1
|
Hansen CE, Kamermans A, Mol K, Berve K, Rodriguez-Mogeda C, Fung WK, van Het Hof B, Fontijn RD, van der Pol SMA, Michalick L, Kuebler WM, Kenkhuis B, van Roon-Mom W, Liedtke W, Engelhardt B, Kooij G, Witte ME, de Vries HE. Inflammation-induced TRPV4 channels exacerbate blood-brain barrier dysfunction in multiple sclerosis. J Neuroinflammation 2024; 21:72. [PMID: 38521959 PMCID: PMC10960997 DOI: 10.1186/s12974-024-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.
Collapse
Grants
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 81X3100216 Deutsches Zentrum für Herz-Kreislaufforschung
- SFB-TR84 : subprojects A02 & C09, SFB-1449 subproject B01, SFB 1470 subproject A04, KU1218/9-1, KU1218/11-1, and KU1218/12-1 Deutsche Forschungsgemeinschaft
- PROVID (01KI20160A) and SYMPATH (01ZX1906A) Bundesministerium für Bildung und Forschung
- HA2016-02-02 Hersenstichting
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Kevin Mol
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura Michalick
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
| | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | | | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Ma Q, Wu J, Li H, Ma X, Yin R, Bai L, Tang H, Liu N. The role of TRPV4 in programmed cell deaths. Mol Biol Rep 2024; 51:248. [PMID: 38300413 DOI: 10.1007/s11033-023-09199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Programmed cell death is a major life activity of both normal development and disease. Necroptosis is early recognized as a caspase-independent form of programmed cell death followed obviously inflammation. Apoptosis is a gradually recognized mode of cell death that is characterized by a special morphological changes and unique caspase-dependent biological process. Ferroptosis, pyroptosis and autophagy are recently identified non-apoptotic regulated cell death that each has its own characteristics. The transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which is received more and more attention in biology studies. It is widely expressed in human tissues and mainly located on the membrane of cells. Several researchers have identified that the influx Ca2+ from TRPV4 acts as a key role in the loss of cells by apoptosis, ferroptosis, necroptosis, pyroptosis and autophagy via mediating endoplasmic reticulum (ER) stress, oxidative stress and inflammation. This effect is bad for the normal function of organs on the one hand, on the other hand, it is benefit for anticancer activities. In this review, we will summarize the current discovery on the role and impact of TRPV4 in these programmed cell death pathological mechanisms to provide a new prospect of gene therapeutic target of related diseases.
Collapse
Affiliation(s)
- Qingjie Ma
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jilin Wu
- Department of Anesthesiology, Kunming Children's Hospital, Kunming, 650034, China
| | - Huixian Li
- Department of Anesthesiology, The People's Hospital of Wenshan Zhuang and Miao Minority Autonomous Prefecture, Wenshan, 663099, China
| | - Xiaoshu Ma
- The Second Clinical Medical College of Binzhou Medical College, Binzhou, 256699, China
| | - Renwan Yin
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Heng Tang
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
3
|
Gao Y, Zhang X, Huo B. Knockdown of TRPV2 inhibits the migration of RAW264.7 cells toward low fluid shear stress region. J Cell Biochem 2023; 124:1391-1403. [PMID: 37565651 DOI: 10.1002/jcb.30454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Our previous studies have demonstrated that macrophages (RAW264.7) have a special ability for sensing the gradient of fluid shear stress (FSS) and migrate toward the low-FSS region. However, the molecular mechanism regulating this phenomenon is still unclear. In this study, we examined the transcriptome genes in RAW264.7 cells, MC3T3-E1 osteoblasts, mesenchymal stem cells, canine renal epithelial cells, and periodontal ligament cells. The expression levels of genes related to cell migration, force transfer, and force sensitivity in the Ca2+ signaling pathway were analyzed. We observed that the transient receptor potential cation channel type 2 (TRPV2) was highly expressed in RAW264.7 cells. Furthermore, we used lentiviral transfection to knockdown TRPV2 expression in RAW264.7 cells and studied the effect of TRPV2 on the migration of RAW264.7 cells under a gradient FSS field. The results showed that compared with normal cells, TRPV2-knockdown cells had impaired ability for sensing FSS gradient to migrate toward the low-FSS region and lower intracellular calcium response to FSS stimulation. This study may reveal the molecular mechanism of regulating the directional migration of macrophages under a gradient FSS field.
