1
|
Frazer NB, Kaas GA, Firmin CG, Gamazon ER, Hatzopoulos AK. BMP Antagonist Gremlin 2 Regulates Hippocampal Neurogenesis and Is Associated with Seizure Susceptibility and Anxiety. eNeuro 2024; 11:ENEURO.0213-23.2024. [PMID: 39349059 PMCID: PMC11493175 DOI: 10.1523/eneuro.0213-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024] Open
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination (Grem2-/- ). Histological analysis of brain sections revealed significant scattering of CA3 pyramidal cells within the dentate hilus in the hippocampus of Grem2-/- mice. Furthermore, the number of proliferating neural stem cells and neuroblasts was significantly decreased in the subgranular zone of Grem2-/- mice compared with that of wild-type (WT) controls. Due to the role of hippocampal neurogenesis in neurological disorders, we tested mice on a battery of neurobehavioral tests. Grem2-/- mice exhibited increased anxiety on the elevated zero maze in response to acute and chronic stress. Specifically, male Grem2-/- mice showed increased anxiogenesis following chronic stress, and this was correlated with higher levels of BMP signaling and decreased proliferation in the dentate gyrus. Additionally, when chemically challenged with kainic acid, Grem2-/- mice displayed a higher susceptibility to and increased severity of seizures compared with WTs. Together, our data indicate that Grem2 regulates BMP signaling and is vital in maintaining homeostasis in adult hippocampal neurogenesis and structure. Furthermore, the lack of Grem2 contributes to the development and progression of neurogenesis-related disorders such as anxiety and epilepsy.
Collapse
Affiliation(s)
- Nicolette B Frazer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Garrett A Kaas
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Caroline G Firmin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric R Gamazon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Antonis K Hatzopoulos
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
2
|
Luo S, Wu F, Fang Q, Hu Y, Zhang H, Yuan S, Yang C, Shi Y, Luo Y. Antidepressant effect of teriflunomide via oligodendrocyte protection in a mouse model. Heliyon 2024; 10:e29481. [PMID: 38655332 PMCID: PMC11036017 DOI: 10.1016/j.heliyon.2024.e29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.
Collapse
Affiliation(s)
- Shuting Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Feilong Wu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Qian Fang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yue Hu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Huihui Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Chang Yang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yan Shi
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Kadiyala S, Bhamidipati P, Malla RR. Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder. Crit Rev Oncog 2024; 29:19-32. [PMID: 38989735 DOI: 10.1615/critrevoncog.2024051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
Collapse
Affiliation(s)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
4
|
Shim YJ, Jung WH, Billig AJ, Sedley W, Song JJ. Hippocampal atrophy is associated with hearing loss in cognitively normal adults. Front Neurosci 2023; 17:1276883. [PMID: 37942139 PMCID: PMC10628109 DOI: 10.3389/fnins.2023.1276883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives A growing body of evidence suggests that age-related hearing loss (HL) is associated with morphological changes of the cerebral cortex, but the results have been drawn from a small amount of data in most studies. The aim of this study is to investigate the correlation between HL and gray matter volume (GMV) in a large number of subjects, strictly controlling for an extensive set of possible biases. Methods Medical records of 576 subjects who underwent pure tone audiometry, brain magnetic resonance imaging (MRI), and the Korean Mini-Mental State Exam (K-MMSE) were reviewed. Among them, subjects with normal cognitive function and free of central nervous system disorders or coronary artery disease were included. Outliers were excluded after a sample homogeneity check. In the end, 405 subjects were enrolled. Pure tone hearing thresholds were determined at 0.5, 1, 2, and 4 kHz in the better ear. Enrolled subjects were divided into 3 groups according to pure tone average: normal hearing (NH), mild HL (MHL), and moderate-to-severe HL (MSHL) groups. Using voxel-based morphometry, we evaluated GMV changes that may be associated with HL. Sex, age, total intracranial volume, type of MRI scanner, education level, K-MMSE score, smoking status, and presence of hypertension, diabetes mellitus and dyslipidemia were used as covariates. Results A statistically significant negative correlation between the hearing thresholds and GMV of the hippocampus was elucidated. Additionally, in group comparisons, the left hippocampal GMV of the MSHL group was significantly smaller than that of the NH and MHL groups. Conclusion Based on the negative correlation between hearing thresholds and hippocampal GMV in cognitively normal old adults, the current study indicates that peripheral deafferentation could be a potential contributing factor to hippocampal atrophy.
