1
|
Zhang L, Qin K, Pan N, Xu H, Gong Q. Shared and distinct patterns of default mode network dysfunction in major depressive disorder and bipolar disorder: A comparative meta-analysis. J Affect Disord 2025; 368:23-32. [PMID: 39260575 DOI: 10.1016/j.jad.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND While patients with major depressive disorder (MDD) and bipolar disorder (BD) exhibited default mode network (DMN) dysfunction revealed by aberrant resting-state functional connectivity (rsFC) patterns, previous findings have been inconsistent. Little is known about the similarities and differences in DMN rsFC between MDD and BD. METHODS A voxel-wise meta-analysis of seed-based DMN rsFC studies on MDD or BD was performed using the Seed-based d Mapping software with permutation of subject images (SDM-PSI). Aberrant DMN rsFC in both disorders was investigated separately, followed by conjunction and between-disorder comparison analyses. Functional decoding was performed to implicate the psychophysiological underpinnings of derived brain abnormalities. RESULTS Thirty-four studies comparing 1316 MDD patients with 1327 HC, and 22 studies comparing 1059 BD patients with 1396 HC were included. Compared to HC, MDD patients exhibited DMN hyperconnectivity with frontolimbic systems, and hypoconnectivity with temporal lobe and posterior cingulate cortex. BD patients displayed increased DMN connectivity with bilateral precuneus, and reduced connectivity with prefrontal cortex and middle temporal gyrus. No common patterns of DMN rsFC abnormalities were observed between MDD and BD. Compared to BD, MDD patients showed DMN hyperconnectivity with triangular part of the left inferior frontal gyrus and left fusiform gyrus. Functional decoding found that patterns of DMN rsFC alteration between MDD and BD were primarily related to action and perception domains. CONCLUSION Distinct DMN dysfunction patterns in MDD and BD enhance current understanding of the neural substrates of mood disorders and may provide a potential biomarker for differentiation.
Collapse
Affiliation(s)
- Lisha Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Haoran Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Chiarpenello C, Brodmann K. What can the psychoneuroimmunology of yoga teach us about depression's psychopathology? Brain Behav Immun Health 2024; 42:100877. [PMID: 39430877 PMCID: PMC11489066 DOI: 10.1016/j.bbih.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
Depression, the most prevailing mental health condition, remains untreated in over 30% of patients. This cluster presents with sub-clinical inflammation. Investigations trialling anti-inflammatory medications had mixed results. The lack of results may result from inflammation's complexity and targeting only a few of depression's abnormal pathways. Mind-body therapies' biological and neuro-imaging studies offer valuable insights into depression psychopathology. Interestingly, mind-body therapies, like yoga, reverse the aberrant pathways in depression. These aberrant pathways include decreased cognitive function, interoception, neuroplasticity, salience and default mode networks connectivity, parasympathetic tone, increased hypothalamic-pituitary-adrenal (HPA) axis activity, and metabolic hyper/hypofunction. Abundant evidence found yogic techniques improving self-reported depressive symptoms across various populations. Yoga may be more effective in treating depression in conjunction with pharmacological and cognitive therapies. Yoga's psychoneuroimmunology teaches us that reducing allostatic load is crucial in improving depressive symptoms. Mind-body therapies promote parasympathetic tone, downregulate the HPA axis, reduce inflammation and boost immunity. The reduced inflammation promotes neuroplasticity and, subsequently, neurogenesis. Improving interoception resolves the metabolic needs prediction error and restores homeostasis. Additionally, by improving functional connectivity within the salience network, they restore the dynamic switching between the default mode and central executive networks, reducing rumination and mind-wandering. Future investigations should engineer therapies targeting the mechanisms mentioned above. The creation of multi-disciplinary health teams offering a combination of pharmacological, gene, neurofeedback, behavioural, mind-body and psychological therapies may treat treatment-resistant depression.
Collapse
Affiliation(s)
- Carola Chiarpenello
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| | - Katja Brodmann
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
| |
Collapse
|
3
|
Zhang L, Xia J, Li B, Cao Z, Dong S. Multimodal integrated flexible neural probe for in situ monitoring of EEG and lactic acid. RSC Adv 2024; 14:35520-35528. [PMID: 39507693 PMCID: PMC11540061 DOI: 10.1039/d4ra06336h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
In physiological activities, the brain's electroencephalogram (EEG) signal and chemical concentration change are crucial for diagnosing and treating neurological disorders. Despite the advantages of flexible neural probes, such as their flexibility and biocompatibility, it remains a challenge to achieve in situ monitoring of electrophysiological and chemical signals on a small scale simultaneously. This study developed a new method to construct an efficient dual-sided multimodal integrated flexible neural probe, which combines a density electrode array for EEG recordings and an electrochemical sensor for detecting lactic acid. The EEG electrode array includes a 6-channel recording electrode array with each electrode 30 × 50 μm in size, and the lactic acid sensor with overall contact is approximately 100 μm wide. The EEG electrodes have an average impedance of 2.57 kΩ at 1 kHz and remained stable after immersing in NS (normal saline) for 3 months. The lactic acid sensor showed a sensitivity of 52.8 nA mM-1. The in vivo experiments demonstrated that the probe can reliably monitor electrophysiological signals. The probe is able to be implanted into the desired site with the help of a guide port. This flexible neural probe can provide more comprehensive insights into brain activity in the field of neuroscience and clinical practices.
Collapse
Affiliation(s)
- Luxi Zhang
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Jie Xia
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Boyu Li
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Zhen Cao
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| | - Shurong Dong
- The State Key Laboratory of Brain-Machine Intelligence, College of Information Science and Electronic Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
4
|
Fujimoto S, Fujimoto A, Elorette C, Choi KS, Mayberg H, Russ B, Rudebeck P. What can neuroimaging of neuromodulation reveal about the basis of circuit therapies for psychiatry? Neuropsychopharmacology 2024; 50:184-195. [PMID: 39198580 PMCID: PMC11526173 DOI: 10.1038/s41386-024-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Neuromodulation is increasingly becoming a therapeutic option for treatment resistant psychiatric disorders. These non-invasive and invasive therapies are still being refined but are clinically effective and, in some cases, provide sustained symptom reduction. Neuromodulation relies on changing activity within a specific brain region or circuit, but the precise mechanisms of action of these therapies, is unclear. Here we review work in both humans and animals that has provided insight into how therapies such as deep brain and transcranial magnetic stimulation alter neural activity across the brain. We focus on studies that have combined neuromodulation with neuroimaging such as PET and MRI as these measures provide detailed information about the distributed networks that are modulated and thus insight into both the mechanisms of action of neuromodulation but also potentially the basis of psychiatric disorders. Further we highlight work in nonhuman primates that has revealed how neuromodulation changes neural activity at different scales from single neuron activity to functional connectivity, providing key insight into how neuromodulation influences the brain. Ultimately, these studies highlight the value of combining neuromodulation with neuroimaging to reveal the mechanisms through which these treatments influence the brain, knowledge vital for refining targeted neuromodulation therapies for psychiatric disorders.
Collapse
Affiliation(s)
- Satoka Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Radiology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
- Department of Psychiatry, New York University at Langone, New York, NY, USA.
| | - Peter Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Lipschultz Center for Cognitive Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Sattar A, Rehman Z, Murtaza H, Ashraf W, Ahmad T, Alqahtani F, Imran I. Brivaracetam and rufinamide combination increased seizure threshold and improved neurobehavioral deficits in corneal kindling model of epilepsy. Animal Model Exp Med 2024. [PMID: 39439107 DOI: 10.1002/ame2.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Besides seizures, a myriad of overlapping neuropsychiatric and cognitive comorbidities occur in patients with epilepsy, which further debilitates their quality of life. This study provides an in-depth characterization of the impact of brivaracetam and rufinamide individually and in combination at 10 and 20 mg/kg doses, respectively, on corneal kindling-induced generalized seizures and behavioral alterations. Furthermore, observed convulsive frequency and behavioral changes were correlated to post-kindling-induced changes in the activity of markers of oxidative stress. METHODS Adult C57BL/6 mice were kindled via twice-daily transcorneal 50-Hz electrical stimulations (3 mA) for 3 s for 12 days until animals reached a fully kindled state. After the kindling procedure, animals were tested using a set of behavioral tests, and neurochemical alterations were assessed. RESULTS Corneal-kindled animals exhibited intense generalized convulsions, altered behavioral phenotypes typified by positive symptoms (hyperlocomotion), negative symptoms (anxiety and anhedonia), and deficits in semantic and working memory. BRV 10 + RFM 20 dual regime increased convulsive threshold and propensity toward the start of stage 4-5 seizures and improved phenotypical deficits, that is, anxiety, depression, and memory impairments. Moreover, this combination therapy mitigated kindling-induced redox impairments as evidenced by reduced malondialdehyde and acetylcholinesterase levels and increased glutathione antioxidant activity in the brain of animals subjected to repetitive brain insult. CONCLUSION Based on our outcomes, this dual therapy provides supporting evidence in alleviating epilepsy-induced neurobehavioral comorbidities and changes in redox homeostasis.
