1
|
von Eyben FE, Kristiansen K, Kapp DS, Hu R, Preda O, Nogales FF. Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis. Int J Mol Sci 2023; 24:ijms24044148. [PMID: 36835562 PMCID: PMC9966837 DOI: 10.3390/ijms24044148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In testicular germ cell tumor type II (TGCT), a seminoma subtype expresses an induced pluripotent stem cell (iPSC) panel with four upregulated genes, OCT4/POU5F1, SOX17, KLF4, and MYC, and embryonal carcinoma (EC) has four upregulated genes, OCT4/POU5F1, SOX2, LIN28, and NANOG. The EC panel can reprogram cells into iPSC, and both iPSC and EC can differentiate into teratoma. This review summarizes the literature on epigenetic regulation of the genes. Epigenetic mechanisms, such as methylations of cytosines on the DNA string and methylations and acetylations of histone 3 lysines, regulate expression of these driver genes between the TGCT subtypes. In TGCT, the driver genes contribute to well-known clinical characteristics and the driver genes are also important for aggressive subtypes of many other malignancies. In conclusion, epigenetic regulation of the driver genes are important for TGCT and for oncology in general.
Collapse
Affiliation(s)
- Finn E. von Eyben
- Center for Tobacco Control Research, Birkevej 17, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-66145862
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, August Krogh Building Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- BGI-Research, BGI-Shenzhen, Shenzhen 518120, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, China
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rong Hu
- Department of Pathology, Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Ovidiu Preda
- Department of Pathology, San Cecilio University Hospital, 18071 Granada, CP, Spain
| | - Francisco F. Nogales
- Department of Pathology, School of Medicine, University Granada, 18071 Granada, CP, Spain
| |
Collapse
|
2
|
Burton J, Wojewodzic MW, Rounge TB, Haugen TB. A Role of the TEX101 Interactome in the Common Aetiology Behind Male Subfertility and Testicular Germ Cell Tumor. Front Oncol 2022; 12:892043. [PMID: 35774118 PMCID: PMC9237224 DOI: 10.3389/fonc.2022.892043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Patients who develop testicular germ cell tumours (TGCT) are at higher risk to be subfertile than the general population. The conditions are believed to originate during foetal life, however, the mechanisms behind a common aetiology of TGCT and male subfertility remains unknown. Testis-expressed 101 (TEX101) is a glycoprotein that is related to male fertility, and downregulation of the TEX101 gene was shown in pre-diagnostic TGCT patients. In this review, we summarize the current knowledge of TEX101 and its interactome related to fertility and TGCT development. We searched literature and compilation of data from curated databases. There are studies from both human and animals showing that disruption of TEX101 result in abnormal semen parameters and sperm function. Members of the TEX101 interactome, like SPATA19, Ly6k, PICK1, and ODF genes are important for normal sperm function. We found only two studies of TEX101 related to TGCT, however, several genes in its interactome may be associated with TGCT development, such as PLAUR, PRSS21, CD109, and ALP1. Some of the interactome members are related to both fertility and cancer. Of special interest is the presence of the glycosylphosphatidylinositol anchored proteins TEX101 and PRSS21 in basophils that may be coupled to the immune response preventing further development of TGCT precursor cells. The findings of this review indicate that members of the TEX101 interactome could be a part of the link between TGCT and male subfertility.
Collapse
Affiliation(s)
- Joshua Burton
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
| | - Marcin W. Wojewodzic
- Department of Environmental and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Trine B. Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| | - Trine B. Haugen
- Department of Life Sciences and Health, OsloMet − Oslo Metropolitan University, Oslo, Norway
- *Correspondence: Trine B. Haugen, ; Trine B. Rounge,
| |
Collapse
|
3
|
Meta-Analysis of Gene Expressions in Testicular Germ Cell Tumor Histologies. Int J Mol Sci 2020; 21:ijms21124487. [PMID: 32599785 PMCID: PMC7349960 DOI: 10.3390/ijms21124487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023] Open
Abstract
There is no consensus as to how a precursor lesion, germ cell neoplasia in situ (GCNIS), develops into the histologic types of testicular germ cell tumor type II (TGCT). The present meta-analysis examined RNA expressions of 24 candidate genes in three datasets. They included 203 samples of normal testis (NT) and histologic types of TGCT. The Fisher’s test for combined p values was used for meta-analysis of the RNA expressions in the three datasets. The histologic types differed in RNA expression of PRAME, KIT, SOX17, NANOG, KLF4, POU5F1, RB1, DNMT3B, and LIN28A (p < 0.01). The histologic types had concordant differences in RNA expression of the genes in the three datasets. Eight genes had overlap with a high RNA expression in at least two histologic types. In contrast, only seminoma (SE) had a high RNA expression of KLF4 and only embryonal carcinoma (EC) had a high RNA expression of DNMT3B. In conclusion, the meta-analysis showed that the development of the histologic types of TGCT was driven by changes in RNA expression of candidate genes. According to the RNA expressions of the ten genes, TGCT develops from NT over GCNIS, SE, EC, to the differentiated types of TGCT.