Collapse
Affiliation(s)
- Ye Ji Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wi Hoon Jung
- Department of Psychology, Gachon University, Seongnam, Republic of Korea
| | | | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Jae-Jin Song
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
5
|
Alizadeh-Ezdini Z, Vatanparast J. Differential impact of two paradigms of early-life adversity on behavioural responses to social defeat in young adult rats and morphology of CA3 pyramidal neurons. Behav Brain Res 2022; 435:114048. [PMID: 35952779 DOI: 10.1016/j.bbr.2022.114048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) is an important factor in programing the brain for future response to stress, and resilience or vulnerability to stress-induced emotional disorders. The hippocampal formation, with essential roles in both regulating the stress circuitry and emotionality, contributes to this adaptive programing. Here, we examined the effects of early handling (EH) and maternal deprivation (MD) as mild and intense postnatal stressors, respectively, on the behavioural responses to social defeat stress in young adulthood. We also evaluated the interaction of mild and intense ELS with later social defeat (SD) stress on the morphology and dendritic spine density of Golgi-cox-stained CA3 hippocampal neurons. SD stress in adult rats, as expected, increased anxiety and depressive-like behaviours in the open field, elevated plus-maze and forced swimming test. These effects were associated with reduction of dendritic spines and soma size of CA3 neurons. Both behavioural and structural alterations were significantly ameliorated in socially defeated rats that experienced early handling (EH-SD). Basal dendrites of CA3 neurons in EH-SD rats also showed longer dendrites and more intersections with Sholl circles in the distal portion, compared to both control and SD rats. On the other hand, in socially defeated rats with maternal deprivation experience (MD-SD) the stress-induced behavioural and structural alterations were generally intensified compared to SD rats. In MD-SD rats, apical dendrites of CA3 neurons demonstrated remarkable retraction; an effect that was not detected in SD rats. The reduction of dendritic spines density on the apical dendrites of CA3 neurons was also more pronounced in MD-SD rats compared to SD rats. Dendritic arbors and spines comprise the major neuronal substrate for the circuit connectivity, and cell region-specific alterations of dendrites and spines in CA3 neurons reveal plausible mechanisms that can underlie the impact of different ELSs on risk for affective disorders in response to social stress in adulthood.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Sex Differences in the Spatial Behavior Functions of Adult-Born Neurons in Rats. eNeuro 2022; 9:ENEURO.0054-22.2022. [PMID: 35473765 PMCID: PMC9116935 DOI: 10.1523/eneuro.0054-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding. We therefore trained intact and neurogenesis-deficient rats in the spatial water maze at temperatures that vary in their degree of aversiveness. In the standard water maze, ablating neurogenesis did not alter spatial learning in either sex. However, in cold water, ablating neurogenesis had divergent sex-dependent effects: relative to intact rats, male neurogenesis-deficient rats were slower to escape the maze and female neurogenesis-deficient rats were faster. Neurogenesis promoted temperature-related changes in search strategy in females, but it promoted search strategy stability in males. Females displayed greater recruitment (Fos expression) of the dorsal hippocampus than males, particularly in cold water. However, blocking neurogenesis did not alter Fos expression in either sex. Finally, morphologic analyses revealed greater experience-dependent plasticity in males. Adult-born neurons in males and females had similar morphology at baseline but training increased spine density and reduced presynaptic terminal size, specifically in males. Collectively, these findings indicate that adult-born neurons contribute to spatial learning in stressful conditions and they provide new evidence for sex differences in their behavioral functions.
Collapse
|
7
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
8
|
Role of adult-born granule cells in the hippocampal functions: Focus on the GluN2B-containing NMDA receptors. Eur Neuropsychopharmacol 2019; 29:1065-1082. [PMID: 31371103 DOI: 10.1016/j.euroneuro.2019.07.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Adult-born granule cells constitute a small subpopulation of the dentate gyrus (DG) in the hippocampus. However, they greatly influence several hippocampus-dependent behaviors, suggesting that adult-born granule cells have specific roles that influence behavior. In order to understand how exactly these adult-born granule cells contribute to behavior, it is critical to understand the underlying electrophysiology and neurochemistry of these cells. Here, this review simultaneously focuses on the specific electrophysiological properties of adult-born granule cells, relying on the GluN2B subunit of NMDA glutamate receptors, and how it influences neurochemistry throughout the brain. Especially in a critical age from 4 to 6 weeks post-division during which they modulate hippocampal functions, adult-born granule cells exhibit a higher intrinsic excitability and an enhanced long-term potentiation. Their stimulation decreases the overall excitation/inhibition balance of the DG via recruitment of local interneurons, and in the CA3 region of the hippocampus. However, the link between neurochemical effects of adult-born granule cells and behavior remain to be further examined.
