1
|
Rimawi BH. Botulism in pregnancy - a clinical approach to diagnosis and management. J Matern Fetal Neonatal Med 2018; 32:3125-3132. [PMID: 29577785 DOI: 10.1080/14767058.2018.1457641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Botulism is a life-threatening toxin mediated disease that often presents with a sudden rapid onset of paralysis of their skeletal muscles with subsequent respiratory compromise and sudden death. Given the natural physiological changes during pregnancy, pregnant women with botulism may experience a more exaggerated course and have worse outcomes compared to nonpregnant women. Medical providers caring for such patients should not only maintain a high level of suspicion for botulism, but administration of an antitoxin early in their care can help reduce morbidity and mortality, while awaiting confirmatory laboratory results. It is not uncommon for a medical provider caring for these women to mistakenly associate the signs and symptoms associated with botulism with pregnancy-related findings; therefore, this article illustrates a clinical algorithmic approach to caring for these women, including a systematic approach to establishing a diagnosis and management plan for pregnant women with botulism.
Collapse
Affiliation(s)
- Bassam H Rimawi
- a University of South Alabama , Division of Maternal-Fetal Medicine , Mobile , AL , USA
| |
Collapse
|
2
|
Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations. Clin Obstet Gynecol 2016; 59:412-8. [DOI: 10.1097/grf.0000000000000187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Wu D, Zhang J. Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain. Front Neuroanat 2016; 10:18. [PMID: 26973471 PMCID: PMC4776397 DOI: 10.3389/fnana.2016.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 01/21/2023] Open
Abstract
The laboratory mouse has been widely used as a model system to investigate the genetic control mechanisms of mammalian brain development. Magnetic resonance imaging (MRI) is an important tool to characterize changes in brain anatomy in mutant mouse strains and injury progression in mouse models of fetal and neonatal brain injury. Progress in the last decade has enabled us to acquire MRI data with increasing anatomical details from the embryonic and neonatal mouse brain. High-resolution ex vivo MRI, especially with advanced diffusion MRI methods, can visualize complex microstructural organizations in the developing mouse brain. In vivo MRI of the embryonic mouse brain, which is critical for tracking anatomical changes longitudinally, has become available. Applications of these techniques may lead to further insights into the complex and dynamic processes of brain development.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
4
|
Parasoglou P, Berrios-Otero CA, Nieman BJ, Turnbull DH. High-resolution MRI of early-stage mouse embryos. NMR IN BIOMEDICINE 2013; 26:224-31. [PMID: 22915475 PMCID: PMC3524402 DOI: 10.1002/nbm.2843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 05/08/2023]
Abstract
Both the availability of methods to manipulate genes and the completion of the mouse genome sequence have led to the generation of thousands of genetically modified mouse lines that provide a new platform for the study of mammalian development and developmental diseases. Phenotyping of mouse embryos has traditionally been performed on fixed embryos by the use of ex vivo histological, optical and high-resolution MRI techniques. Although potentially powerful, longitudinal imaging of individual animals is difficult or impossible with conventional optical methods because of the inaccessibility of mouse embryos inside the maternal uterus. To address this problem, we present a method of imaging the mouse embryo from stages as early as embryonic day (E)10.5, close to the onset of organogenesis in most physiological systems. This method uses a self-gated MRI protocol, combined with image registration, to obtain whole-embryo high-resolution (100 µm isotropic) three-dimensional images. Using this approach, we demonstrate high contrast in the cerebral vasculature, limbs, spine and central nervous system without the use of contrast agents. These results indicate the potential of MRI for the longitudinal imaging of developing mouse embryos in utero and for future applications in analyzing mutant mouse phenotypes.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Cesar A Berrios-Otero
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel H Turnbull
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
- Department of Radiology, New York University School of Medicine, New York, New York, USA
- Correspondence to: Daniel H. Turnbull, PhD, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016,
| |
Collapse
|
5
|
Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 2012; 198:778-84. [PMID: 22451541 DOI: 10.2214/ajr.11.7405] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The objectives of this article are to discuss the current evidence-based recommendations regarding radiation dose concerns, the use of iodinated and gadolinium-based contrast agents, and the comparative advantages of multimodality imaging (ultrasound, CT, and MRI) during pregnancy and lactation. We also discuss the use of imaging to evaluate pregnant trauma patients. CONCLUSION Maternal and fetal radiation exposure and dose are affected by gestational age, anatomic site, modality, and technique. The use of iodinated and gadolinium-based contrast agents during pregnancy and lactation has not been well studied in human subjects. Imaging should be used to evaluate pregnant trauma patients only when the benefits outweigh the risks.