Collapse
Affiliation(s)
- Yan Gao
- Sports Biomechanics Center, Sports Artificial Intelligence Institute, Capital University of Physical Education and Sports, Beijing, People's Republic of China
| | - Xiao Zhang
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Bo Huo
- Sports Biomechanics Center, Sports Artificial Intelligence Institute, Capital University of Physical Education and Sports, Beijing, People's Republic of China
| |
Collapse
|
4
|
Assimakopoulou M, Christopoulou ME, Karamani V, Aletras AJ, Gatzounis G. Polycystin-2 Associates With Malignancy in Meningiomas. Appl Immunohistochem Mol Morphol 2023; 31:239-244. [PMID: 36877184 PMCID: PMC10072210 DOI: 10.1097/pai.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/28/2022] [Indexed: 03/07/2023]
Abstract
The involvement of polycystin-2 (PC2) in cell survival pathways raises questions about its role in carcinogenesis. Aberrant expression of PC2 has been associated with malignancy in various tumors. No evidence exists referring to PC2 expression in meningiomas. The aim of this study was to investigate the expression levels of PC2 in meningiomas and compare them with normal brain samples including leptomeninges. PC2 immunohistochemical expression was quantitatively analyzed in archival tissue from 60 patients with benign (WHO grade 1) and 22 patients with high-grade (21: WHO grade 2 and 1: grade 3) meningiomas. Specifically, the labeling index [the percentage of positive (labeled) cells out of the total number of tumor cells counted] was determined. PC2 mRNA levels were evaluated by quantitative real-time polymerase chain reaction. PC2 immunostaining was not detected in the leptomeninges. Gene expression analysis revealed increased levels of PC2 in WHO grade 1 ( P = 0.008) and WHO grade 2 ( P = 0.0007) meningiomas compared with that of normal brains. PC2 expression was significantly associated with an ascending grade of malignancy by both immunohistochemistry and quantitative real-time polymerase chain reaction ( P < 0.05). Recurrent meningiomas displayed higher levels of PC2 compared with primary meningiomas ( P = 0.008). Although no significant association of PC2 with the overall survival of the patients was found ( P > 0.05), it was noticed that the patients with WHO grade 2 meningiomas with low expression of PC2 survived longer compared with the patients with WHO grade 1 meningioma with high expression of PC2 (mean survival 49.5 and 28 months, respectively). The above results indicate a possible association of PC2 with malignancy in meningiomas. However, the mechanisms underlying PC2 implication in meningioma pathogenesis should be further elucidated.
Collapse
Affiliation(s)
| | | | | | - Alexios J. Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras
| | - George Gatzounis
- Department of Neurosurgery, University Hospital of Patras, Patras, Greece
| |
Collapse
|
5
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Moutafidi A, Gatzounis G, Zolota V, Assimakopoulou M. Heat shock factor 1 in brain tumors: a link with transient receptor potential channels TRPV1 and TRPA1. J Mol Histol 2021; 52:1233-1244. [PMID: 34591198 DOI: 10.1007/s10735-021-10025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Novel data report a "cross-talk" between Heat-Shock Factor 1 (HSF1) and the transient receptor potential vanilloid 1 cation channel (TRPV1) located in the cell membrane, introducing these channels as possible drug targets for the regulation of HSF1 activation. This study aims to investigate the co-expression of TRPV1 and HSF1 in human brain tumors. Additionally, the expression of the transient receptor potential ankyrin 1 channel (TRPA1), which is co-operated with TRPV1 in a plethora of cells, was studied. Immunohistochemical staining for HSF1, TRPV1 and TRPA1 expression was quantitatively analyzed in paraffin-embedded semi-serial tissue sections from 74 gliomas and 71 meningiomas. mRNA levels of HSF1, TRPV1 and TRPA1 were evaluated using real-time PCR. Although HSF1 was significantly increased compared with TRPV1/TRPA1 (p ≤ 0.001) in both gliomas and meningiomas, high co-expression levels for HSF1, TRPV1 and TRPA1 were found in 62.50% of diffuse fibrillary astrocytomas (WHO, grade II), 37.50% of anaplastic astrocytomas (WHO, grade III), 16.32% of glioblastomas multiforme (WHO, grade IV), and 42.25% of meningiomas (WHO, grade I and II). Correlation analysis revealed a relationship of HSF1 with TRPV1/TRPA1 in diffuse fibrillary astrocytomas (WHO, grade II) and benign meningiomas (WHO, grade I) contrary to glioblastomas multiforme (WHO, grade IV) and high grade meningiomas (WHO, grade II). Importantly, TRPA1 and TRPV1 expression levels were significantly increased in meningiomas compared with astrocytic tumors (p < 0.05). In conclusion, HSF1 and TRPV1/TRPA1 co-expression may be implicated in the pathogenesis of human brain tumors and should be considered for the therapeutic approaches for these tumors.
Collapse
Affiliation(s)
- Athanasia Moutafidi
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece
| | - George Gatzounis
- Department of Neurosurgery, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Vassiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Rion Patras, Greece
| | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, Biomedical Sciences Research Building, University of Patras, 1 Asklipiou, 26504, Rion Patras, Greece.