Collapse
Affiliation(s)
- Awais Sattar
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hammad Murtaza
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309, Université Grenoble Alpes, Saint Martin d'Hères, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
6
|
Kosakowski HL, Eldaief MC, Buckner RL. Ventral Striatum is Preferentially Correlated with the Salience Network Including Regions in Dorsolateral Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618063. [PMID: 39416211 PMCID: PMC11482876 DOI: 10.1101/2024.10.13.618063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The ventral striatum (VS) receives input from the cerebral cortex and is modulated by midbrain dopaminergic projections in support of processing reward and motivation. Here we explored the organization of cortical regions linked to the human VS using within-individual functional connectivity MRI in intensively scanned participants. In two initial participants (scanned 31 sessions each), seed regions in the VS were preferentially correlated with distributed cortical regions that are part of the Salience (SAL) network. The VS seed region recapitulated SAL network topography in each individual including anterior and posterior midline regions, anterior insula, and dorsolateral prefrontal cortex (DLPFC) - a topography that was distinct from a nearby striatal seed region. The region of DLPFC linked to the VS is positioned adjacent to regions associated with domain-flexible cognitive control. The full pattern was replicated in independent data from the same two individuals and generalized to 15 novel participants (scanned 8 or more sessions each). These results suggest that the VS forms a cortico-basal ganglia loop as part of the SAL network. The DLPFC is a neuromodulatory target to treat major depressive disorder. The present results raise the possibility that the DLPFC may be an effective neuromodulatory target because of its preferential coupling to the VS and suggests a path toward further personalization.
Collapse
|
7
|
Ren X, White EJ, Nacke M, Mayeli A, Touthang J, Al Zoubi O, Kuplicki R, Victor TA, Paulus MP, Aupperle RL, Stewart JL. Blunted stimulus-preceding negativity during reward anticipation in major depressive disorder. J Affect Disord 2024; 362:779-787. [PMID: 39029684 PMCID: PMC11316661 DOI: 10.1016/j.jad.2024.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Reward processing dysfunction is a core characteristic of major depressive disorder (MDD), yet event-related potential (ERP) research in MDD has predominantly focused on reward receipt as opposed to anticipation. The stimulus-preceding negativity (SPN) ERP reflects anticipatory brain processing. This study examines whether individuals with MDD exhibit deficits during reward anticipation as evidenced by altered SPN amplitude. METHODS We assessed prefeedback-SPN amplitudes during a monetary incentive delay (MID) task in individuals with MDD (n = 142, 99 with comorbid anxiety disorders [MDD + ANX]) compared to Controls (n = 37). A mixed analysis of variance was performed on prefeedback-SPN amplitude and behavioral measures, with group (MDD, MDD + ANX, Control) as the between-subjects factor, and feedback (gain, loss) and electrode (F3, F4, Fz, C3, C4, Cz, P3, P4, Pz) as within-subjects factors. RESULTS A group main effect revealed faster reaction times for the Control group than MDD and MDD + ANX groups. A group x feedback interaction indicated that the MDD subgroup had smaller prefeedback-SPN amplitudes than MDD + ANX and Control groups when anticipating gain feedback. Additionally, individuals with current MDD, irrespective of past MDD and comorbid anxiety, exhibited smaller SPN amplitudes than Controls prior to gain feedback. LIMITATIONS The MID paradigm, designed for functional magnetic resonance imaging (fMRI) data acquisition, lacks optimization for ERP analysis. Moreover, the clinical groups included more females than the Control group. CONCLUSIONS Reduced resource allocation to reward anticipation may differentiate MDD from MDD + ANX and Control groups. Further investigation of the neural mechanisms of distinct MDD phenotypes is warranted.
Collapse
Affiliation(s)
- Xi Ren
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Mariah Nacke
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Ahmad Mayeli
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Touthang
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Psychiatry, Harvard Medical School/McLean Hospital, Boston, MA, United States
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Teresa A Victor
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health and Natural Sciences, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
8
|
Wang YM, Chen LL, Wang CL, Yan C, Xie GR, Yang XH. Changed ventral striatum structural covariance and grey matter volume in depression during a one-year follow-up. Psychiatry Res Neuroimaging 2024; 344:111887. [PMID: 39236484 DOI: 10.1016/j.pscychresns.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Empirical findings suggest reduced cortico-striatal structural connectivity in patients with major depressive disorder (MDD). However, the relationship between the abnormal structural covariance and one-year outcome of first-episode drug-naive patients has not been evaluated. This longitudinal study aimed to identify specific changes of ventral striatum-related brain structural covariance and grey matter volume in forty-two first-episode patients with major depression disorder compared with thirty-seven healthy controls at the baseline and the one-year follow-up conditions. At the baseline, patients showed decreased structural covariance between the left ventral striatum and the bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), right supplementary motor area (SMA) and left precentral gyrus and increased grey matter volume at the left fusiform and left parahippocampus. At the one-year follow-up, patients showed decreased structural covariance between the left ventral striatum and the right SFG, right MFG, left precentral gyrus and left postcentral gyrus, and increased structural covariance between the right ventral striatum and the right amygdala, right hippocampus, right parahippocampus, right superior temporal pole, right insula and right olfactory bulb and decreased volume at the left SMA compared with controls. These findings suggest that specific ventral striatum connectivity changes contribute to the early brain development of the MDD.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Liang-Liang Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Cheng-Lei Wang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guang-Rong Xie
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | - Xin-Hua Yang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Sun A, Fan L, Zhang Z, Liu Y, Chen X, Peng Y, Li X. A metabolomics approach reveals the pharmacological effects and mechanisms of Cistanche tubulosa stems and its combination with fluoxetine on depression in comorbid with sexual dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118891. [PMID: 39362326 DOI: 10.1016/j.jep.2024.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried succulent stems of Cistanche tubulosa (Schenk) Wight are utilized in traditional medicine for tonifying kidney yang, which have shown to be effective in alleviating depression-like behaviors or male sexual dysfunction, respectively. However, the pharmacological effects and mechanisms of C. tubulosa and its combinations in the treatment of depression in comorbid with sexual dysfunction remain unclear. AIM OF THE STUDY This study aims to elucidate the pharmacological effects and mechanisms of C. tubulosa aqueous extract (CTE) and its combination with fluoxetine (FLX) on depression in comorbid with sexual dysfunction. MATERIALS AND METHODS A mouse model of depression in comorbid with sexual dysfunction was created using the chronic unpredictable mild stress (CUMS) procedure. The therapeutic effects of CTE and its combination with FLX were assessed using depressive-like and mating behavior experiments, histopathological analysis, and hypothalamic-pituitary-gonadal (HPG) axis function evaluation. The mechanisms were explored by integrated serum and testicular metabolomics combined with network correlation analysis. RESULTS CTE was confirmed to significantly improve depressive-like behaviors, reduce mating abilities, testicular histopathological damage, and HPG axis hormone secretion disorders in CUMS mice. Subsequently, mechanism exploration findings indicated that CTE might exert its effect by regulating potential efficacy-related biomarkers (isobutyrylglycine, citric acid, D-galactose) to improve certain metabolic pathways centered around steroid hormone biosynthesis and tricarboxylic acid (TCA) cycle. Furthermore, the combination of CTE and FLX exhibited stronger antidepressant effects than FLX alone, and ameliorated the exacerbated sexual dysfunction induced by FLX. These effects were achieved through the regulation of potential efficacy-related biomarkers (17α-hydroxypregnenolone, tetrahydrodeoxy-corticosterone, sphingosine, cortol, thymine, and L-histidine), thereby improving disorders in glycerophospholipid and histidine metabolism. CONCLUSION In conclusion, the amelioration effects of CTE and its combination with FLX on depression in comorbid with sexual dysfunction were confirmed for the first time. This key mechanism may be achieved by modulating the levels of potential efficacy-related biomarkers, and then emphatically intervene in steroid hormone biosynthesis, TCA cycle, glycerophospholipid and histidine metabolism. The study offers a new perspective for the development and utilization of C. tubulosa.
Collapse
Affiliation(s)
- An Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxu Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Wang R, Su Y, O'Donnell K, Caron J, Meaney M, Meng X, Li Y. Differential interactions between gene expressions and stressors across the lifespan in major depressive disorder. J Affect Disord 2024; 362:688-697. [PMID: 39029669 DOI: 10.1016/j.jad.2024.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Both genetic predispositions and exposures to stressors have collectively contributed to the development of major depressive disorder (MDD). To deep dive into their roles in MDD, our study aimed to examine which susceptible gene expression interacts with various dimensions of stressors in the MDD risk among a large population cohort. METHODS Data analyzed were from a longitudinal community-based cohort from Southwest Montreal, Canada (N = 1083). Latent profile models were used to identify distinct patterns of stressors for the study cohort. A transcriptome-wide association study (TWAS) method was performed to examine the interactive effects of three dimensions of stressors (threat, deprivation, and cumulative lifetime stress) and gene expression on the MDD risk in a total of 48 tissues from GTEx. Additional analyses were also conducted to further explore and specify these associations including colocalization, and fine-mapping analyses, in addition to enrichment analysis investigations based on TWAS. RESULTS We identified 3321 genes linked to MDD at the nominal p-value <0.05 and found that different patterns of stressors can amplify the genetic susceptibility to MDD. We also observed specific genes and pathways that interacted with deprivation and cumulative lifetime stressors, particularly in specific brain tissues including basal ganglia, prefrontal cortex, brain amygdala, brain cerebellum, brain cortex, and the whole blood. Colocalization analysis also identified these genes as having a high probability of sharing MDD causal variants. LIMITATIONS The study cohort was composed exclusively of individuals of Caucasians, which restricts the generalizability of the findings to other ethnic population groups. CONCLUSIONS The findings of the study unveiled significant interactions between potential tissue-specific gene expression × stressors in the MDD risk and shed light on the intricate etiological attributes of gene expression and specific stressors across the lifespan in MDD. These genetic and environmental attributes in MDD corroborate the vulnerability-stress theory and direct future stress research to have a closer examination of genetic predisposition and potential involvements of omics studies to specify the intricate relationships between genes and stressful environments.