Collapse
|
6
|
Gruemmer R, Maderwald S, Winterhager E, Hauth E. Screening for embryonic loss during in utero development of mice with a human 1.5 Tesla clinical MRI scanner. J Magn Reson Imaging 2010; 32:1158-65. [PMID: 21031522 DOI: 10.1002/jmri.22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To establish in utero MRI-scanning of mouse implantation sites in a 1.5 Tesla whole-body human clinical scanner for evaluation of impaired implantation, placental or developmental defects due to genetic alterations. MATERIALS AND METHODS Pregnant C57Bl/6 wild-type and Cx31-deficient mice revealing placental defects were analyzed in utero using a 1.5 Tesla whole-body clinical scanner in combination with a 3-cm-diameter single loop (slice thickness: 1.2 mm). Imaging of implantation sites was evaluated from 6.5-13.5 dpc and amount of implantation sites and in vivo development was analyzed during the critical phase of placentation from 10.5-13.5 dpc. RESULTS This method provided high resolution in plane images permitting confident identification of all implantation sites from 6.5 dpc onward. A loss of 60% of Cx31-deficient embryos was demonstrated compared with controls. Repeated anesthesia as well as imaging protocols produced no gross malformations in the surviving mice. CONCLUSION Using a human clinical MRI scanner high resolution imaging of the entire uterus of the mice and all the embryos inside could be performed. This method is well suited to noninvasively monitor and quantify embryo implantation and to follow this dynamic process in vivo without compromising pregnancy progression and embryonic development.
Collapse
Affiliation(s)
- Ruth Gruemmer
- Institute of Molecular Biology, University Hospital, Essen, Germany.
| | | | | | | |
Collapse
|
7
|
Tomlinson TM, Garbow JR, Anderson JR, Engelbach JA, Nelson DM, Sadovsky Y. Magnetic resonance imaging of hypoxic injury to the murine placenta. Am J Physiol Regul Integr Comp Physiol 2009; 298:R312-9. [PMID: 19923363 DOI: 10.1152/ajpregu.00425.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We assessed the use of magnetic resonance imaging (MRI) to define placental hypoxic injury associated with fetal growth restriction. On embryonic day 18.5 (E18.5) we utilized dynamic contrast-enhanced (DCE)-MRI on a 4.7-tesla small animal scanner to examine the uptake and distribution of gadolinium-based contrast agent. Quantitative DCE parameter analysis was performed for the placenta and fetal kidneys of three groups of pregnant C57BL/6 mice: 1) mice that were exposed to Fi(O(2)) = 12% between E15.5 and E18.5, 2) mice in normoxia with food restriction similar to the intake of hypoxic mice between E15.5 and E18.5, and 3) mice in normoxia that were fed ad libitum. After imaging, we assessed fetoplacental weight, placental histology, and gene expression. We found that dams exposed to hypoxia exhibited fetal growth restriction (weight reduction by 28% and 14%, respectively, P < 0.05) with an increased placental-to-fetal ratio. By using MRI-based assessment of placental contrast agent kinetics, referenced to maternal paraspinous muscle, we found decreased placental clearance of contrast media in hypoxic mice, compared with either control group (61%, P < 0.05). This was accompanied by diminished contrast accumulation in the hypoxic fetal kidneys (23%, P < 0.05), reflecting reduced transplacental gadolinium transport. These changes were associated with increased expression of placental Phlda2 and Gcm1 transcripts. Exposure to hypoxia near the end of mouse pregnancy reduces placental perfusion and clearance of contrast. MRI-based DCE imaging provides a novel tool for dynamic, in vivo assessment of placental function.