| |
Collapse
|
7
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Evaluation of AQP4/TRPV4 Channel Co-expression, Microvessel Density, and its Association with Peritumoral Brain Edema in Intracranial Meningiomas. J Mol Neurosci 2021; 71:1786-1795. [PMID: 33538957 PMCID: PMC8799549 DOI: 10.1007/s12031-021-01801-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Apart from VEGF-A pathway activation, the existence of peritumoral edema (PTBE) in meningiomas has been correlated with the expression levels of water transporter aquaporin 4 (AQP4). A novel cooperation of AQP4 with the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel, has been proposed for regulating cell volume in glial cells. We investigated AQP4/TRPV4 channel co-expression in meningiomas along with the neovascularization of tumors and associate with PTBE. Immunohistochemical staining for AQP4 and TRPV4 expression was quantitatively analyzed in semi-serial sections of archival tissue from 174 patients. Microvessel density was expressed as microvessel count (MVC). PTBE was measured and edema index (EI) was assessed in 23 patients, based on magnetic resonance images (MRI) whereas mRNA levels of AQP4 and TRPV4 were evaluated in these patients using quantitative real-time PCR. High AQP4 was associated with lower-tumor grade (p < 0.05). AQP4 and TRPV4 were correlated in benign (WHO, grade I) (p < 0.0001) but not in high-grade (WHO, grades II and III) meningiomas (p > 0.05). AQP4/TRPV4 levels were independent of EI and MVC (p > 0.05). In contrast, EI was correlated to MVC (p = 0.02). AQP4/TRPV4 co-expression was detected in both edematous and non-edematous meningiomas. However, most of tumors with larger edema (EI ≥ 2) demonstrated increased levels of AQP4 and TRPV4. Importantly, peri-meningioma tissue of edematous meningiomas demonstrated significantly increased expression for AQP4 (p = 0.007) but not for TRPV4 (p > 0.05) compared with the main tumor. AQP4 and TRPV4 expression is rather associated with a response to vasogenic edema of meningiomas than with edema formation.
Collapse
|
9
|
Liu N, Yan F, Ma Q, Zhao J. Modulation of TRPV4 and BKCa for treatment of brain diseases. Bioorg Med Chem 2020; 28:115609. [PMID: 32690264 DOI: 10.1016/j.bmc.2020.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
As a member of transient receptor potential family, the transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which belongs to non-voltage gated Ca2+ channel. Large-conductance Ca2+-activated K+ channel (BKCa) represents a unique superfamily of Ca2+-activated K+ channel (KCa) that is both voltage and intracellular Ca2+ dependent. Not surprisingly, aberrant function of either TRPV4 or BKCa in neurons has been associated with brain disorders, such as Alzheimer's disease, cerebral ischemia, brain tumor, epilepsy, as well as headache. In these diseases, vascular dysfunction is a common characteristic. Notably, endothelial and smooth muscle TRPV4 can mediate BKCa to regulate cerebral blood flow and pressure. Therefore, in this review, we not only discuss the diverse functions of TRPV4 and BKCa in neurons to integrate relative signaling pathways in the context of cerebral physiological and pathological situations respectively, but also reveal the relationship between TRPV4 and BKCa in regulation of cerebral vascular tone as an etiologic factor. Based on these analyses, this review demonstrates the effective mechanisms of compounds targeting these two channels, which may be potential therapeutic strategies for diseases in the brain.
Collapse
Affiliation(s)
- Na Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Fang Yan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingjie Ma
- Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Jianhua Zhao
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China.
| |
Collapse
|
10
|
The TRPV2 cation channels: from urothelial cancer invasiveness to glioblastoma multiforme interactome signature. J Transl Med 2020; 100:186-198. [PMID: 31653969 DOI: 10.1038/s41374-019-0333-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Changes in transient receptor potential (TRP) Ca2+ permeable channels are associated with development and progression of different types of cancer. Herein, we report data relative to the expression and function of TRP vanilloid 2 (TRPV2) channels in cancer. Overexpression of TRPV2 is observed in high-grade urothelial cancers and treatment with the TRPV2 agonist cannabidiol induces apoptosis. In prostate cancer, TRPV2 promotes migration and invasion, and TRPV2 overexpression characterizes the castration-resistant phenotype. In breast cancer cells, inhibition of TRPV2 by tranilast reduces the insulin-like growth factor-1 stimulated proliferation. TRPV2 overexpression in triple-negative breast cancer cells is associated with high recurrence-free survival. Increased TRPV2 overexpression is present in patients with esophageal squamous cell carcinoma associated with advanced disease, lymph node metastasis, and poor prognosis. Increased TRPV2 transcripts have been found both in benign hepatoma and in hepatocarcinomas, where TRPV2 expression is associated with portal vein invasion and reduction of cancer stem cell expression. TRPV2 expression and function has been also evaluated in gliomagenesis. This receptor negatively controls survival, proliferation, and resistance to CD95- or BCNU-induced apoptosis. In glioblastoma stem cells, TRPV2 activation promotes differentiation and inhibits the proliferation in vitro and in vivo. In glioblastoma, the TRPV2 is part of an interactome-based signature complex, which is negatively associated with survival, and it is expressed in high risk of recurrence and temozolomide-resistant patients. Finally, also in hematological malignancies, such as myeloma or acute myeloid leukemia, TRPV2 might represent a target for novel therapeutic approaches. Overall, these findings demonstrate that TRPV2 exhibits an oncogenic activity in different types of cancers, controlling survival, proliferation, migration, angiogenesis, and invasion signaling pathways. Thus, it prompts the pharmacological use of TRPV2 targeting in the control of cancer progression.
Collapse
|