Collapse
Affiliation(s)
- Ruiyang Wang
- Department of Financial and Risk Engineering, New York University, NY, NYC, USA; Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada
| | - Yingying Su
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kieran O'Donnell
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada; Yale Child Study Center, Department of Obstetrics Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA; Child & Brain Development Program, CIFAR, Toronto, ON, Canada
| | - Jean Caron
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada
| | - Michael Meaney
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada
| | - Xiangfei Meng
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Douglas Research Centre, Montreal, QC, Canada.
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Jiang H, Zhang J, Li Q, Zhou Y. Integrating network pharmacology and bioinformatics to explore the mechanism of Xiaojian Zhongtang in treating major depressive disorder: An observational study. Medicine (Baltimore) 2024; 103:e39726. [PMID: 39312335 PMCID: PMC11419523 DOI: 10.1097/md.0000000000039726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. The traditional Chinese medicine compound Xiaojian Zhongtang (XJZT) has a good therapeutic effect on MDD, but the specific mechanism is not clear. The aim of this study is to explore the molecular mechanism of XJZT in the treatment of MDD through network pharmacology and bioinformatics. The traditional Chinese medicine system pharmacology database was used to screen the chemical components and targets of XJZT, while the online Mendelian inheritance in man, DisGeNET, Genecards, and therapeutic target database databases were used to collect MDD targets and identify the intersection targets of XJZT and MDD. A "drugs-components-targets" network was constructed using the Cytoscape platform, and the STRING was used for protein-protein interaction analysis of intersecting targets. Gene Ontology and Kyoto encyclopedia of genes and genomes analysis of intersecting targets was performed using the DAVID database. Obtain serum and brain transcriptome datasets of MDD from the gene expression omnibus database, and perform differentially expressed genes, weighted gene co-expression network analysis, gene set enrichment analysis, and receiver operating characteristic analysis. A total of 127 chemical components and 767 targets were obtained from XJZT, among which quercetin, kaempferol, and maltose are the core chemical components, and 1728 MDD targets were screened out, with 77 intersecting targets between XJZT and MDD. These targets mainly involve AGE-RAGE signaling pathway in diabetic complexes, epidermal growth factor receptor tyrosine kinase inhibitor resistance, and HIF-1 signaling pathway, and these core targets have strong binding activity with core components. In addition, 1166 differentially expressed genes were identified in the MDD serum transcriptome dataset, and weighted gene co-expression network analysis identified the most relevant gene modules (1269 genes), among which RAC-alpha serine/threonine-protein kinase (AKT1), D(4) dopamine receptor (DRD4), and kynurenine 3-monooxygenase (KMO) were target genes for the treatment of MDD with XJZT, these 3 genes are mainly related to the ubiquitin-mediated proteolysis, arachidonic acid (AA) metabolism, and Huntington disease pathways, and the expression of AKT1, DRD4, and KMO was also found in the MDD brain transcriptome dataset, which is significantly correlated with the occurrence of MDD. We have identified 3 key targets for XJZT treatment of MDD, including AKT1, KMO, and DRD4, and they can be regulated by the key components of XJZT, including quercetin, maltose, and kaempferol. This provides valuable insights for the early clinical diagnosis and development of therapeutic drugs for MDD.
Collapse
Affiliation(s)
- Huaning Jiang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jian Zhang
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Quan Li
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yanyan Zhou
- School of Basic Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Sarasso P, Tschacher W, Schoeller F, Francesetti G, Roubal J, Gecele M, Sacco K, Ronga I. Nature heals: An informational entropy account of self-organization and change in field psychotherapy. Phys Life Rev 2024; 51:64-84. [PMID: 39299158 DOI: 10.1016/j.plrev.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
This paper reviews biophysical models of psychotherapeutic change based on synergetics and the free energy principle. These models suggest that introducing sensory surprise into the patient-therapist system can lead to self-organization and the formation of new attractor states, disrupting entrenched patterns of thoughts, emotions, and behaviours. We propose that the therapist can facilitate this process by cultivating epistemic trust and modulating embodied attention to allow surprising affective states to enter shared awareness. Transient increases in free energy enable the update of generative models, expanding the range of experiences available within the patient-therapist phenomenal field. We hypothesize that patterns of disorganization at behavioural and physiological levels, indexed by increased entropy, complexity, and lower determinism, are key markers and predictors of psychotherapeutic gains. Future research should investigate how the therapist's openness to novelty shapes therapeutic outcomes.
Collapse
Affiliation(s)
- Pietro Sarasso
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy.
| | - Wolfgang Tschacher
- Department of Experimental Psychology, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gianni Francesetti
- International Institute for Gestalt Therapy and Psychopathology, Turin, Italy
| | - Jan Roubal
- Gestalt Studia, Training in Psychotherapy Integration, Center for Psychotherapy Research in Brno, Masaryk University, Brno, Czechia
| | - Michela Gecele
- International Institute for Gestalt Therapy and Psychopathology, Turin, Italy
| | - Katiuscia Sacco
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Irene Ronga
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Gradwohl G, Snipes S, Walitza S, Huber R, Gerstenberg M. Timing and cortical region matter: theta power differences between teenagers affected by Major Depression and healthy controls. J Neural Transm (Vienna) 2024; 131:1105-1115. [PMID: 39105815 PMCID: PMC11365826 DOI: 10.1007/s00702-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
In adults affected by Major Depressive Disorder (MDD), most findings point to higher electroencephalographic (EEG) theta power during wake compared to healthy controls (HC) as a potential biomarker aiding the diagnostic process or subgrouping for stratified treatment. Besides these group differences, theta power is modulated by time of day, sleep/wake history, and age. Thus, we aimed at assessing if the time of recording alters theta power in teenagers affected by MDD or HC. Standardized wake EEG power was assessed with high-density EEG in 15 children and adolescents with MDD and in 15 age- and sex-matched HC in the evening and morning. Using a two-way ANOVA, group, time, and their interaction were tested. In patients, the current severity of depression was rated using the Children's Depression Rating Scale. Broadband EEG power was lower in the morning after sleep, with a significant interaction (group x time) in central regions in the 4-6 Hz range. In MDD relative to HC, theta power was decreased over occipital areas in the evening and increased over frontal areas in the morning. A higher frontal theta power was correlated with more severe depressive mood in the morning but not in the evening. This was a cross-sectional study design, including patients on antidepressant medication. In conclusion, depending on time of recording, region-specific opposite differences of theta power were found between teenagers with MDD and HC. These findings stress the importance of the time of the recording when investigating theta power's relationship to psychopathology.
Collapse
Affiliation(s)
- Gideon Gradwohl
- Lev Academic Center, Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel
| | - Sophia Snipes
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscicence Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscicence Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Outpatient Services Winterthur, Psychiatric University Hospital Zurich, Albanistrasse 24, Winterthur, 8400, Switzerland.
| |
Collapse
|
14
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
15
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
16
|
Shuai J, Gao M, Zou Q, He Y. Association between vitamin D, depression, and sleep health in the National Health and Nutrition Examination Surveys: a mediation analysis. Nutr Neurosci 2024; 27:934-941. [PMID: 37962262 DOI: 10.1080/1028415x.2023.2279363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVE This study aimed to assess the association between vitamin D and sleep health and to investigate whether depression could mediate this relationship. METHODS A cross-sectional analysis was performed using the 2005-2014 US National Health and Nutrition Examination Survey (NHANES) data. The logistic regression models were conducted to evaluate association of serum vitamin D concentrations with sleep health and depression. Mediation analyses were conducted to investigate the mediated effects of depression on the association of vitamin D with sleep health. RESULTS In multivariate logistic models, vitamin D was found to be negatively associated with an increased risk of poor sleep health, with an odds ratio (OR) of vitamin D deficiency versus sufficiency was 1.256 (95% CI = 1.084-1.455). Additionally, univariate logistic models showed that vitamin D was also negatively associated with depression risk (vitamin D deficiency vs. sufficiency: OR = 1.699, 95% CI = (1.373-2.103). Further mediation analyses showed that the association of vitamin D with sleep health was mediated by depression, with the mediating effects of depression accounted for 44.56% of the total effects. CONCLUSION Vitamin D affects sleep health directly and indirectly through depression. The results suggest that interventions increasing intake of vitamin D should be prioritized to promote sleep health of persons with or at risk of depression.
