1
|
Brisson V, Tremblay P. Assessing the Impact of Transcranial Magnetic Stimulation on Speech Perception in Noise. J Cogn Neurosci 2024; 36:2184-2207. [PMID: 39023366 DOI: 10.1162/jocn_a_02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Healthy aging is associated with reduced speech perception in noise (SPiN) abilities. The etiology of these difficulties remains elusive, which prevents the development of new strategies to optimize the speech processing network and reduce these difficulties. The objective of this study was to determine if sublexical SPiN performance can be enhanced by applying TMS to three regions involved in processing speech: the left posterior temporal sulcus, the left superior temporal gyrus, and the left ventral premotor cortex. The second objective was to assess the impact of several factors (age, baseline performance, target, brain structure, and activity) on post-TMS SPiN improvement. The results revealed that participants with lower baseline performance were more likely to improve. Moreover, in older adults, cortical thickness within the target areas was negatively associated with performance improvement, whereas this association was null in younger individuals. No differences between the targets were found. This study suggests that TMS can modulate sublexical SPiN performance, but that the strength and direction of the effects depend on a complex combination of contextual and individual factors.
Collapse
Affiliation(s)
- Valérie Brisson
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Université Laval, School of Rehabilitation Sciences, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| |
Collapse
|
2
|
Ashrafi M, Baghban AA. Dynamic Spatial Auditory Processing in the Elderly. Indian J Otolaryngol Head Neck Surg 2024; 76:3031-3036. [PMID: 39130326 PMCID: PMC11306474 DOI: 10.1007/s12070-024-04581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/25/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose One of the most obvious functional effects of aging on the cognitive and processing processes of spatial hearing is the localization problem and the disorder of speech perception in noise. The purpose of the present study is to investigate the performance of dynamic spatial auditory processing in the elderly. Methods This descriptive and analytical study was conducted on 60 young participants aged from18 to 25 years old and 60 elderly participants aged from 60 to 75 old years, using speech, spatial, and qualities of hearing scale (SSQ) questionnaire, binaural masking level difference (BMLD) and dynamic quick speech in noise (DS-QSIN) tests. Results Comparing the average scores of the tests and the questionnaire using the independent t test showed a significant difference between the two groups (p < 0.001). It was also found that gender had no effect on the results (p > 0.05). Conclusions Aging is accompanied by different structural and functional changes in the auditory central nervous system, which leads to a decrease in speech perception in challenging listening environments, as well as a decrease in sound localization abilities, due to the reduction of temporal and spectral information. This problem affects the determination of the source of sound and the spatial cognition of the elderly and leads to a disturbance in the awareness of the auditory environment. Therefore, auditory rehabilitation programs can cause the improvement of spatial auditory processing performance and improve speech perception in noise in the elderly.
Collapse
Affiliation(s)
- Majid Ashrafi
- Department of Audiology, Faculty of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Akbarzadeh Baghban
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Bueno GAS, do Bomfim AD, Campos LF, Martins AC, Elmescany RB, Stival MM, Funghetto SS, de Menezes RL. Non-invasive neuromodulation in reducing the risk of falls and fear of falling in community-dwelling older adults: systematic review. Front Aging Neurosci 2024; 15:1301790. [PMID: 38516635 PMCID: PMC10956576 DOI: 10.3389/fnagi.2023.1301790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/29/2023] [Indexed: 03/23/2024] Open
Abstract
Introduction Neuromodulation is a non-invasive technique that allows for the modulation of cortical excitability and can produce changes in neuronal plasticity. Its application has recently been associated with the improvement of the motor pattern in older adults individuals with sequelae from neurological conditions. Objective To highlight the effects of non-invasive neuromodulation on the risk of falls and fear of falling in community-dwelling older adults. Methods Systematic review conducted in accordance with the items of the Cochrane Handbook for Systematic Reviews of Interventions. Searches were carried out in electronic databases: CENTRAL, Clinical Trials, LILACS, PEDro, PubMed, Web of Science, between 13/06/2020 and 20/09/2023, including all indexed texts without language and publication date restrictions, randomized controlled clinical trials, which presented as their main outcome non-invasive neuromodulation for reducing the fear of falling and risk of falls in the older adults, regardless of gender. Results An extensive search identified 9 eligible studies for qualitative synthesis from 8,168 potential articles. Rigorous filtering through automated tools, title/abstract screening, and full-text evaluation ensured a focused and relevant selection for further analysis. Most studies (80%) used transcranial direct current electrical stimulation as an intervention, over the motor cortex or cerebellum area, with anodal current and monopolar electrode placement. The intensity ranged from 1.2 mA to 2 mA, with a duration of 20 min (80%). The profile of the research participants was predominantly individuals over 65 years old (80%), with a high risk of falls (60%) and a minority reporting a fear of falling (40%). The outcomes were favorable for the use of neuromodulation for the risk of falls in the older adults, through improvements in static and dynamic balance. Conclusion The results may have limited applicability to direct outcomes related to the risk of falls, in addition to evidence regarding the difference or lack thereof in applicability between genders, fallers and non-fallers, as well as older adults individuals with low and high fear of falling. Systematic review registration The protocol for this review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) to obtain the identification of ongoing research (ID: 222429).