Collapse
|
9
|
Jain S, LaFrancois JJ, Botterill JJ, Alcantara-Gonzalez D, Scharfman HE. Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus 2019; 29:683-709. [PMID: 30672046 PMCID: PMC6640126 DOI: 10.1002/hipo.23062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
Previous studies suggest that reducing the numbers of adult-born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE-induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss-of-function and gain-of-function methods in adult mice. We hypothesized that after loss-of-function, mice would be more susceptible to pilocarpine-induced SE and SE-associated hippocampal damage, and after gain-of-function, mice would be more protected from SE and hippocampal damage after SE. For loss-of-function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain-of-function, adult neurogenesis was increased by conditional deletion of pro-apoptotic gene Bax in Nestin-expressing progenitors. Fluoro-Jade C (FJ-C) was used to quantify neuronal injury and video-electroencephalography (video-EEG) was used to quantify SE. Pilocarpine-induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult-born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult-born neurons exert protective effects against SE and SE-induced neuronal injury.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
10
|
Tang J, Liang X, Zhang Y, Chen L, Wang F, Tan C, Luo Y, Xiao Q, Chao F, Zhang L, Gao Y, Huang C, Qi Y, Tang Y. The effects of running exercise on oligodendrocytes in the hippocampus of rats with depression induced by chronic unpredictable stress. Brain Res Bull 2019; 149:1-10. [PMID: 30954528 DOI: 10.1016/j.brainresbull.2019.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
Running exercise has been shown to be associated with decreased symptoms of depression. However, the mechanisms underlying these antidepressant effects of running exercise remain relatively unclear. In the current study, we investigated the relationship between depressive symptoms in chronic unpredictable stress (CUS) model rats treated with running exercise and changes in oligodendrocytes in the hippocampus. After 4 weeks of CUS, the model group was randomly divided into a CUS standard group (18 rats) and a CUS running group (15 rats). Then, a 4-week treadmill running trial was performed with the CUS running group. In addition, the behavioral effects of exercise were investigated by means of a sucrose preference test (SPT) and an at the end of the 8th week. Immunohistochemical methods and modern stereological methods were used to precisely quantify the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-positive (CNPase+) oligodendrocytes in each hippocampal subregion. At the behavioral level, after four weeks of running, the CUS running group displayed significantly higher consumption of sucrose water in the SPT than the CUS standard group. Unbiased stereological analyses revealed significantly higher total numbers of CNPase+ cells in the hippocampal CA3 and dentate gyrus regions in the CUS running group than in the CUS standard group, whereas there was no significant difference between the groups in the number of CNPase+ cells in the hippocampal CA1 region. The present results further confirm that exercise can alleviate symptoms and protect hippocampal oligodendrocytes in depressed rats.
Collapse
Affiliation(s)
- Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yang Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linmu Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Feifei Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chuanxue Tan
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Radioactive Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yingqiang Qi
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
11
|
vonderEmbse AN, Hu Q, DeWitt JC. Dysfunctional microglia:neuron interactions with significant female bias in a developmental gene x environment rodent model of Alzheimer's disease. Int Immunopharmacol 2019; 71:241-250. [PMID: 30927734 DOI: 10.1016/j.intimp.2019.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Signaling between microglia and neurons is poorly characterized in the pathophysiology of Alzheimer's disease (AD), particularly with regards to gene and environmental (GxE) interactions early in life. This study investigated the maladaptation of microglia:neuron signaling and subsequent susceptibility to neurodegeneration using a developmental origin of adult disease (DOAD) model of AD, characterized previously. Here, we report that postnatal exposure to lead (Pb) in a transgenic (Tg) rodent model of AD resulted in significant female bias consequent to GxE interactions. Atypical, non-neuroprotective microglial phenotypes were observed months after cessation of Pb exposure, as well as evidence for neuronal compensation, that was not observed in WT mice. Specifically, microglia from Pb-exposed Tg (GxE) females exhibited atypical polarization profiles for activation earlier and more severely than males and WT mice, that persisted over time to become contextually maladaptive. By postnatal day (PND) 240, microglia from GxE females also sequestered less neurotoxic iron in the hippocampus. In the same GxE female population, measures of neuronal parameters, such as hippocampal TrkB expression, revealed evidence of disharmonious and compensatory interactions with microglia within the pathological progression. Likewise, GxE interactions resulted in female-biased, late-life changes to key synaptic proteins crucial to synapse dynamics and microglial signaling. These incongruent microglia:neuronal dynamics were observed in GxE males at later ages compared to females, and not observed in either gene- or environment-only populations. Altogether, our results support a gene x environment model of female-biased microglial susceptibility to later-life development of AD, and highlight markers for maladaptive microglia:neuron signaling and compensation.