Collapse
Affiliation(s)
- Jingliang Shuai
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Mengqi Gao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qi Zou
- Medical Department, The First Hospital of Nanchang, Nanchang, People's Republic of China
| | - Youming He
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
18
|
Sarasso P, Billeci M, Ronga I, Raffone F, Martiadis V, Di Petta G. Disembodiment and Affective Resonances in Esketamine Treatment of Depersonalized Depression Subtype: Two Case Studies. Psychopathology 2024:1-12. [PMID: 39173608 DOI: 10.1159/000539714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Dissociative experiences are considered undesirable ketamine's adverse events. However, they might be crucial for ketamine's antidepressant effects, at least in some depression subtypes. Current understandings of ketamine's therapeutic potentials converge on the so-called "relaxed prior hypothesis," suggesting that glutamatergic blockage up-weights bottom-up surprising somatosensory/affective states. As a result, ketamine improves short-term plasticity in depression by enhancing sensitivity to interoceptive signals. METHODS We selected 2 case studies for their paradigmatic description of "depersonalized depression" (Entfremdungsdepression) symptoms. Patients were included in a 6-month-long esketamine program for treatment resistant depression, during which we collected their spontaneous experience with esketamine. According to a neurophenomenological approach, we combined subjective reports from unstructured clinical interviews and the review of previous objective neuroimaging results and neurocomputational models to unveil the relation between esketamine antidepressant effects and interoceptive sensitivity. RESULTS According to our clinical observations, esketamine-induced dissociation might be particularly effective in the depersonalized depression subtype, in which interoceptive awareness and interaffectivity are particularly compromised. Ketamine and esketamine's dissociative effects and particularly disembodiment might suspend previously acquired patterns of feeling, sensing, and behaving. CONCLUSIONS Coherently with previous research, we suggest that esketamine-induced disembodiment allows for a transient window of psychological plasticity and enhanced sensitivity, where the body recovers its permeability to affective affordances.
Collapse
Affiliation(s)
- Pietro Sarasso
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Martina Billeci
- SPDC, Mental Health Department, Santa Maria delle Grazie Hospital, ASL 2, Naples, Italy
| | - Irene Ronga
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | | | | | - Gilberto Di Petta
- SPDC, Mental Health Department, Santa Maria delle Grazie Hospital, ASL 2, Naples, Italy
| |
Collapse
|
19
|
Evans ID, Sharpley CF, Bitsika V, Vessey KA, Jesulola E, Agnew LL. Functional Network Connectivity for Components of Depression-Related Psychological Fragility. Brain Sci 2024; 14:845. [PMID: 39199536 PMCID: PMC11352653 DOI: 10.3390/brainsci14080845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Psychological resilience (PR) is known to be inversely associated with depression. While there is a growing body of research examining how depression alters activity across multiple functional neural networks, how differences in PR affect these networks is largely unexplored. This study examines the relationship between PR and functional connectivity in the alpha and beta bands within (and between) eighteen established cortical nodes in the default mode network, the central executive network, and the salience network. Resting-state EEG data from 99 adult participants (32 depressed, 67 non-depressed) were used to measure the correlation between the five factors of PR sourced from the Connor-Davidson Resilience Scale and eLORETA-based measures of coherence and phase synchronisation. Distinct functional connectivity patterns were seen across each resilience factor, with a notable absence of overlapping positive results across the depressed and non-depressed samples. These results indicate that depression may modulate how resilience is expressed in terms of fundamental neural activity.
Collapse
Affiliation(s)
- Ian D. Evans
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
| | - Christopher F. Sharpley
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
| | - Vicki Bitsika
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
| | - Kirstan A. Vessey
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
| | - Emmanuel Jesulola
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Linda L. Agnew
- Brain-Behaviour Research Group, School of Science & Technology, University of New England, Armidale, NSW 2351, Australia; (I.D.E.); (V.B.); (K.A.V.); (E.J.); (L.L.A.)
- Griffith Health Group, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
20
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
21
|
Gholamali Nezhad F, Martin J, Tassone VK, Swiderski A, Demchenko I, Khan S, Chaudhry HE, Palmisano A, Santarnecchi E, Bhat V. Transcranial alternating current stimulation for neuropsychiatric disorders: a systematic review of treatment parameters and outcomes. Front Psychiatry 2024; 15:1419243. [PMID: 39211537 PMCID: PMC11360874 DOI: 10.3389/fpsyt.2024.1419243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Background Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.
Collapse
Affiliation(s)
- Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K. Tassone
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alyssa Swiderski
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Somieya Khan
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Hamzah E. Chaudhry
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Annalisa Palmisano
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, Science, and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael’s Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Manning KY, Jaffer A, Lebel C. Windows of Opportunity: How Age and Sex Shape the Influence of Prenatal Depression on the Child Brain. Biol Psychiatry 2024:S0006-3223(24)01490-2. [PMID: 39117167 DOI: 10.1016/j.biopsych.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Maternal prenatal depression can affect child brain and behavioral development. Specifically, altered limbic network structure and function is a likely mechanism through which prenatal depression impacts the life-long mental health of exposed children. While developmental trajectories are influenced by many factors that exacerbate risk or promote resiliency, the role of child age and sex in the relationship between prenatal depression and the child brain remains unclear. Here, we review studies of associations between prenatal depression and brain structure and function, with a focus on the role of age and sex in these relationships. After exposure to maternal prenatal depression, altered amygdala, hippocampal, and frontal cortical structure, as well as changes in functional and structural connectivity within the limbic network, are evident during the fetal, infant, preschool, childhood, and adolescent stages of development. Sex appears to play a key role in this relationship, with evidence of differential findings particularly in infants, with males showing smaller and females larger hippocampal and amygdala volumes following prenatal depression. Longitudinal studies in this area have only begun to emerge within the last 5 years and will be key to understanding critical windows of opportunity. Future research focused on the role of age and sex in this relationship is essential to further inform screening, policy, and interventions for children exposed to prenatal depression, interrupt the intergenerational transmission of depression, and ultimately support healthy brain development.
Collapse
Affiliation(s)
- Kathryn Y Manning
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aliza Jaffer
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024:1-14. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
24
|
Zhang PF, You WY, Gao YJ, Wu XB. Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Res Bull 2024; 214:111008. [PMID: 38866373 DOI: 10.1016/j.brainresbull.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Wen-Yong You
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
25
|
Rodrigues D, Santa C, Manadas B, Monteiro P. Chronic Stress Alters Synaptic Inhibition/Excitation Balance of Pyramidal Neurons But Not PV Interneurons in the Infralimbic and Prelimbic Cortices of C57BL/6J Mice. eNeuro 2024; 11:ENEURO.0053-24.2024. [PMID: 39147579 DOI: 10.1523/eneuro.0053-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
The medial prefrontal cortex (mPFC) plays a pivotal role in regulating working memory, executive function, and self-regulatory behaviors. Dysfunction in the mPFC circuits is a characteristic feature of several neuropsychiatric disorders including schizophrenia, depression, and post-traumatic stress disorder. Chronic stress (CS) is widely recognized as a major triggering factor for the onset of these disorders. Although evidence suggests synaptic dysfunction in mPFC circuits following CS exposure, it remains unclear how different neuronal populations in the infralimbic (IL) and prelimbic (PL) cortices are affected in terms of synaptic inhibition/excitation balance (I/E ratio). Here, using neuroproteomic analysis and whole-cell patch-clamp recordings in pyramidal neurons (PNs) and parvalbumin (PV) interneurons within the PL and IL cortices, we examined the synaptic changes after 21 d of chronic unpredictable stress, in male mice. Our results reveal distinct impacts of CS on PL and IL PNs, resulting in an increased I/E ratio in both subregions but through different mechanisms: CS increases inhibitory synaptic drive in the PL while decreasing excitatory synaptic drive in the IL. Notably, the I/E ratio and excitatory and inhibitory synaptic drive of PV interneurons remained unaffected in both PL and IL circuits following CS exposure. These findings offer novel mechanistic insights into the influence of CS on mPFC circuits and support the hypothesis of stress-induced mPFC hypofunction.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Biomedizinisches Centrum München (BMC), Ludwig-Maximilians-Universität München, Munich 82152, Bayern, Germany
| | - Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3004-517, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Braga 4710-057, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
- RISE-Health, Health Research Network, Porto 4200-319, Portugal
| |
Collapse
|
26
|
Liu H, Zhang Y, Hou X, Zhu C, Yang Q, Li K, Fan L, Zhang X, Jiang X, Jin X, Lei H, Chen T, Zhang F, Zhang Z, Song J. CRHR1 antagonist alleviated depression-like behavior by downregulating p62 in a rat model of post-stroke depression. Exp Neurol 2024; 378:114822. [PMID: 38823676 DOI: 10.1016/j.expneurol.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024]
Abstract
Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.