Collapse
Affiliation(s)
- Guilherme Augusto Santos Bueno
- Department of Medicine, Centro Universitário Euro Americano, Brasilia, Brazil
- Postgraduate Program in Health Sciences and Technologies, University of Brasilía, Brasilia, Brazil
| | | | - Lorrane Freitas Campos
- Postgraduate Program in Health Sciences and Technologies, University of Brasilía, Brasilia, Brazil
| | | | | | - Marina Morato Stival
- Postgraduate Program in Health Sciences and Technologies, University of Brasilía, Brasilia, Brazil
| | | | - Ruth Losada de Menezes
- Postgraduate Program in Health Sciences and Technologies, University of Brasilía, Brasilia, Brazil
- Postgraduate Program in Health Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Emami SF, Shariatpanahi E, Gohari N, Mehrabifard M. Aging and Speech-in-Noise Perception. Indian J Otolaryngol Head Neck Surg 2023; 75:1579-1585. [PMID: 37636642 PMCID: PMC10447723 DOI: 10.1007/s12070-023-03689-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/03/2023] [Indexed: 03/28/2023] Open
Abstract
The objective was investigating the effect of age on speech-in-noise perception (SINP) using word perception score in white noise (WPS in WN). This cross-sectional study was conducted on 76 participants, including 30 elderly (older than 61 years) and 46 young adults (between 14 and 35 years) with normal levels of stress, night sleep and mini-mental states. Audiological evaluations included acoustic immittance testing, pure tone audiometry, determination of speech reception threshold and WPS in WN. Data analysis were performed using Mann-Whitney and Tukey HSD tests. Based on the results of the tests, the participants were divided into three groups: (1) young adults with normal hearing (n = 30), (2) elderly adults with normal hearing (n = 16), (3) elderly adults with mild to moderate high frequency hearing loss (n = 14). In both groups of old adults, the means WPS in WN differences were significant only in the left ears (Pv = 0.008, 0.033, 0.025 for SNR = 0, +5, +10 dB). In the three groups and in the right ears, there were the significant differences between the means of WPS in WN (Pv = 0.002, 0.000, 0.001 for SNR = 0, +5, +10 dB), and also the left ears (Pv = 0.000, 0.002, 0.002 for SNR = 0,+5, +10 dB).There is a relationship between increasing age and decreasing WPS in WN. The deleterious effects of aging on SINP decline are greater than that of hearing loss.
Collapse
Affiliation(s)
- Seyede Faranak Emami
- Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Elnaz Shariatpanahi
- Department of Otorhinolaryngology, School of Medicine, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Gohari
- Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Mobina Mehrabifard
- Department of Audiology, School of Rehabilitation Sciences, Hamadan University of Medical Sciences, Hamedan, Iran
| |
Collapse
|
5
|
Maillard E, Joyal M, Murray MM, Tremblay P. Are musical activities associated with enhanced speech perception in noise in adults? A systematic review and meta-analysis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100083. [PMID: 37397808 PMCID: PMC10313871 DOI: 10.1016/j.crneur.2023.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The ability to process speech in noise (SPiN) declines with age, with a detrimental impact on life quality. Music-making activities such as singing and playing a musical instrument have raised interest as potential prevention strategies for SPiN perception decline because of their positive impact on several brain system, especially the auditory system, which is critical for SPiN. However, the literature on the effect of musicianship on SPiN performance has yielded mixed results. By critically assessing the existing literature with a systematic review and a meta-analysis, we aim to provide a comprehensive portrait of the relationship between music-making activities and SPiN in different experimental conditions. 38/49 articles, most focusing on young adults, were included in the quantitative analysis. The results show a positive relationship between music-making activities and SPiN, with the strongest effects found in the most challenging listening conditions, and little to no effect in less challenging situations. This pattern of results supports the notion of a relative advantage for musicians on SPiN performance and clarify the scope of this effect. However, further studies, especially with older adults, using adequate randomization methods, are needed to extend the present conclusions and assess the potential for musical activities to be used to mitigate SPiN decline in seniors.
Collapse
Affiliation(s)
- Elisabeth Maillard
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marilyne Joyal
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| | - Micah M. Murray
- The Laboratory for Investigative Neurophysiology (The LINE), Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne, Sion, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Pascale Tremblay
- CERVO Brain Research Center, Quebec City, G1J 2G3, Canada
- Université Laval, Faculté de Médecine, Département de Réadaptation, Quebec City, G1V 0A6, Canada
| |
Collapse
|
6
|
Cheng L, Chiu Y, Lin Y, Li W, Hong T, Yang C, Shih C, Yeh T, Tseng WI, Yu H, Hsieh J, Chen L. Long-term musical training induces white matter plasticity in emotion and language networks. Hum Brain Mapp 2022; 44:5-17. [PMID: 36005832 PMCID: PMC9783470 DOI: 10.1002/hbm.26054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Numerous studies have reported that long-term musical training can affect brain functionality and induce structural alterations in the brain. Singing is a form of vocal musical expression with an unparalleled capacity for communicating emotion; however, there has been relatively little research on neuroplasticity at the network level in vocalists (i.e., noninstrumental musicians). Our objective in this study was to elucidate changes in the neural network architecture following long-term training in the musical arts. We employed a framework based on graph theory to depict the connectivity and efficiency of structural networks in the brain, based on diffusion-weighted images obtained from 35 vocalists, 27 pianists, and 33 nonmusicians. Our results revealed that musical training (both voice and piano) could enhance connectivity among emotion-related regions of the brain, such as the amygdala. We also discovered that voice training reshaped the architecture of experience-dependent networks, such as those involved in vocal motor control, sensory feedback, and language processing. It appears that vocal-related changes in areas such as the insula, paracentral lobule, supramarginal gyrus, and putamen are associated with functional segregation, multisensory integration, and enhanced network interconnectivity. These results suggest that long-term musical training can strengthen or prune white matter connectivity networks in an experience-dependent manner.