Collapse
|
4
|
Chu YH, Huang W, Hu R. Exclusively intertubular seminoma arising in undescended testes: Report of two cases. HUMAN PATHOLOGY: CASE REPORTS 2018. [DOI: 10.1016/j.ehpc.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
von Eyben FE, Jensen MB, Høyer S. Frequency and Markers of Precursor Lesions and Implications for the Pathogenesis of Testicular Germ Cell Tumors. Clin Genitourin Cancer 2017; 16:S1558-7673(17)30265-3. [PMID: 29037766 DOI: 10.1016/j.clgc.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The World Health Organization classification of urologic cancer 2016 describes 3 noninvasive precursor lesions for testicular germ cell tumor type II (TGCT) of young adults. Germ cell neoplasia in situ is the initial precursor lesion. Intratubular seminoma (ITSE), and intratubular embryonal carcinoma (ITEC) are 2 intermediate precursor lesions. Microinvasive testicular germ cell tumor (MGCT) is an invasive precursor lesion. MATERIALS AND METHODS We undertook a retrospective study of testes obtained using orchiectomy for TGCT and examined precursor lesions. The examinations included immunohistochemical staining of the precursor lesions for octamer-binding transcription factor 4 (OCT4), CD117, and CD30. We examined 63 consecutive and evaluable patients. RESULTS Of the patients, 44 had seminoma and 19 had a nonseminomatous TGCT. MGCT was more frequent than ITSE (P = .002; χ2 test). None of the testes had ITEC. Immunohistochemistry showed that 72 of 77 precursor lesions (93%) stained positive for OCT4 and CD117 and negative for CD30. The pattern represents a seminomatous immunophenotype. A meta-analysis of the published studies regarding precursor lesions included 1007 patients. Overall, the pooled rate of ITSE was 29% (95% confidence interval [CI], 18%-40%) and the pooled rate of MGCT was 21% (95% CI, 15%-27%). CONCLUSION MGCT is a frequent intermediate precursor lesion.
Collapse
Affiliation(s)
| | | | - Søren Høyer
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Baldini E, Arlot-Bonnemains Y, Mottolese M, Sentinelli S, Antoniani B, Sorrenti S, Salducci M, Comini E, Ulisse S, D'Armiento M. Deregulation of Aurora kinase gene expression in human testicular germ cell tumours. Andrologia 2010; 42:260-7. [PMID: 20629650 DOI: 10.1111/j.1439-0272.2009.00987.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Aurora kinases regulate chromosome segregation and cytokinesis, and alterations in their expression associate with cell malignant transformation. In this study, we demonstrated by qRT-PCR analysis of 14 seminomas that Aurora-A mRNA was, with respect to control tissues, augmented in five of 14 tumour tissues by 2.17 +/- 0.30 fold (P < 0.05) and reduced in 9 to 0.38 +/- 0.10 (P < 0.01). Aurora-B mRNA was increased in 11 tumour tissues by 4.33 +/- 0.82 fold (P < 0.01) and reduced in 3 to 0.41 +/- 0.11 fold. Aurora-C mRNA was reduced to 0.20 +/- 0.32 fold (P < 0.01) in 13 seminomas and up-regulated in one case. Western blot experiments, performed on protein extracts of nine seminomas and six normal testes, showed an up-regulation of Aurora-B protein by 10.14 +/- 3.51 fold (P < 0.05), while Aurora-A protein was found increased in four seminomas by 2.16 +/- 0.43 (P < 0.05), unchanged in three and reduced in two tumour tissues. Aurora-C protein was increased by 9.2 +/- 2.90 fold (P < 0.05), suggesting that post-transcriptional mechanisms modulate its expression. In conclusion, we demonstrated that expression of Aurora kinases is deregulated in seminomas, suggesting that they may play a role in the progression of testicular cancers.