Collapse
Affiliation(s)
- Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Yunfei Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoli Hou
- General Hospital of Pingmei Shenma Group, Pingdingshan, Henan, China
| | - Chuanzhou Zhu
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Qianling Yang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Kun Li
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Lifei Fan
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyue Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Xinhui Jiang
- The Third People's Hospital of Luoyang, Luoyang, Henan, China
| | - Xuejiao Jin
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Hao Lei
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tengfei Chen
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| | - Zhaohui Zhang
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University; The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jinggui Song
- Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University.
| |
Collapse
|
27
|
Lechner-Scott J, Giovannoni G, Hawkes CH, Levy M, Yeh EA. Depression and anxiety in MS: symptoms or comorbidity? Mult Scler Relat Disord 2024; 88:105758. [PMID: 39003971 DOI: 10.1016/j.msard.2024.105758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- J Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, Australia; Hunter Medical Research Institute, University of Newcastle.
| | - G Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - C H Hawkes
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - E A Yeh
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada
| |
Collapse
|
28
|
Huang B, Li X, Zheng Y, Mai Y, Zhang Z. Effects of esketamine on depression-like behavior and dendritic spine plasticity in the prefrontal cortex neurons of spared nerve injury-induced depressed mice. Braz J Med Biol Res 2024; 57:e13736. [PMID: 38985082 PMCID: PMC11249197 DOI: 10.1590/1414-431x2024e13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
The present study utilized the spared nerve injury (SNI) to create a mouse model of depression to investigate the impact of esketamine on depressive-like behaviors, on the expression of PSD-95 and CRMP2 proteins, and on changes in neuronal dendritic spine plasticity in the prefrontal cortex (PFC). Depressive-like behavioral tests were performed 1 h after esketamine treatment, and the PFC tissues were obtained on the fourth day after completing the behavioral tests. Then, dendritic spine density and morphology in the PFC were measured using Golgi staining, and CRMP2 and PSD-95 proteins were obtained from PFC tissue by western blotting. The results of this study showed that esketamine significantly increased the immobility time in the forced swimming test and tail suspension test. In the open field test, esketamine increased the time spent in the open arms, the time spent in the central area, and the total distance covered. It also increased the protein expression levels of CRMP2 and PSD-95 in addition to the total and mature dendritic spine density of the PFC in SNI-depressed mice. Esketamine can significantly improve depression-like behaviors in SNI-depressed mice and promote an increase in dendritic spine density and maturation in the PFC. These effects may be associated with changes in CRMP2 and PSD-95 expression.
Collapse
Affiliation(s)
- Bixin Huang
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Xiaoling Li
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Yuling Zheng
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Ying Mai
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Zhongqi Zhang
- Department of Anesthesiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| |
Collapse
|
29
|
Kolasa M, Nikiforuk A, Korlatowicz A, Solich J, Potasiewicz A, Dziedzicka-Wasylewska M, Bugno R, Hogendorf A, Bojarski A, Faron-Górecka A. Unraveling psilocybin's therapeutic potential: behavioral and neuroplasticity insights in Wistar-Kyoto and Wistar male rat models of treatment-resistant depression. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06644-3. [PMID: 38963553 DOI: 10.1007/s00213-024-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
RATIONALE Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.
Collapse
Affiliation(s)
- Magdalena Kolasa
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience & Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Korlatowicz
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Potasiewicz
- Department of Behavioral Neuroscience & Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | | | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Adam Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
30
|
Jin MX, Qin PP, Xia AWL, Kan RLD, Zhang BBB, Tang AHP, Li ASM, Lin TTZ, Giron CG, Pei JJ, Kranz GS. Neurophysiological and neuroimaging markers of repetitive transcranial magnetic stimulation treatment response in major depressive disorder: A systematic review and meta-analysis of predictive modeling studies. Neurosci Biobehav Rev 2024; 162:105695. [PMID: 38710424 DOI: 10.1016/j.neubiorev.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Predicting repetitive transcranial magnetic stimulation (rTMS) treatment outcomes in major depressive disorder (MDD) could reduce the financial and psychological risks of treatment failure. We systematically reviewed and meta-analyzed studies that leveraged neurophysiological and neuroimaging markers to predict rTMS response in MDD. Five databases were searched from inception to May 25, 2023. The primary meta-analytic outcome was predictive accuracy pooled from classification models. Regression models were summarized qualitatively. A promising marker was identified if it showed a sensitivity and specificity of 80% or higher in at least two independent studies. Searching yielded 36 studies. Twenty-two classification modeling studies produced an estimated area under the summary receiver operating characteristic curve of 0.87 (95% CI = 0.83-0.92), with 86.8% sensitivity (95% CI = 80.6-91.2%) and 81.9% specificity (95% CI = 76.1-86.4%). Frontal theta cordance measured by electroencephalography is closest to proof of concept. Predicting rTMS response using neurophysiological and neuroimaging markers is promising for clinical decision-making. However, replications by different research groups are needed to establish rigorous markers.
Collapse
Affiliation(s)
- Min Xia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Adam Wei Li Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Rebecca Lai Di Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Bella Bing Bing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Alvin Hong Pui Tang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Ami Sin Man Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Tim Tian Ze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Cristian G Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China
| | - Jun Jie Pei
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China; Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region of China; Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria.
| |
Collapse
|
31
|
Haipt A, Rosenbaum D, Fuhr K, Batra A, Ehlis AC. Differential effects of hypnotherapy and cognitive behavioral therapy on the default mode network of depressed patients. Front Psychol 2024; 15:1401946. [PMID: 38993341 PMCID: PMC11238146 DOI: 10.3389/fpsyg.2024.1401946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Hypnosis has been applied in healing procedures since the earliest of recorded history and today it is implemented in a wholesome concept Hypnotherapy (HT1). On a neurophysiological level, hypnosis has been associated with parts of the Default Mode Network (DMN2), but its effects on this network when induced in a treatment setting of a widespread disorder, namely depression, have never been investigated. Depression is associated with abnormal functional connectivity (FC3) of the DMN. Cognitive Behavioral Therapy (CBT4) has proven itself to be an effective treatment for depression; effects of CBT on DMN-related regions are heterogeneous. In the past years, HT was found to be a promising alternative or helpful adjunction. Yet, its underlying mechanisms remain to be unclear. In this original study 75 depressed patients receiving either CBT or HT were included and measured during resting-state before and after therapy with functional near-infrared-spectroscopy (fNIRS5). On symptom level, results show a significant reduction in both groups. On a neurophysiological level, first exploratory analyses hint toward treatment effects in two components of the DMN. However, these effects do not withstand correction for multiple testing. Still, our study is a first stepstone in the investigation of neural mechanisms of HT and offers first ideas about possible implications.
Collapse
Affiliation(s)
- Alina Haipt
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| | - David Rosenbaum
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| | - Kristina Fuhr
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anil Batra
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychophysiology and Optical Imaging, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
32
|
Contreras CM, Gutiérrez-García AG. Ketamine and fluoxetine exert similar actions on prelimbic and infralimbic responsivity to lateral septal nucleus stimulation in Wistar rats. Neurosci Lett 2024; 834:137848. [PMID: 38823510 DOI: 10.1016/j.neulet.2024.137848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Ketamine is a dissociative anesthetic that has been proposed to be a useful alternative in cases of a poor response to other treatments in patients with depression. Remarkably, beneficial clinical actions of ketamine are detected once its psychotropic actions disappear. Therefore, clinical actions may occur independently of dose. Most current studies focus on actions of ketamine on neurotrophic factors, but few studies have investigated actions of ketamine on neural structures for which actions of antidepressants have been previously explored. Lateral septal nucleus (LSN) stimulation reduces neural activity in the prelimbic cortex (PL) and infralimbic cortex (IL) subregions of the medial prefrontal cortex (mPFC). Fluoxetine increases inhibitory responsivity of the LSN-IL connection. In the present study, actions of an anesthetic dose of ketamine were compared with a high dose of fluoxetine on behavior and neural responsivity 24 h after drug administration. Fluoxetine reduced immobility in the forced swim test without changing locomotor activity in the open field test. Ketamine strongly decreased locomotor activity and did not produce changes in immobility. In another set of Wistar rats that received similar drug treatment regimens, the results indicated that LSN stimulation in saline-treated animals produced a long-lasting inhibitory afterdischarge in these mPFC subregions. Actions of ketamine on the LSN-mPFC connection reproduced actions of fluoxetine, consisting of accentuated inhibition of the LSN action on the mPFC. These findings suggest that independent of different actions on neurotransmission, the common final pathway of antidepressants lies in their actions on forebrain structures that are related to emotional regulation.