Collapse
Affiliation(s)
- Li‐Kai Cheng
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Yu‐Hsien Chiu
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Ying‐Chia Lin
- Center for Advanced Imaging Innovation and Research (CAIR)NYU Grossman School of MedicineNew YorkNew YorkUSA,Center for Biomedical Imaging, Department of RadiologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Wei‐Chi Li
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Tzu‐Yi Hong
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Ching‐Ju Yang
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Chung‐Heng Shih
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
| | - Tzu‐Chen Yeh
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Department of RadiologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Wen‐Yih Isaac Tseng
- Institute of Medical Device and ImagingNational Taiwan University College of MedicineTaipeiTaiwan
| | - Hsin‐Yen Yu
- Graduate Institute of Arts and Humanities EducationTaipei National University of the ArtsTaipeiTaiwan
| | - Jen‐Chuen Hsieh
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan,Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Department of Biological Science and Technology, College of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Li‐Fen Chen
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan,Integrated Brain Research Unit, Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan,Brain Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
7
|
Amateur singing benefits speech perception in aging under certain conditions of practice: behavioural and neurobiological mechanisms. Brain Struct Funct 2022; 227:943-962. [PMID: 35013775 DOI: 10.1007/s00429-021-02433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
Limited evidence has shown that practising musical activities in aging, such as choral singing, could lessen age-related speech perception in noise (SPiN) difficulties. However, the robustness and underlying mechanism of action of this phenomenon remain unclear. In this study, we used surface-based morphometry combined with a moderated mediation analytic approach to examine whether singing-related plasticity in auditory and dorsal speech stream regions is associated with better SPiN capabilities. 36 choral singers and 36 non-singers aged 20-87 years underwent cognitive, auditory, and SPiN assessments. Our results provide important new insights into experience-dependent plasticity by revealing that, under certain conditions of practice, amateur choral singing is associated with age-dependent structural plasticity within auditory and dorsal speech regions, which is associated with better SPiN performance in aging. Specifically, the conditions of practice that were associated with benefits on SPiN included frequent weekly practice at home, several hours of weekly group singing practice, singing in multiple languages, and having received formal singing training. These results suggest that amateur choral singing is associated with improved SPiN through a dual mechanism involving auditory processing and auditory-motor integration and may be dose dependent, with more intense singing associated with greater benefit. Our results, thus, reveal that the relationship between singing practice and SPiN is complex, and underscore the importance of considering singing practice behaviours in understanding the effects of musical activities on the brain-behaviour relationship.
Collapse
|
8
|
Brisson V, Tremblay P. Improving speech perception in noise in young and older adults using transcranial magnetic stimulation. BRAIN AND LANGUAGE 2021; 222:105009. [PMID: 34425411 DOI: 10.1016/j.bandl.2021.105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Normal aging is associated with speech perception in noise (SPiN) difficulties. The objective of this study was to determine if SPiN performance can be enhanced by intermittent theta-burst stimulation (iTBS) in young and older adults. METHOD We developed a sub-lexical SPiN test to evaluate the contribution of age, hearing, and cognition to SPiN performance in young and older adults. iTBS was applied to the left posterior superior temporal sulcus (pSTS) and the left ventral premotor cortex (PMv) to examine its impact on SPiN performance. RESULTS Aging was associated with reduced SPiN accuracy. TMS-induced performance gain was greater after stimulation of the PMv compared to the pSTS. Participants with lower scores in the baseline condition improved the most. DISCUSSION SPiN difficulties can be reduced by enhancing activity within the left speech-processing network in adults. This study paves the way for the development of TMS-based interventions to reduce SPiN difficulties in adults.