Collapse
Affiliation(s)
- A N vonderEmbse
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| | - Q Hu
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| | - J C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA.
| |
Collapse
|
12
|
Sanna MD, Quattrone A, Galeotti N. Antidepressant-like actions by silencing of neuronal ELAV-like RNA-binding proteins HuB and HuC in a model of depression in male mice. Neuropharmacology 2018; 135:444-454. [PMID: 29626565 DOI: 10.1016/j.neuropharm.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022]
Abstract
Currently available antidepressant drugs often fail to achieve full remission and patients might evolve to treatment resistance, showing the need to achieve a better therapy of depressive disorders. Increasing evidence supports that post-transcriptional regulation of gene expression is important in neuronal development and survival and a relevant role is played by RNA binding proteins (RBP). To explore new therapeutic strategies, we investigated the role of the neuron-specific ELAV-like RBP (HuB, HuC, HuD) in a mouse model of depression. In this study, a 4-week unpredictable chronic mild stress (UCMS) protocol was applied to mice to induce a depressive-like phenotype. In the last 2 weeks of the UCMS regimen, silencing of HuB, HuC or HuD was performed by using specific antisense oligonucleotides (aODN). Treatment of UCMS-exposed mice with anti-HuB and anti-HuC aODN improved both anhedonia and behavioural despair, used as measures of depressive-like behaviour, without modifying the response of stressed mice to an anxiety-inducing environment. On the contrary, HuD silencing promoted an anxiolytic-like behaviour in UCMS-exposed mice without improving depressive-like behaviours. The antidepressant-like phenotype of anti-HuB and anti-HuC mice was not shown concurrently with the promotion of adult hippocampal neurogenesis in the dentate gyrus, and no increase in the BDNF and CREB content was detected. Conversely, in the CA3 hippocampal region, projection area of newly born neurons, HuB and HuC silencing increased the number of BrdU/NeuN positive cells. These results give the first indication of a role of nELAV in the modulation of emotional states in a mouse model of depression.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Nicoletta Galeotti
- Laboratory of Neuropsychopharmacology, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| |
Collapse
|
13
|
Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol Psychiatry 2017; 82:914-923. [PMID: 28629541 PMCID: PMC5683934 DOI: 10.1016/j.biopsych.2017.05.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/18/2017] [Accepted: 05/05/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hippocampal volume loss is a hallmark of clinical depression. Chronic stress produces volume loss in the hippocampus in humans and atrophy of CA3 pyramidal cells and suppression of adult neurogenesis in rodents. METHODS To investigate the relationship between decreased adult neurogenesis and stress-induced changes in hippocampal structure and volume, we compared the effects of chronic unpredictable restraint stress and inhibition of neurogenesis in a rat pharmacogenetic model. RESULTS Chronic unpredictable restraint stress over 4 weeks decreased total hippocampal volume, reflecting loss of volume in all hippocampal subfields and in both dorsal and ventral hippocampus. In contrast, complete inhibition of adult neurogenesis for 4 weeks led to volume reduction only in the dentate gyrus. With prolonged inhibition of neurogenesis for 8 or 16 weeks, volume loss spread to the CA3 region, but not CA1. Combining stress and inhibition of adult neurogenesis did not have additive effects on the magnitude of volume loss but did produce a volume reduction throughout the hippocampus. One month of chronic unpredictable restraint stress and inhibition of adult neurogenesis led to atrophy of pyramidal cell apical dendrites in dorsal CA3 and to neuronal reorganization in ventral CA3. Stress also significantly affected granule cell dendrites. CONCLUSIONS The findings suggest that adult neurogenesis is required to maintain hippocampal volume but is not responsible for stress-induced volume loss.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| | - Hayley C McCausland
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - H Douglas Morris
- Nuclear Magnetic Resonance Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Diniz CR, Casarotto PC, Joca SR. NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress. Behav Brain Res 2016; 307:126-36. [DOI: 10.1016/j.bbr.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
|
15
|
Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology 2016; 41:24-44. [PMID: 26068726 PMCID: PMC4677119 DOI: 10.1038/npp.2015.167] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
The generalization of fear is an adaptive, behavioral, and physiological response to the likelihood of threat in the environment. In contrast, the overgeneralization of fear, a cardinal feature of posttraumatic stress disorder (PTSD), manifests as inappropriate, uncontrollable expression of fear in neutral and safe environments. Overgeneralization of fear stems from impaired discrimination of safe from aversive environments or discernment of unlikely threats from those that are highly probable. In addition, the time-dependent erosion of episodic details of traumatic memories might contribute to their generalization. Understanding the neural mechanisms underlying the overgeneralization of fear will guide development of novel therapeutic strategies to combat PTSD. Here, we conceptualize generalization of fear in terms of resolution of interference between similar memories. We propose a role for a fundamental encoding mechanism, pattern separation, in the dentate gyrus (DG)-CA3 circuit in resolving interference between ambiguous or uncertain threats and in preserving episodic content of remote aversive memories in hippocampal-cortical networks. We invoke cellular-, circuit-, and systems-based mechanisms by which adult-born dentate granule cells (DGCs) modulate pattern separation to influence resolution of interference and maintain precision of remote aversive memories. We discuss evidence for how these mechanisms are affected by stress, a risk factor for PTSD, to increase memory interference and decrease precision. Using this scaffold we ideate strategies to curb overgeneralization of fear in PTSD.