Collapse
Affiliation(s)
- Carlos M Contreras
- Unidad Periférica-Xalapa, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Xalapa, Veracruz, Mexico.
| | - Ana G Gutiérrez-García
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
33
|
Pan X, Cheng L, Zeng J, Jiang X, Zhou P. Three-needle electroacupuncture ameliorates depressive-like behaviors in a mouse model of post-stroke depression by promoting excitatory synapse formation via the NGL-3/L1cam pathway. Brain Res 2024; 1841:149087. [PMID: 38871241 DOI: 10.1016/j.brainres.2024.149087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Three-needle electroacupuncture (TNEA) has shown promise as a non-pharmacological treatment for post-stroke depression (PSD). However, the underlying mechanisms of its therapeutic effects remain unclear. In this study, we investigated the potential molecular and synaptic mechanisms by which TNEA ameliorates depressive-like behaviors in a mouse model of PSD. Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) to induce PSD and subsequently treated with TNEA for three weeks at specific acupoints (GV24 and bilateral GB13). Through a combination of behavioral tests, neuronal activation assessment, synaptic function examination, transcriptomic analysis, and various molecular techniques, we found that TNEA treatment significantly improved anxiety and depressive-like behaviors in PSD mice. These improvements were accompanied by enhanced neuronal activation in the medial prefrontal cortex (mPFC) and primary somatosensory cortex (PSC), as well as the promotion of excitatory synapse formation and transmission function in the mPFC. Transcriptomic analysis revealed that TNEA upregulated the expression of Netrin-G Ligand-3 (NGL-3), a postsynaptic cell adhesion molecule, in the mPFC. Further investigation showed that the extracellular domain of NGL-3 binds to the presynaptic protein L1cam, promoting the formation of Vesicular Glutamate Transporter 1 (vGluT1) puncta on neuronal dendrites. Notably, cortical neuron-specific knockout of NGL-3 abolished the antidepressant-like effects of TNEA in PSD mice, confirming the crucial role of the NGL-3/L1cam pathway in mediating the therapeutic effects of TNEA. These findings provide novel insights into the molecular and synaptic mechanisms underlying the therapeutic effects of acupuncture in the treatment of PSD and highlight the potential of targeting the NGL-3/L1cam pathway for the development of alternative interventions for PSD and other depressive disorders.
Collapse
Affiliation(s)
- Xiaojin Pan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China.
| | - Lihua Cheng
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Jixiang Zeng
- Shenzhen Baoan Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Xin Jiang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China
| | - Peng Zhou
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guang Dong 518000, China.
| |
Collapse
|
34
|
Lindsay AJ, Gallello I, Caracheo BF, Seamans JK. Reconfiguration of Behavioral Signals in the Anterior Cingulate Cortex Based on Emotional State. J Neurosci 2024; 44:e1670232024. [PMID: 38637155 PMCID: PMC11154859 DOI: 10.1523/jneurosci.1670-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Behaviors and their execution depend on the context and emotional state in which they are performed. The contextual modulation of behavior likely relies on regions such as the anterior cingulate cortex (ACC) that multiplex information about emotional/autonomic states and behaviors. The objective of the present study was to understand how the representations of behaviors by ACC neurons become modified when performed in different emotional states. A pipeline of machine learning techniques was developed to categorize and classify complex, spontaneous behaviors in male rats from the video. This pipeline, termed Hierarchical Unsupervised Behavioural Discovery Tool (HUB-DT), discovered a range of statistically separable behaviors during a task in which motivationally significant outcomes were delivered in blocks of trials that created three unique "emotional contexts." HUB-DT was capable of detecting behaviors specific to each emotional context and was able to identify and segregate the portions of a neural signal related to a behavior and to emotional context. Overall, ∼10× as many neurons responded to behaviors in a contextually dependent versus a fixed manner, highlighting the extreme impact of emotional state on representations of behaviors that were precisely defined based on detailed analyses of limb kinematics. This type of modulation may be a key mechanism that allows the ACC to modify the behavioral output based on emotional states and contextual demands.
Collapse
Affiliation(s)
- Adrian J Lindsay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Isabella Gallello
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Barak F Caracheo
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| | - Jeremy K Seamans
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T2B5, Canada
| |
Collapse
|
35
|
Yang C, Zhou Z, Bao W, Zhong R, Tang M, Wang Y, Gao Y, Hu X, Zhang L, Qiu L, Kuang W, Huang X, Gong Q. Sex differences in aberrant functional connectivity of three core networks and subcortical networks in medication-free adolescent-onset major depressive disorder. Cereb Cortex 2024; 34:bhae225. [PMID: 38836288 DOI: 10.1093/cercor/bhae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Major depressive disorder demonstrated sex differences in prevalence and symptoms, which were more pronounced during adolescence. Yet, research on sex-specific brain network characteristics in adolescent-onset major depressive disorder remains limited. This study investigated sex-specific and nonspecific alterations in resting-state functional connectivity of three core networks (frontoparietal network, salience network, and default mode network) and subcortical networks in adolescent-onset major depressive disorder, using seed-based resting-state functional connectivity in 50 medication-free patients with adolescent-onset major depressive disorder and 56 healthy controls. Irrespective of sex, compared with healthy controls, adolescent-onset major depressive disorder patients showed hypoconnectivity between bilateral hippocampus and right superior temporal gyrus (default mode network). More importantly, we further found that females with adolescent-onset major depressive disorder exhibited hypoconnectivity within the default mode network (medial prefrontal cortex), and between the subcortical regions (i.e. amygdala, striatum, and thalamus) with the default mode network (angular gyrus and posterior cingulate cortex) and the frontoparietal network (dorsal prefrontal cortex), while the opposite patterns of resting-state functional connectivity alterations were observed in males with adolescent-onset major depressive disorder, relative to their sex-matched healthy controls. Moreover, several sex-specific resting-state functional connectivity changes were correlated with age of onset, sleep disturbance, and anxiety in adolescent-onset major depressive disorder with different sex. These findings suggested that these sex-specific resting-state functional connectivity alterations may reflect the differences in brain development or processes related to early illness onset, underscoring the necessity for sex-tailored diagnostic and therapeutic approaches in adolescent-onset major depressive disorder.
Collapse
Affiliation(s)
- Chunyu Yang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruihan Zhong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yidan Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lihua Qiu
- Department of Radiology, The Second People's Hospital of Yibin, Yibin, 644000, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- The Xiamen Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- The Xiamen Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| |
Collapse
|
36
|
Zeng LL, Fan Z, Su J, Gan M, Peng L, Shen H, Hu D. Gradient Matching Federated Domain Adaptation for Brain Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7405-7419. [PMID: 36441881 DOI: 10.1109/tnnls.2022.3223144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Federated learning has shown its unique advantages in many different tasks, including brain image analysis. It provides a new way to train deep learning models while protecting the privacy of medical image data from multiple sites. However, previous studies suggest that domain shift across different sites may influence the performance of federated models. As a solution, we propose a gradient matching federated domain adaptation (GM-FedDA) method for brain image classification, aiming to reduce domain discrepancy with the assistance of a public image dataset and train robust local federated models for target sites. It mainly includes two stages: 1) pretraining stage; we propose a one-common-source adversarial domain adaptation (OCS-ADA) strategy, i.e., adopting ADA with gradient matching loss to pretrain encoders for reducing domain shift at each target site (private data) with the assistance of a common source domain (public data) and 2) fine-tuning stage; we develop a gradient matching federated (GM-Fed) fine-tuning method for updating local federated models pretrained with the OCS-ADA strategy, i.e., pushing the optimization direction of a local federated model toward its specific local minimum by minimizing gradient matching loss between sites. Using fully connected networks as local models, we validate our method with the diagnostic classification tasks of schizophrenia and major depressive disorder based on multisite resting-state functional MRI (fMRI), respectively. Results show that the proposed GM-FedDA method outperforms other commonly used methods, suggesting the potential of our method in brain imaging analysis and other fields, which need to utilize multisite data while preserving data privacy.
Collapse
|
37
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
38
|
Boldrini M, Xiao Y, Sing T, Zhu C, Jabbi M, Pantazopoulos H, Gürsoy G, Martinowich K, Punzi G, Vallender EJ, Zody M, Berretta S, Hyde TM, Kleinman JE, Marenco S, Roussos P, Lewis DA, Turecki G, Lehner T, Mann JJ. Omics Approaches to Investigate the Pathogenesis of Suicide. Biol Psychiatry 2024:S0006-3223(24)01352-0. [PMID: 38821194 DOI: 10.1016/j.biopsych.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Suicide is the second leading cause of death in U.S. adolescents and young adults and is generally associated with a psychiatric disorder. Suicidal behavior has a complex etiology and pathogenesis. Moderate heritability suggests genetic causes. Associations between childhood and recent life adversity indicate contributions from epigenetic factors. Genomic contributions to suicide pathogenesis remain largely unknown. This article is based on a workshop held to design strategies to identify molecular drivers of suicide neurobiology that would be putative new treatment targets. The panel determined that while bulk tissue studies provide comprehensive information, single-nucleus approaches that identify cell type-specific changes are needed. While single-nuclei techniques lack information on cytoplasm, processes, spines, and synapses, spatial multiomic technologies on intact tissue detect cell alterations specific to brain tissue layers and subregions. Because suicide has genetic and environmental drivers, multiomic approaches that combine cell type-specific epigenome, transcriptome, and proteome provide a more complete picture of pathogenesis. To determine the direction of effect of suicide risk gene variants on RNA and protein expression and how these interact with epigenetic marks, single-nuclei and spatial multiomics quantitative trait loci maps should be integrated with whole-genome sequencing and genome-wide association databases. The workshop concluded with a recommendation for the formation of an international suicide biology consortium that will bring together brain banks and investigators with expertise in cutting-edge omics technologies to delineate the biology of suicide and identify novel potential treatment targets to be tested in cellular and animal models for drug and biomarker discovery to guide suicide prevention.