Collapse
Affiliation(s)
- Valérie Brisson
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, Québec, Canada; Centre de recherche CERVO, Québec, Canada.
| |
Collapse
|
9
|
Diaz MT, Yalcinbas E. The neural bases of multimodal sensory integration in older adults. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2021; 45:409-417. [PMID: 34650316 DOI: 10.1177/0165025420979362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although hearing often declines with age, prior research has shown that older adults may benefit from multisensory input to a greater extent when compared to younger adults, a concept known as inverse effectiveness. While there is behavioral evidence in support of this phenomenon, less is known about its neural basis. The present fMRI study examined how older and younger adults processed multimodal auditory-visual (AV) phonemic stimuli which were either congruent or incongruent across modalities. Incongruent AV pairs were designed to elicit the McGurk effect. Behaviorally, reaction times were significantly faster during congruent trials compared to incongruent trials for both age groups, and overall older adults responded more slowly. The interaction was not significant suggesting that older adults processed the AV stimuli similarly to younger adults. Although there were minimal behavioral differences, age-related differences in functional activation were identified: Younger adults elicited greater activation than older adults in primary sensory regions including superior temporal gyrus, the calcarine fissure, and left post-central gyrus. In contrast, older adults elicited greater activation than younger adults in dorsal frontal regions including middle and superior frontal gyri, as well as dorsal parietal regions. These data suggest that while there is age-related stability in behavioral sensitivity to multimodal stimuli, the neural bases for this effect differed between older and younger adults. Our results demonstrated that older adults underrecruited primary sensory cortices and had increased recruitment of regions involved in executive function, attention, and monitoring processes, which may reflect an attempt to compensate.
Collapse
Affiliation(s)
- Michele T Diaz
- Department of Psychology, The Pennsylvania State University
| | - Ege Yalcinbas
- Neurosciences Department, University of California, San Diego
| |
Collapse
|
10
|
Perron M, Theaud G, Descoteaux M, Tremblay P. The frontotemporal organization of the arcuate fasciculus and its relationship with speech perception in young and older amateur singers and non-singers. Hum Brain Mapp 2021; 42:3058-3076. [PMID: 33835629 PMCID: PMC8193549 DOI: 10.1002/hbm.25416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to perceive speech in noise (SPiN) declines with age. Although the etiology of SPiN decline is not well understood, accumulating evidence suggests a role for the dorsal speech stream. While age-related decline within the dorsal speech stream would negatively affect SPiN performance, experience-induced neuroplastic changes within the dorsal speech stream could positively affect SPiN performance. Here, we investigated the relationship between SPiN performance and the structure of the arcuate fasciculus (AF), which forms the white matter scaffolding of the dorsal speech stream, in aging singers and non-singers. Forty-three non-singers and 41 singers aged 20 to 87 years old completed a hearing evaluation and a magnetic resonance imaging session that included High Angular Resolution Diffusion Imaging. The groups were matched for sex, age, education, handedness, cognitive level, and musical instrument experience. A subgroup of participants completed syllable discrimination in the noise task. The AF was divided into 10 segments to explore potential local specializations for SPiN. The results show that, in carefully matched groups of singers and non-singers (a) myelin and/or axonal membrane deterioration within the bilateral frontotemporal AF segments are associated with SPiN difficulties in aging singers and non-singers; (b) the structure of the AF is different in singers and non-singers; (c) these differences are not associated with a benefit on SPiN performance for singers. This study clarifies the etiology of SPiN difficulties by supporting the hypothesis for the role of aging of the dorsal speech stream.
Collapse
Affiliation(s)
- Maxime Perron
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science DepartmentUniversité de SherbrookeSherbrookeQuebecCanada
| | - Pascale Tremblay
- CERVO Brain Research CenterQuebec CityQuebecCanada
- Département de RéadaptationUniversité Laval, Faculté de MédecineQuebec CityQuebecCanada
| |
Collapse
|
11
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and cognitive decline: MRI and cellular evidence. Ann N Y Acad Sci 2021; 1500:17-33. [PMID: 34114212 DOI: 10.1111/nyas.14617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Extensive evidence supports the association between age-related hearing loss (ARHL) and cognitive decline. It is, however, unknown whether a causal relationship exists between these two, or whether they both result from shared mechanisms. This paper intends to study this relationship through a comprehensive review of MRI findings as well as evidence of cellular alterations. Our review of structural MRI studies demonstrates that ARHL is independently linked to accelerated atrophy of total and regional brain volumes and reduced white matter integrity. Resting-state and task-based fMRI studies on ARHL also show changes in spontaneous neural activity and brain functional connectivity; and alterations in brain areas supporting auditory, language, cognitive, and affective processing independent of age, respectively. Although MRI findings support a causal relationship between ARHL and cognitive decline, the contribution of potential shared mechanisms should also be considered. In this regard, the review of cellular evidence indicates their role as possible common mechanisms underlying both age-related changes in hearing and cognition. Considering existing evidence, no single hypothesis can explain the link between ARHL and cognitive decline, and the contribution of both causal (i.e., the sensory hypothesis) and shared (i.e., the common cause hypothesis) mechanisms is expected.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
Interacting effects of frontal lobe neuroanatomy and working memory capacity to older listeners' speech recognition in noise. Neuropsychologia 2021; 158:107892. [PMID: 34019869 DOI: 10.1016/j.neuropsychologia.2021.107892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023]
Abstract
Many older adults are struggling with understanding spoken language, particularly when background noise interferes with comprehension. In the present study, we investigated a potential interaction between two well-known factors associated with greater speech-in-noise (SiN) reception thresholds in older adults, namely a) lower working memory capacity and b) age-related structural decline of frontal lobe regions. In a sample of older adults (N = 25) and younger controls (N = 13) with normal pure-tone thresholds, SiN reception thresholds and working memory capacity were assessed. Furthermore, T1-weighted structural MR-images were recorded to analyze neuroanatomical traits (i.e., cortical thickness (CT) and cortical surface area (CSA)) of the cortex. As expected, the older group showed greater SiN reception thresholds compared to the younger group. We also found consistent age-related atrophy (i.e., lower CT) in brain regions associated with SiN recognition, namely the superior temporal lobe bilaterally, the right inferior frontal and precentral gyrus, as well as the left superior frontal gyrus. Those older participants with greater atrophy in these brain regions showed greater SiN reception thresholds. Interestingly, the association between CT in the left superior frontal gyrus and SiN reception thresholds was moderated by individual working memory capacity. Older adults with greater working memory capacity benefitted more strongly from thicker frontal lobe regions leading to better SiN recognition. Overall, our results fit well into the literature showing that age-related structural decline in auditory- and cognition-related brain areas is associated with greater SiN reception thresholds in older adults. However, we highlight that this association changes as a function of individual working memory capacity. We therefore believe that future interventions to improve SiN recognition in older adults should take into account the role of the frontal lobe as well as individual working memory capacity.
