abstract
Major questions about stem cell systems include what type(s) of stem cells are involved (unipotent/totipotent/pluripotent/multipotent stem cells) and how the self-renewal and differentiation of stem cells are regulated. Sponges, the sister group of all other animals and probably the earliest branching multicellular lineage of extant animals, are thought to possess totipotent stem cells. This review introduces what is known about the stem cells in sponges based on histological studies and also on recent molecular biological studies that have started to reveal the molecular and cellular mechanisms of the stem cell system in sponges (mainly in demosponges). The currently proposed model of the stem cell system in demosponges is described, and the possible applicability of this model to other classes of sponges is discussed. Finally, a possible scenario of the evolution of stem cells, including how migrating stem cells arose in the urmetazoan (the last common ancestor of metazoans) and the evolutionary origin of germ line cells in the urbilaterian (the last common ancestor of bilaterians), are discussed.
Collapse
|
42
|
Nodono H, Ishino Y, Hoshi M, Matsumoto M. Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Mol Reprod Dev 2012; 79:757-66. [PMID: 22968921 DOI: 10.1002/mrd.22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022]
Abstract
Planarian species may harbor as many as three populations with different reproductive strategies. Animals from innate asexual (AS) and innate sexual (InS) populations reproduce only by fission and cross-fertilization, respectively, whereas the third population switches seasonally between the two reproductive modes. AS worms can be experimentally sexualized by feeding them with minced InS worms; we termed the resulting animals "acquired sexual" (AqS) worms. Both AqS and InS worms exhibit sexualizing activity when used as feed, suggesting that they maintain their sexual state via endogenous sexualizing substances, although the mechanisms underlying determination of reproductive strategy and sexual switching in these metazoans remain enigmatic. Therefore, we compared the endogenous sexualizing activity of InS worms and AqS worms. First, we amputated mature worms and assessed if they could re-enter a sexual state. Regenerants of InS worms, but not AqS worms, were only sexual, indicating that sexual state regulation comprises two steps: (1) autonomous initiation of sexualizing substance production and (2) maintenance of the sexual state by continuous production of sexualizing substances. Next, InS neoblasts were characterized by transplantation, finding that they successfully engrafted, proliferated, and replaced all recipient cells. Under such conditions, the AS recipients of InS worm neoblasts, but not those of AqS worms, became sexual. These results clearly show that there is a neoblast-autonomous determination of reproductive strategy in planarians.
Collapse
Affiliation(s)
- Hanae Nodono
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences-using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences.
Collapse
Affiliation(s)
| | | | - Michael Levin
- Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
44
|
González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V, Sharp TV, Aboobaker AA. SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet 2012; 8:e1002619. [PMID: 22479207 PMCID: PMC3315482 DOI: 10.1371/journal.pgen.1002619] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. Planarian flatworms have a remarkable ability to regenerate that has driven the curiosity of scientists for more than a century. They are also able to continuously grow or degrow their bodies, depending on food availability. Around 25% of the cells in the planarian body are adult stem cells, which are responsible for this incredible plasticity. The initial response of planarians to injury is characterised by a rapid increase in stem cell division. Subsequently planarians form a specialised new tissue called the regenerative blastema to replace missing tissues. Currently, very little is known about the molecular signals controlling the response to injury or the tight regulation of growth. Here we discovered that a gene called Smg-1 and the conserved mTOR signalling pathway, a central regulator of animal growth, are both regulators of this process. SMG-1 is required to limit and act as a brake on the initial response to injury and ensure that it does not run out of control, while in contrast mTOR signalling is required to drive this process forward. Loss of SMG-1 leads to hyperactive responses to injury and subsequent growth that continues out of control. Eventually, these animals form outgrowths, which display several hallmarks of human cancers. These opposing roles suggested that Smg-1 phenotype would require mTOR signalling, and by reducing mTOR signalling and SMG-1 activity at the same time we found that this was the case. We conclude that Smg-1 is a novel regulator of regeneration and animal growth with an antagonistic role to mTOR signalling in planarians.
Collapse
Affiliation(s)
- Cristina González-Estévez
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| | - Daniel A. Felix
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Matthew D. Smith
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon J. Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
- * E-mail: (AAA); (CG-E)
| |
Collapse
|
45
|
Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA. PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 2012; 139:1083-94. [PMID: 22318224 DOI: 10.1242/dev.076182] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
46
|
Specific expression of Olpiwi1 and Olpiwi2 in medaka (Oryzias latipes) germ cells. Biochem Biophys Res Commun 2012; 418:592-7. [DOI: 10.1016/j.bbrc.2011.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022]
|
47
|
Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 2011; 361:167-76. [PMID: 22024321 DOI: 10.1016/j.ydbio.2011.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 11/23/2022]
Abstract
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.
Collapse
|
48
|
Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol 2011; 357:117-32. [PMID: 21740899 PMCID: PMC3158854 DOI: 10.1016/j.ydbio.2011.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila and C. elegans, nothing is known on the function of boule in non-vertebrate animals. In the present study, we report on three boule orthologues in the flatworm Macrostomum lignano. We demonstrate that macbol1 and macbol2 are expressed in testes whilst macbol3 is expressed in ovaries and developing eggs. Macbol1 RNAi blocked spermatocyte differentiation whereas macbol2 showed no effect upon RNAi treatment. Macbol3 RNAi resulted in aberrant egg maturation and led to female sterility. We further demonstrated the evolutionary functional conservation of macbol1 by introducing this gene into Drosophila bol(1) mutants. Macbol1 was able to rescue the progression of fly meiotic divisions. In summary, our findings provide evidence for an involvement of boule genes in male and female gamete development in one organism. Furthermore, boule gene function is shown here for the first time in a lophotrochozoan. Our results point to a more diverse functional assignment of boule genes. Therefore, a better understanding of boule function in flatworms can help to elucidate the molecular mechanisms of and concomitant infertility in higher organisms including humans.
Collapse
Affiliation(s)
- Georg Kuales
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Katrien De Mulder
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jade Glashauser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Willi Salvenmoser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Shigeo Takashima
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Eugene Berezikov
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Walter Salzburger
- University of Basel, Zoological Institute, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| |
Collapse
|
49
|
Forsthoefel DJ, Park AE, Newmark PA. Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev Biol 2011; 356:445-59. [PMID: 21664348 PMCID: PMC3490491 DOI: 10.1016/j.ydbio.2011.05.669] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by co-ordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context.
Collapse
Affiliation(s)
- David J. Forsthoefel
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Amanda E. Park
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
50
|
Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 2011; 21:304-11. [DOI: 10.1016/j.tcb.2011.01.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 01/08/2023]
|