Collapse
Affiliation(s)
- Maura Boldrini
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York.
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tarjinder Sing
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York; New York Genome Center, New York, New York
| | - Chenxu Zhu
- New York Genome Center, New York, New York; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Mbemba Jabbi
- Department of Psychiatry and Behavioral Sciences, Mulva Clinics for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gamze Gürsoy
- New York Genome Center, New York, New York; Departments of Biomedical Informatics and Computer Science, Columbia University, New York, New York
| | - Keri Martinowich
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Giovanna Punzi
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Eric J Vallender
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Sabina Berretta
- Department of Psychiatry, Harvard Brain Tissue Resource Center, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Department of Psychiatry and Behavioral Sciences, Baltimore, Maryland
| | - Stefano Marenco
- Human Brain Collection Core, National Institute of Mental Health's (NIMH) Division of Intramural Research Programs, Bethesda, Maryland
| | - Panagiotis Roussos
- Center for Precision Medicine and Translational Therapeutics, Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, New York
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Institute, McGill University, Montréal, Québec, Canada
| | | | - J John Mann
- Department of Psychiatry, Columbia University, New York, New York; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
39
|
Liu C, Zhao Y, Zhao WJ. Positive Effect of 6-Gingerol on Functional Plasticity of Microglia in a rat Model of LPS-induced Depression. J Neuroimmune Pharmacol 2024; 19:20. [PMID: 38758335 DOI: 10.1007/s11481-024-10123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1β and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1β and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China
| | - Yan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wei-Jiang Zhao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Dadao, Binhu District, Wuxi, Jiangsu, 214122, P.R. China.
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
40
|
Mokhtari T, Irandoost E, Sheikhbahaei F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int Immunopharmacol 2024; 132:111942. [PMID: 38565045 DOI: 10.1016/j.intimp.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Elnaz Irandoost
- Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
41
|
Soto NN, Gaspar P, Bacci A. Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits. ACS Chem Neurosci 2024; 15:1611-1618. [PMID: 38580316 PMCID: PMC11027097 DOI: 10.1021/acschemneuro.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.
Collapse
Affiliation(s)
- Nina Nitzan Soto
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Patricia Gaspar
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| | - Alberto Bacci
- ICM−Paris
Brain Institute, CNRS, INSERM, Sorbonne
Université, 47 Boulevard de l’Hopital, 75013 Paris, France
| |
Collapse
|
42
|
Grimble N, Scarfo J, Katherveloo J, Ganci M, Ball M, Suleyman E. The relationship between interoceptive emotional awareness, neuroticism, and depression, anxiety, and stress. PLoS One 2024; 19:e0299835. [PMID: 38626106 PMCID: PMC11020380 DOI: 10.1371/journal.pone.0299835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/15/2024] [Indexed: 04/18/2024] Open
Abstract
COVID-19 has caused challenges to daily living globally, with profound implications for negative mood. A variety of state and trait-based factors can influence how a person may respond and adapt to challenges such as a global pandemic. Personality is an area impacting how a person responds to both internal and external situations (trait) and Emotional Awareness (EA) is a facet of interoception (an awareness of the mind-body connection) that determines the way an individual interprets their physiological state of the body, and the associated emotions (state-trait). Both areas have been well researched in isolation, however the body of literature exploring the relationships between both is much smaller. It would therefore be beneficial to explore the interrelationships of both state and trait factors on wellbeing to enable a more comprehensive understanding. It was hypothesised that EA would moderate the relationship between Neuroticism and Depression, Anxiety, and Stress. Participants residing in Australia during periods of imposed lockdown were included within the study (n = 838; Ages = 18-60 years) and completed an online questionnaire battery including a variety of state and trait questionnaires. A moderation analysis was conducted to explore whether Emotional Awareness changed the relationship between neuroticism and depression, anxiety, and stress utilising an alpha of < .05. EA moderated the relationship between Neuroticism and Anxiety (p = .001, 95% CI .03-.17)), and Stress (p = .02 95% CI.01-.13), but not Depression (p = .23, 95% CI .03-.13). As Neuroticism increased, negative mood increased for all levels of EA, however those high in Neuroticism and EA displayed the highest Anxiety and Stress. Interventions to increase EA, such as mindfulness, may have adverse effects for individuals high in Neuroticism, emphasising the importance of tailored interventions and supporting the assumption that high levels of Neuroticism represent increased vulnerability during a pandemic.
Collapse
Affiliation(s)
- Natasha Grimble
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
| | - Jessica Scarfo
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
| | - Jessica Katherveloo
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
| | - Michael Ganci
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Michelle Ball
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
| | - Emra Suleyman
- Institute for Health and Sport (IHES), Victoria University, Footscray, Victoria, Australia
| |
Collapse
|
43
|
Alarifi A, Taha KM, Elamin AY, Almasaad JM, Bakhit NM, Alsharif MHK. Volume of Enlarged White Matter of Thalamus among Individuals with Depression on Magnetic Resonance Image: A Study of BrainSuite Segmentation. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1663-S1666. [PMID: 38882840 PMCID: PMC11174233 DOI: 10.4103/jpbs.jpbs_1282_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 06/18/2024] Open
Abstract
Background The thalamus, located in the diencephalon, regulates emotions and memories. If there is a problem in this area of the brain, it can cause an amnestic syndrome characterized by difficulties in remembering and recognizing things. The objective of this study was to identify changes in the volume of the thalamus while contrasting them among individuals with depression. Materials and Methods The study involved measuring the volumes of the white matter of the thalamus in 79 patients with depression (42 males and 37 females) between 20 and 40 years (24 ± 5.51). This was compared to a control group of 53 individuals (24 ± 4.91) consisting of 29 males and 24 females, who were comparable in terms of sex and age. The measurements were taken employing BrainSuite version 18a. 021 Win 64bit software on a Philips 1.5 Tesla Magnetom Avanto Vision System magnetic resonance imaging (MRI). The Magnetization Prepared Rapid Acquisition (MPRA) was utilized to acquire three-dimensional images with T1 weighting. Results The volume of white matter in the respective right and left thalamus was 5.09 cm3 and 4.58 cm3 (±standard deviation (SD) = 6.43 and 4.74) among individuals with depression. In the control group, the volume of white matter in the right and left thalamus was 3.66 cm3 and 4.16 cm3 (±SD = 3.99 and 5.06), respectively. The P-value is more than 0.05. The average volume of white matter in the right and left thalamus of females with depression and controls was 6.47 cm3 and 6.77 cm3 (with SD of 4.17 and 4.3), and 3.25 cm3 and 3.13 cm3 (with SD of 6.55 and 6.77), respectively. Conclusions Our data suggest that individuals with depression exhibit an augmentation in the white matter of the thalamus, particularly in female patients where there is an upsurge in white matter volume. Depression appears to be linked to a decrease in volume on the left side of the brain.
Collapse
Affiliation(s)
- Abdulaziz Alarifi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khalid M Taha
- Department of Anatomy, Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
| | - Abubaker Y Elamin
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University, 55139 Atakum, Samsun, Turkey
| | - Juman M Almasaad
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdul Aziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Nagi M Bakhit
- Department of Anatomy, Arabian Gulf University, Manama, Bahrain
| | - Mohammed H Karrar Alsharif
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
44
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
45
|
Sun L, Wang Q, Ai J. The underlying roles and neurobiological mechanisms of music-based intervention in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 96:102265. [PMID: 38479478 DOI: 10.1016/j.arr.2024.102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Non-pharmacological therapy has gained popularity in the intervention of Alzheimer's disease (AD) due to its apparent therapeutic effectiveness and the limitation of biological drug. A wealth of research indicates that music interventions can enhance cognition, mood and behavior in individuals with AD. Nonetheless, the underlying mechanisms behind these improvements have yet to be fully and systematically delineated. This review aims to holistically review how music-based intervention (MBI) ameliorates abnormal emotion, cognition decline, and behavioral changes in AD patients. We cover several key dimensions: the regulation of MBIs on cerebral blood flow (CBF), their impact on neurotransmission (including GABAergic and monoaminergic transmissions), modulation of synaptic plasticity, and hormonal release. Additionally, we summarize the clinical applications and limitations of active music-based intervention (AMBI), passive music-based intervention (PMBI), and hybrid music-based intervention (HMBI). This thorough analysis enhances our understanding of the role of MBI in AD and supports the development of non-pharmacological therapeutic strategies.