Collapse
|
13
|
Tremblay P, Brisson V, Deschamps I. Brain aging and speech perception: Effects of background noise and talker variability. Neuroimage 2020; 227:117675. [PMID: 33359849 DOI: 10.1016/j.neuroimage.2020.117675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022] Open
Abstract
Speech perception can be challenging, especially for older adults. Despite the importance of speech perception in social interactions, the mechanisms underlying these difficulties remain unclear and treatment options are scarce. While several studies have suggested that decline within cortical auditory regions may be a hallmark of these difficulties, a growing number of studies have reported decline in regions beyond the auditory processing network, including regions involved in speech processing and executive control, suggesting a potentially diffuse underlying neural disruption, though no consensus exists regarding underlying dysfunctions. To address this issue, we conducted two experiments in which we investigated age differences in speech perception when background noise and talker variability are manipulated, two factors known to be detrimental to speech perception. In Experiment 1, we examined the relationship between speech perception, hearing and auditory attention in 88 healthy participants aged 19 to 87 years. In Experiment 2, we examined cortical thickness and BOLD signal using magnetic resonance imaging (MRI) and related these measures to speech perception performance using a simple mediation approach in 32 participants from Experiment 1. Our results show that, even after accounting for hearing thresholds and two measures of auditory attention, speech perception significantly declined with age. Age-related decline in speech perception in noise was associated with thinner cortex in auditory and speech processing regions (including the superior temporal cortex, ventral premotor cortex and inferior frontal gyrus) as well as in regions involved in executive control (including the dorsal anterior insula, the anterior cingulate cortex and medial frontal cortex). Further, our results show that speech perception performance was associated with reduced brain response in the right superior temporal cortex in older compared to younger adults, and to an increase in response to noise in older adults in the left anterior temporal cortex. Talker variability was not associated with different activation patterns in older compared to younger adults. Together, these results support the notion of a diffuse rather than a focal dysfunction underlying speech perception in noise difficulties in older adults.
Collapse
Affiliation(s)
- Pascale Tremblay
- CERVO Brain Research Center, Québec City, QC, Canada; Université Laval, Département de réadaptation, Québec City, QC, Canada.
| | - Valérie Brisson
- CERVO Brain Research Center, Québec City, QC, Canada; Université Laval, Département de réadaptation, Québec City, QC, Canada
| | | |
Collapse
|
14
|
Prosodic Perception in Aging Individuals: a Focus on Intonation. CURRENT PSYCHOLOGY 2020. [DOI: 10.1007/s12144-018-9806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Kennedy-Higgins D, Devlin JT, Adank P. Cognitive mechanisms underpinning successful perception of different speech distortions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2728. [PMID: 32359293 DOI: 10.1121/10.0001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Few studies thus far have investigated whether perception of distorted speech is consistent across different types of distortion. This study investigated whether participants show a consistent perceptual profile across three speech distortions: time-compressed, noise-vocoded, and speech in noise. Additionally, this study investigated whether/how individual differences in performance on a battery of audiological and cognitive tasks links to perception. Eighty-eight participants completed a speeded sentence-verification task with increases in accuracy and reductions in response times used to indicate performance. Audiological and cognitive task measures include pure tone audiometry, speech recognition threshold, working memory, vocabulary knowledge, attention switching, and pattern analysis. Despite previous studies suggesting that temporal and spectral/environmental perception require different lexical or phonological mechanisms, this study shows significant positive correlations in accuracy and response time performance across all distortions. Results of a principal component analysis and multiple linear regressions suggest that a component based on vocabulary knowledge and working memory predicted performance in the speech in quiet, time-compressed and speech in noise conditions. These results suggest that listeners employ a similar cognitive strategy to perceive different temporal and spectral/environmental speech distortions and that this mechanism is supported by vocabulary knowledge and working memory.