Collapse
Affiliation(s)
- Tracy M Tomlinson
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Mice lacking or over-expressing a gene of experimental interest have become important tools to understand the regulation of kidney function and water and electrolyte homeostasis. The use of mice in physiological studies is becoming more widespread, but there are still a number of technical limitations that preclude the full utilization of mouse models in renal research. The present chapter focuses upon a set of methods developed in our laboratory to quantify renal function in conscious mice. These measurements are based upon surgical instrumentation of mice with chronic indwelling arterial and venous catheters. This preparation permits direct measurement of arterial blood pressure, direct sampling of arterial and/or venous blood, intravenous or intra-arterial infusion of substances, and quantification of daily sodium balance. The advantage of these techniques is that all of these procedures can be performed in conscious mice freely moving in their home cages. As such, this in vivo preparation provides an assessment of physiological function in mice in their native state.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
MR imaging in the triage of pregnant patients with acute abdominal and pelvic pain. ACTA ACUST UNITED AC 2008; 34:243-50. [DOI: 10.1007/s00261-008-9381-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Olson GE, Winfrey VP, Hill KE, Burk RF. Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 2008; 283:6854-60. [PMID: 18174160 DOI: 10.1074/jbc.m709945200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenoprotein P (Sepp1) contains most of the selenium in blood plasma, and it is utilized by the kidney, brain, and testis as a selenium source for selenoprotein synthesis. We recently demonstrated that apolipoprotein E receptor-2 (ApoER2) is required for Sepp1 uptake by the testis and that deletion of ApoER2 reduces testis and brain, but not kidney, selenium levels. This study examined the kidney Sepp1 uptake pathway. Immunolocalization experiments demonstrated that Sepp1 passed into the glomerular filtrate and was specifically taken up by proximal tubule epithelial cells. Neither the C terminus selenocysteine-rich domain of Sepp1 nor ApoER2 was required for Sepp1 uptake by proximal tubules. Tissue ligand binding assays using cryosections of Sepp1-/- kidneys revealed that the proximal tubule epithelium contained Sepp1-binding sites that were blocked by the receptor-associated protein, RAP, an inhibitor of lipoprotein receptor-ligand interactions. Ligand blotting assays of kidney membrane preparations fractionated by SDS-PAGE revealed that Sepp1 binds megalin, a lipoprotein receptor localized to the proximal tubule epithelium. Immunolocalization analyses confirmed the in vivo co-localization of Sepp1 and megalin in wild type kidneys and demonstrated the absence of proximal tubule Sepp1 uptake in megalin null mice. These results demonstrate that kidney selenium homeostasis is mediated by a megalin-dependent Sepp1 uptake pathway in the proximal tubule.
Collapse
Affiliation(s)
- Gary E Olson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
11
|
Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M. In vivo mouse imaging and spectroscopy in drug discovery. NMR IN BIOMEDICINE 2007; 20:154-85. [PMID: 17451175 DOI: 10.1002/nbm.1153] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
We develop and demonstrate improved image-forming optics for optical projection tomography (OPT), with which the parallel integral throughout an object can be obtained. This method results in an improved resolution for OPT images, especially for the cross sections far from the optical axis of the image-forming optics. We find the optimal configuration used in our OPT system by use of a point spread function and simulation technique. The new method is validated by both numerical simulations and experimental results. The spatial resolution of the OPT system presented is approximately 40 microm.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biomedical Engineering, Oregon Heath & Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|