Collapse
Affiliation(s)
- Liyang Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Qin Wang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China; Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, China; Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin 150086, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, 157 Baojian Road, Harbin 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, 157 Baojian Road, Harbin 150086, China.
| |
Collapse
|
46
|
Chen K, Yang J, Li F, Chen J, Chen M, Shao H, He C, Cai D, Zhang X, Wang L, Luo Y, Cheng B, Wang J. Molecular basis underlying default mode network functional abnormalities in postpartum depression with and without anxiety. Hum Brain Mapp 2024; 45:e26657. [PMID: 38544486 PMCID: PMC10973776 DOI: 10.1002/hbm.26657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 11/12/2024] Open
Abstract
Although Postpartum depression (PPD) and PPD with anxiety (PPD-A) have been well characterized as functional disruptions within or between multiple brain systems, however, how to quantitatively delineate brain functional system irregularity and the molecular basis of functional abnormalities in PPD and PPD-A remains unclear. Here, brain sample entropy (SampEn), resting-state functional connectivity (RSFC), transcriptomic and neurotransmitter density data were used to investigate brain functional system irregularity, functional connectivity abnormalities and associated molecular basis for PPD and PPD-A. PPD-A exhibited higher SampEn in medial prefrontal cortex (MPFC) and posterior cingulate cortex (PPC) than healthy postnatal women (HPW) and PPD while PPD showed lower SampEn in PPC compared to HPW and PPD-A. The functional connectivity analysis with MPFC and PPC as seed areas revealed decreased functional couplings between PCC and paracentral lobule and between MPFC and angular gyrus in PPD compared to both PPD-A and HPW. Moreover, abnormal SampEn and functional connectivity were associated with estrogenic level and clinical symptoms load. Importantly, spatial association analyses between functional changes and transcriptome and neurotransmitter density maps revealed that these functional changes were primarily associated with synaptic signaling, neuron projection, neurotransmitter level regulation, amino acid metabolism, cyclic adenosine monophosphate (cAMP) signaling pathways, and neurotransmitters of 5-hydroxytryptamine (5-HT), norepinephrine, glutamate, dopamine and so on. These results reveal abnormal brain entropy and functional connectivities primarily in default mode network (DMN) and link these changes to transcriptome and neurotransmitters to establish the molecular basis for PPD and PPD-A for the first time. Our findings highlight the important role of DMN in neuropathology of PPD and PPD-A.
Collapse
Affiliation(s)
- Kexuan Chen
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Fang Li
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Jin Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Meiling Chen
- Department of Clinical Psychology, the First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Chongjun He
- People's Hospital of Lijiangthe Affiliated Hospital of Kunming University of Science and TechnologyLijiangChina
| | - Defang Cai
- The Second People's Hospital of Yuxithe Affiliated Hospital of Kunming University of Science and TechnologyYuxiChina
| | - Xing Zhang
- The Second People's Hospital of Yuxithe Affiliated Hospital of Kunming University of Science and TechnologyYuxiChina
| | - Libo Wang
- The Second People's Hospital of Yuxithe Affiliated Hospital of Kunming University of Science and TechnologyYuxiChina
| | - Yuejia Luo
- Medical SchoolKunming University of Science and TechnologyKunmingChina
- Center for Brain Disorders and Cognitive Sciences, School of PsychologyShenzhen UniversityShenzhenChina
- The State Key Lab of Cognitive and Learning, Faculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Bochao Cheng
- Department of RadiologyWest China Second University Hospital of Sichuan UniversityChengduChina
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|
47
|
Ranjan M, Mahoney JJ, Rezai AR. Neurosurgical neuromodulation therapy for psychiatric disorders. Neurotherapeutics 2024; 21:e00366. [PMID: 38688105 PMCID: PMC11070709 DOI: 10.1016/j.neurot.2024.e00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Psychiatric disorders are among the leading contributors to global disease burden and disability. A significant portion of patients with psychiatric disorders remain treatment-refractory to best available therapy. With insights from the neurocircuitry of psychiatric disorders and extensive experience of neuromodulation with deep brain stimulation (DBS) in movement disorders, DBS is increasingly being considered to modulate the neural network in psychiatric disorders. Currently, obsessive-compulsive disorder (OCD) is the only U.S. FDA (United States Food and Drug Administration) approved DBS indication for psychiatric disorders. Medically refractory depression, addiction, and other psychiatric disorders are being explored for DBS neuromodulation. Studies evaluating DBS for psychiatric disorders are promising but lack larger, controlled studies. This paper presents a brief review and the current state of DBS and other neurosurgical neuromodulation therapies for OCD and other psychiatric disorders. We also present a brief review of MR-guided Focused Ultrasound (MRgFUS), a novel form of neurosurgical neuromodulation, which can target deep subcortical structures similar to DBS, but in a noninvasive fashion. Early experiences of neurosurgical neuromodulation therapies, including MRgFUS neuromodulation are encouraging in psychiatric disorders; however, they remain investigational. Currently, DBS and VNS are the only FDA approved neurosurgical neuromodulation options in properly selected cases of OCD and depression, respectively.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA.
| | - James J Mahoney
- Department of Behavioral Medicine and Psychiatry, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| | - Ali R Rezai
- Department of Neurosurgery, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA; Department of Neuroscience, WVU Rockefeller Neuroscience Institute, Morgantown, WV, USA
| |
Collapse
|
48
|
Chen Y, Chen Y, Zheng R, Xue K, Li S, Pang J, Li H, Zhang Y, Cheng J, Han S. Identifying two distinct neuroanatomical subtypes of first-episode depression using heterogeneity through discriminative analysis. J Affect Disord 2024; 349:479-485. [PMID: 38218252 DOI: 10.1016/j.jad.2024.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Neurobiological heterogeneity in depression remains largely unknown, leading to inconsistent neuroimaging findings. METHODS Here, we adopted a novel proposed machine learning method ground on gray matter volumes (GMVs) to investigate neuroanatomical subtypes of first-episode treatment-naïve depression. GMVs were obtained from high-resolution T1-weighted images of 195 patients with first-episode, treatment-naïve depression and 78 matched healthy controls (HCs). Then we explored distinct subtypes of depression by employing heterogeneity through discriminative analysis (HYDRA) with regional GMVs as features. RESULTS Two prominently divergent subtypes of first-episode depression were identified, exhibiting opposite structural alterations compared with HCs but no different demographic features. Subtype 1 presented widespread increased GMVs mainly located in frontal, parietal, temporal cortex and partially located in limbic system. Subtype 2 presented widespread decreased GMVs mainly located in thalamus, cerebellum, limbic system and partially located in frontal, parietal, temporal cortex. Subtype 2 had smaller TIV and longer illness duration than Subtype 1. And TIV in Subtype 1 was positively correlated with age of onset while not in Subtype 2, probably implying the different potential neuropathological mechanisms. LIMITATIONS Despite results obtained in this study were validated by employing another brain atlas, the conclusions were acquired from a single dataset. CONCLUSIONS This study revealed two distinguishing neuroanatomical subtypes of first-episode depression, which provides new insights into underlying biological mechanisms of the heterogeneity in depression and might be helpful for accurate clinical diagnosis and future treatment.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China
| | - Yi Chen
- Clinical Research Service Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450000, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, Henan 450000, China; Engineering Research Center of Brain Function Development and Application of Henan Province, Zhengzhou, Henan 450000, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, Henan 450000, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, Henan 450000, China.
| |
Collapse
|
49
|
Wang Y, Cai X, Ma Y, Yang Y, Pan CW, Zhu X, Ke C. Metabolomics on depression: A comparison of clinical and animal research. J Affect Disord 2024; 349:559-568. [PMID: 38211744 DOI: 10.1016/j.jad.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. METHODS We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. RESULTS We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. LIMITATIONS Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. CONCLUSIONS This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.
Collapse
Affiliation(s)
- Yibo Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyi Cai
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuchen Ma
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaohong Zhu
- Suzhou Centers for Disease Control and Prevention, Suzhou, China.
| | - Chaofu Ke
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
50
|
Zrinzo L. Severe Refractory Obsessive Compulsive Disorder and Depression: Should We Consider Stereotactic Neurosurgery? Neuropsychiatr Dis Treat 2024; 20:469-478. [PMID: 38463457 PMCID: PMC10921944 DOI: 10.2147/ndt.s407210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Functional neurosurgery involves modulation of activity within neural circuits that drive pathological activity. Neurologists and neurosurgeons have worked closely together, advancing the field for over a century, such that neurosurgical procedures for movement disorders are now accepted as "standard of care", benefiting hundreds of thousands of patients. As with movement disorders, some neuropsychiatric illnesses, including obsessive compulsive disorder and depression, can be framed as disorders of neural networks. Over the past two decades, evidence has accumulated that stereotactic neurosurgery can help some patients with mental disorders. Nevertheless, despite the availability of class I evidence for some interventions, there is a huge mismatch between the prevalence of severe refractory mental disorders and the number of referrals made to specialised functional neurosurgery services. This paper examines the historical trajectory of neurosurgery for movement and mental disorders. A review of neurosurgical techniques, including stereotactic radiofrequency ablation, gamma knife, deep brain stimulation, and magnetic resonance imaging guided focused ultrasound, explains the high degree of safety afforded by technological advances in the field. Evidence from clinical trials supporting functional neurosurgery for mental disorders, including obsessive compulsive disorder and depression, is presented. An improved understanding of modern functional neurosurgery should foster collaboration between psychiatry and neurosurgery, providing hope to patients whose symptoms are refractory to all other treatments.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|