Collapse
Affiliation(s)
- Dan Kennedy-Higgins
- Department of Speech, Hearing and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London, WC1N 1PF, United Kingdom
| | - Joseph T Devlin
- Department of Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, United Kingdom
| | - Patti Adank
- Department of Speech, Hearing and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street, London, WC1N 1PF, United Kingdom
| |
Collapse
|
16
|
Fei N, Ge J, Wang Y, Gao JH. Aging-related differences in the cortical network subserving intelligible speech. BRAIN AND LANGUAGE 2020; 201:104713. [PMID: 31759299 DOI: 10.1016/j.bandl.2019.104713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Language communication is crucial throughout the lifespan. The current study investigated how aging affects the brain network subserving intelligible speech. Using functional magnetic resonance imaging, we compared brain responses to intelligible and unintelligible speech between older and young adults. Univariate and multivariate analyses revealed reduced brain activation and lower regional pattern distinctions in response to intelligible versus unintelligible speech in the left anterior superior temporal gyrus (aSTG) and the left inferior frontal gyrus (IFG) in the older compared with young adults. Notably, the functional connectivity between the left IFG and the left angular gyrus (AG) was increased and a significantly enhanced bidirectional effective connectivity between the left aSTG and the left AG was observed in the older adults for processing speech intelligibility. Our study revealed aging-related differences in the cortical activity for intelligible speech and suggested that increased frontal-temporal-parietal functional integration may help facilitate spoken language processing in older adults.
Collapse
Affiliation(s)
- Nanxi Fei
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianqiao Ge
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
17
|
Rogers CS, Jones MS, McConkey S, Spehar B, Van Engen KJ, Sommers MS, Peelle JE. Age-Related Differences in Auditory Cortex Activity During Spoken Word Recognition. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:452-473. [PMID: 34327333 PMCID: PMC8318202 DOI: 10.1162/nol_a_00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Understanding spoken words requires the rapid matching of a complex acoustic stimulus with stored lexical representations. The degree to which brain networks supporting spoken word recognition are affected by adult aging remains poorly understood. In the current study we used fMRI to measure the brain responses to spoken words in two conditions: an attentive listening condition, in which no response was required, and a repetition task. Listeners were 29 young adults (aged 19-30 years) and 32 older adults (aged 65-81 years) without self-reported hearing difficulty. We found largely similar patterns of activity during word perception for both young and older adults, centered on the bilateral superior temporal gyrus. As expected, the repetition condition resulted in significantly more activity in areas related to motor planning and execution (including the premotor cortex and supplemental motor area) compared to the attentive listening condition. Importantly, however, older adults showed significantly less activity in probabilistically defined auditory cortex than young adults when listening to individual words in both the attentive listening and repetition tasks. Age differences in auditory cortex activity were seen selectively for words (no age differences were present for 1-channel vocoded speech, used as a control condition), and could not be easily explained by accuracy on the task, movement in the scanner, or hearing sensitivity (available on a subset of participants). These findings indicate largely similar patterns of brain activity for young and older adults when listening to words in quiet, but suggest less recruitment of auditory cortex by the older adults.
Collapse
Affiliation(s)
- Chad S. Rogers
- Department of Psychology, Union College, Schenectady, NY, USA
| | - Michael S. Jones
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah McConkey
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brent Spehar
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristin J. Van Engen
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Mitchell S. Sommers
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan E. Peelle
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Jafari Z, Kolb BE, Mohajerani MH. Age-related hearing loss and tinnitus, dementia risk, and auditory amplification outcomes. Ageing Res Rev 2019; 56:100963. [PMID: 31557539 DOI: 10.1016/j.arr.2019.100963] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis, as the third leading cause of chronic disability in older adults, has been shown to be associated with predisposing cognitive impairment and dementia. Tinnitus is also a chronic auditory disorder demonstrating a growth rate with increasing age. Recent evidence stands for the link between bothersome tinnitus and impairments in various aspects of cognitive function. Both ARHL and age-related tinnitus affect mental health and contribute to developing anxiety, stress, and depression. The present review is a comprehensive multidisciplinary study on diverse interactions among ARHL, tinnitus, and cognitive decline in older adults. This review incorporates the latest evidence in prevalence and risk factors of ARHL and tinnitus, the neural substrates of tinnitus-related cognitive impairments, hypothesized mechanisms concerning the association between ARHL and increased risk of dementia, hearing amplification outcomes in cases with ARHL and cognitive decline, and preliminary findings on the link between ARHL and cognitive impairment in animal studies. Given extensive evidence that demonstrates advantages of using auditory amplification in the alleviation of hearing handicap, depression, and tinnitus, and the improvement of cognition, social communication, and quality of life, regular hearing screening programs for identification and management of midlife hearing loss and tinnitus is strongly recommended.