Collapse
|
16
|
Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis 2015; 30:1193-206. [PMID: 26033310 DOI: 10.1007/s11011-015-9689-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, 576104, India,
| | | | | | | | | |
Collapse
|
17
|
Fan Y, Kong H, Ye X, Ding J, Hu G. ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct 2015; 221:3111-22. [DOI: 10.1007/s00429-015-1090-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
|
18
|
Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 2013; 38:173-92. [PMID: 24300695 DOI: 10.1016/j.neubiorev.2013.11.009] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023]
Abstract
Chronic stressful life events are risk factors for developing major depression, the pathophysiology of which is strongly linked to impairments in serotonin (5-HT) neurotransmission. Exposure to chronic unpredictable stress (CUS) has been found to induce depressive-like behaviours, including passive behavioural coping and anhedonia in animal models, along with many other affective, cognitive, and behavioural symptoms. The heterogeneity of these symptoms represents the plurality of corticolimbic structures involved in mood regulation that are adversely affected in the disorder. Chronic stress has also been shown to negatively regulate adult hippocampal neurogenesis, a phenomenon that is involved in antidepressant effects and regulates subsequent stress responses. Although there exists an enormous body of data on stress-induced alterations of 5-HT activity, there has not been extensive exploration of 5-HT adaptations occurring presynaptically or at the level of the raphe nuclei after exposure to CUS. Similarly, although hippocampal neurogenesis is known to be negatively regulated by stress and positively regulated by antidepressant treatment, the role of neurogenesis in mediating affective behaviour in the context of stress remains an active area of investigation. The goal of this review is to link the serotonergic and neurogenic hypotheses of depression and antidepressant effects in the context of stress. Specifically, chronic stress significantly attenuates 5-HT neurotransmission and 5-HT1A autoreceptor sensitivity, and this effect could represent an endophenotypic hallmark for mood disorders. In addition, by decreasing neurogenesis, CUS decreases hippocampal inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, exacerbating stress axis overactivity. Similarly, we discuss the possibility that adult hippocampal neurogenesis mediates antidepressant effects via the ventral (in rodents; anterior in humans) hippocampus' influence on the HPA axis, and mechanisms by which antidepressants may reverse chronic stress-induced 5-HT and neurogenic changes. Although data are as yet equivocal, antidepressant modulation of 5-HT neurotransmission may well serve as one of the factors that could drive neurogenesis-dependent antidepressant effects through these stress regulation-related mechanisms.
Collapse
Affiliation(s)
- Ian Mahar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| | | | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Lazarov O, Marr RA. Of mice and men: neurogenesis, cognition and Alzheimer's disease. Front Aging Neurosci 2013; 5:43. [PMID: 23986699 PMCID: PMC3753540 DOI: 10.3389/fnagi.2013.00043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age, and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents. Recent evidence delineates significant similarities and differences between adult neurogenesis in rodents and humans. Being context-dependent, neurogenesis in the human brain might be manifested differently than in the rodent brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the development of progressive learning and memory disorders, such as Alzheimer’s disease. This review discusses the different observations concerning neurogenesis in the rodent and human brain, and their functional implications for the healthy and diseased brain.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | | |
Collapse
|
20
|
Soares LM, Schiavon AP, Milani H, de Oliveira RMW. Cognitive impairment and persistent anxiety-related responses following bilateral common carotid artery occlusion in mice. Behav Brain Res 2013; 249:28-37. [DOI: 10.1016/j.bbr.2013.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/06/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|