Collapse
Affiliation(s)
- E Baldini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ulisse S, Baldini E, Mottolese M, Sentinelli S, Gargiulo P, Valentina B, Sorrenti S, Di Benedetto A, De Antoni E, D'Armiento M. Increased expression of urokinase plasminogen activator and its cognate receptor in human seminomas. BMC Cancer 2010; 10:151. [PMID: 20403162 PMCID: PMC2885360 DOI: 10.1186/1471-2407-10-151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 04/19/2010] [Indexed: 01/04/2023] Open
Abstract
Background The urokinase plasminogen activating system (uPAS) is implicated in neoplastic progression and high tissue levels of uPAS components correlate with a poor prognosis in different human cancers. Despite that, relative few studies are available on the expression and function of the uPAS components in human seminomas. In the present study we characterized the expression of the urokinase plasminogen activator (uPA), its cognate receptor (uPAR) and the uPA inhibitors PAI-1 and PAI-2 in normal human testis and seminomas. Methods The expression of the above genes was evaluated by means of quantitative RT-PCR, western blot, zymographic analysis and immunohistochemistry. Results Quantitative RT-PCR analysis of 14 seminomas demonstrated that uPA and uPAR mRNAs were, with respect to control tissues, increased in tumor tissues by 3.80 ± 0.74 (p < 0.01) and 6.25 ± 1.18 (p < 0.01) fold, respectively. On the other hand, PAI-1 mRNA level was unchanged (1.02 ± 0.24 fold), while that of PAI-2 was significantly reduced to 0.34 ± 0.18 (p < 0.01) fold. Western blot experiments performed with protein extracts of three seminomas and normal tissues from the same patients showed that uPA protein levels were low or undetectable in normal tissues and induced in tumor tissues. On the same samples, zymographic analysis demonstrated increased uPA activity in tumor tissue extracts. Western blot experiments showed that also the uPAR protein was increased in tumor tissues by 1.83 ± 0.15 fold (p < 0.01). The increased expression of uPA and uPAR was further confirmed by immunohistochemical staining performed in 10 seminomas and autologous uninvolved peritumoral tissues. Finally, variation in the mRNA level of PAI-1 significantly correlated with tumor size. Conclusions We demonstrated the increased expression of uPA and uPAR in human seminomas with respect to normal testis tissues, which may be relevant in testicular cancer progression.
Collapse
Affiliation(s)
- Salvatore Ulisse
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baldini E, Ulisse S, Marchioni E, Di Benedetto A, Giovannetti G, Petrangeli E, Sentinelli S, Donnorso RP, Reale MG, Mottolese M, Gandini L, Lenzi A, D'Armiento M. Expression of Fas and Fas ligand in human testicular germ cell tumours. ACTA ACUST UNITED AC 2007; 32:123-30. [PMID: 17916181 DOI: 10.1111/j.1365-2605.2007.00823.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present study, we analysed the expression of Fas ligand (FasL) and its cognate receptor Fas in 14 seminomatous testicular germ cell tumours (TGCT) and six normal testicular tissues obtained following orchiectomy. Tissue samples have been processed to prepare either total RNA or protein extracts or fixed and embedded in paraffin for immunohistochemistry (IHC) experiments. Quantitative RT-PCR experiments demonstrated in TGCT a significant (p < 0.01) increase of the FasL mRNA expression of 21.1 +/- 5.4 fold, with respect to normal tissues. On the contrary, in the same cancer tissues, the levels of Fas mRNA were significantly (p < 0.01) reduced to 0.27 +/- 0.06 fold. These observations were confirmed in western blot experiments showing a significant increase of FasL and a concomitant decrease of Fas proteins in testicular cancer tissues, with respect to normal testis. Moreover, IHC experiments showed a strong FasL immuno-reactivity in six out of eight TGCT samples analysed, while Fas immuno-positivity was found in cancer cells of only two TGCT tissues. In addition, in all tumour samples, infiltrating lymphocytes were Fas positive. However, no correlation could be observed between Fas or FasL mRNA variations and clinical parameters such as patient's age, TNM stage or tumour size. We also compared the serum levels of soluble FasL (sFasL) of 15 patients affected by seminomatous TGCT, of four patients with non-seminomatous TGCT and six age-matched healthy males. No significant differences in sFasL serum level could be identified. In conclusion, our data demonstrated that the majority of seminomas are characterized by an increased expression of FasL and a concomitant reduction of Fas, with respect to human normal testis, and that sFasL serum level is not a tumour marker for patients affected by TGCT.
Collapse
Affiliation(s)
- E Baldini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
von Eyben FE, Jacobsen GK, Skotheim RI, von der Maase H, Rorth M. Precursor lesions in testis and dysgenetic gonads. Hum Pathol 2006; 37:773; author reply 774. [PMID: 16733221 DOI: 10.1016/j.humpath.2006.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 01/17/2006] [Indexed: 11/16/2022]
|