Collapse
|
19
|
Auditory-frontal Channeling in α and β Bands is Altered by Age-related Hearing Loss and Relates to Speech Perception in Noise. Neuroscience 2019; 423:18-28. [PMID: 31705894 DOI: 10.1016/j.neuroscience.2019.10.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 10/27/2019] [Indexed: 01/16/2023]
Abstract
Difficulty understanding speech-in-noise (SIN) is a pervasive problem faced by older adults particularly those with hearing loss. Previous studies have identified structural and functional changes in the brain that contribute to older adults' speech perception difficulties. Yet, many of these studies use neuroimaging techniques that evaluate only gross activation in isolated brain regions. Neural oscillations may provide further insight into the processes underlying SIN perception as well as the interaction between auditory cortex and prefrontal linguistic brain regions that mediate complex behaviors. We examined frequency-specific neural oscillations and functional connectivity of the EEG in older adults with and without hearing loss during an active SIN perception task. Brain-behavior correlations revealed listeners who were more resistant to the detrimental effects of noise also demonstrated greater modulation of α phase coherence between clean and noise-degraded speech, suggesting α desynchronization reflects release from inhibition and more flexible allocation of neural resources. Additionally, we found top-down β connectivity between prefrontal and auditory cortices strengthened with poorer hearing thresholds despite minimal behavioral differences. This is consistent with the proposal that linguistic brain areas may be recruited to compensate for impoverished auditory inputs through increased top-down predictions to assist SIN perception. Overall, these results emphasize the importance of top-down signaling in low-frequency brain rhythms that help compensate for hearing-related declines and facilitate efficient SIN processing.
Collapse
|
20
|
Bidelman GM, Mahmud MS, Yeasin M, Shen D, Arnott SR, Alain C. Age-related hearing loss increases full-brain connectivity while reversing directed signaling within the dorsal-ventral pathway for speech. Brain Struct Funct 2019; 224:2661-2676. [PMID: 31346715 PMCID: PMC6778722 DOI: 10.1007/s00429-019-01922-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
Speech comprehension difficulties are ubiquitous to aging and hearing loss, particularly in noisy environments. Older adults' poorer speech-in-noise (SIN) comprehension has been related to abnormal neural representations within various nodes (regions) of the speech network, but how senescent changes in hearing alter the transmission of brain signals remains unspecified. We measured electroencephalograms in older adults with and without mild hearing loss during a SIN identification task. Using functional connectivity and graph-theoretic analyses, we show that hearing-impaired (HI) listeners have more extended (less integrated) communication pathways and less efficient information exchange among widespread brain regions (larger network eccentricity) than their normal-hearing (NH) peers. Parameter optimized support vector machine classifiers applied to EEG connectivity data showed hearing status could be decoded (> 85% accuracy) solely using network-level descriptions of brain activity, but classification was particularly robust using left hemisphere connections. Notably, we found a reversal in directed neural signaling in left hemisphere dependent on hearing status among specific connections within the dorsal-ventral speech pathways. NH listeners showed an overall net "bottom-up" signaling directed from auditory cortex (A1) to inferior frontal gyrus (IFG; Broca's area), whereas the HI group showed the reverse signal (i.e., "top-down" Broca's → A1). A similar flow reversal was noted between left IFG and motor cortex. Our full-brain connectivity results demonstrate that even mild forms of hearing loss alter how the brain routes information within the auditory-linguistic-motor loop.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA.
- School of Communication Sciences and Disorders, University of Memphis, 4055 North Park Loop, Memphis, TN, 38152, USA.
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, USA.
| | - Md Sultan Mahmud
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, TN, USA
| | - Dawei Shen
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
| | - Claude Alain
- Rotman Research Institute-Baycrest Centre for Geriatric Care, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Rudner M, Seeto M, Keidser G, Johnson B, Rönnberg J. Poorer Speech Reception Threshold in Noise Is Associated With Lower Brain Volume in Auditory and Cognitive Processing Regions. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:1117-1130. [PMID: 31026199 DOI: 10.1044/2018_jslhr-h-ascc7-18-0142] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose Hearing loss is associated with changes in brain volume in regions supporting auditory and cognitive processing. The purpose of this study was to determine whether there is a systematic association between hearing ability and brain volume in cross-sectional data from a large nonclinical cohort of middle-aged adults available from the UK Biobank Resource ( http://www.ukbiobank.ac.uk ). Method We performed a set of regression analyses to determine the association between speech reception threshold in noise (SRTn) and global brain volume as well as predefined regions of interest (ROIs) based on T1-weighted structural images, controlling for hearing-related comorbidities and cognition as well as demographic factors. In a 2nd set of analyses, we additionally controlled for hearing aid (HA) use. We predicted statistically significant associations globally and in ROIs including auditory and cognitive processing regions, possibly modulated by HA use. Results Whole-brain gray matter volume was significantly lower for individuals with poorer SRTn. Furthermore, the volume of 9 predicted ROIs including both auditory and cognitive processing regions was lower for individuals with poorer SRTn. The greatest percentage difference (-0.57%) in ROI volume relating to a 1 SD worsening of SRTn was found in the left superior temporal gyrus. HA use did not substantially modulate the pattern of association between brain volume and SRTn. Conclusions In a large middle-aged nonclinical population, poorer hearing ability is associated with lower brain volume globally as well as in cortical and subcortical regions involved in auditory and cognitive processing, but there was no conclusive evidence that this effect is moderated by HA use. This pattern of results supports the notion that poor hearing leads to reduced volume in brain regions recruited during speech understanding under challenging conditions. These findings should be tested in future longitudinal, experimental studies. Supplemental Material https://doi.org/10.23641/asha.7949357.
Collapse
Affiliation(s)
- Mary Rudner
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| | - Mark Seeto
- National Acoustic Laboratories and the HEARing CRC, Sydney, New South Wales, Australia
| | - Gitte Keidser
- National Acoustic Laboratories and the HEARing CRC, Sydney, New South Wales, Australia
| | - Blake Johnson
- Department of Cognitive Science, Macquarie University, Sydney, New South Wales, Australia
| | - Jerker Rönnberg
- Linnaeus Centre HEAD, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| |
Collapse
|
22
|
Goossens T, Vercammen C, Wouters J, van Wieringen A. The association between hearing impairment and neural envelope encoding at different ages. Neurobiol Aging 2019; 74:202-212. [DOI: 10.1016/j.neurobiolaging.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
23
|
Tremblay P, Perron M, Deschamps I, Kennedy‐Higgins D, Houde J, Dick AS, Descoteaux M. The role of the arcuate and middle longitudinal fasciculi in speech perception in noise in adulthood. Hum Brain Mapp 2019; 40:226-241. [PMID: 30277622 PMCID: PMC6865648 DOI: 10.1002/hbm.24367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
In this article, we used High Angular Resolution Diffusion Imaging (HARDI) with advanced anatomically constrained particle filtering tractography to investigate the role of the arcuate fasciculus (AF) and the middle longitudinal fasciculus (MdLF) in speech perception in noise in younger and older adults. Fourteen young and 15 elderly adults completed a syllable discrimination task in the presence of broadband masking noise. Mediation analyses revealed few effects of age on white matter (WM) in these fascicles but broad effects of WM on speech perception, independently of age, especially in terms of sensitivity and criterion (response bias), after controlling for individual differences in hearing sensitivity and head size. Indirect (mediated) effects of age on speech perception through WM microstructure were also found, after controlling for individual differences in hearing sensitivity and head size, with AF microstructure related to sensitivity, response bias and phonological priming, and MdLF microstructure more strongly related to response bias. These findings suggest that pathways of the perisylvian region contribute to speech processing abilities, with relatively distinct contributions for the AF (sensitivity) and MdLF (response bias), indicative of a complex contribution of both phonological and cognitive processes to age-related speech perception decline. These results provide new and important insights into the roles of these pathways as well as the factors that may contribute to elderly speech perception deficits. They also highlight the need for a greater focus to be placed on studying the role of WM microstructure to understand cognitive aging.
Collapse
Affiliation(s)
- Pascale Tremblay
- CERVO Brain Research CenterQuebec CityCanada
- Département de Réadaptation, Faculté de MédecineUniversité LavalQuebec CityCanada
| | | | - Isabelle Deschamps
- CERVO Brain Research CenterQuebec CityCanada
- Département de Réadaptation, Faculté de MédecineUniversité LavalQuebec CityCanada
| | - Dan Kennedy‐Higgins
- CERVO Brain Research CenterQuebec CityCanada
- Department of Speech, Hearing and Phonetic SciencesUniversity College LondonUnited Kingdom
| | - Jean‐Christophe Houde
- Département d'informatique, Faculté des Sciences, Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeCanada
| | | | - Maxime Descoteaux
- Département d'informatique, Faculté des Sciences, Sherbrooke Connectivity Imaging LabUniversité de SherbrookeSherbrookeCanada
| |
Collapse
|
24
|
Avivi-Arber L, Sessle BJ. Jaw sensorimotor control in healthy adults and effects of ageing. J Oral Rehabil 2017; 45:50-80. [DOI: 10.1111/joor.12554] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Affiliation(s)
- L. Avivi-Arber
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| | - B. J. Sessle
- Faculty of Dentistry; University of Toronto; Toronto ON Canada
| |
Collapse
|
25
|
Tremblay P, Sato M, Deschamps I. Age differences in the motor control of speech: An fMRI study of healthy aging. Hum Brain Mapp 2017; 38:2751-2771. [PMID: 28263012 PMCID: PMC6866863 DOI: 10.1002/hbm.23558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/27/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pascale Tremblay
- Université Laval, Departement de ReadaptationFaculté de MedecineQuebec CityQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Sante Mentale de QuébecQuebec CityQuebecCanada
| | - Marc Sato
- Laboratoire Parole & LangageUniversité Aix‐Marseille, CNRSAix‐en‐ProvenceFrance
| | - Isabelle Deschamps
- Université Laval, Departement de ReadaptationFaculté de MedecineQuebec CityQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Sante Mentale de QuébecQuebec CityQuebecCanada
| |
Collapse
|
26
|
Bilodeau-Mercure M, Tremblay P. Age Differences in Sequential Speech Production: Articulatory and Physiological Factors. J Am Geriatr Soc 2016; 64:e177-e182. [DOI: 10.1111/jgs.14491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mylène Bilodeau-Mercure
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec (IUSMQ); Québec City Québec Canada
| | - Pascale Tremblay
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec (IUSMQ); Québec City Québec Canada
- Department of Rehabilitation; School of Medecine; Université Laval; Québec City Québec Canada
| |
Collapse
|
27
|
Cardin V. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions. Front Neurosci 2016; 10:199. [PMID: 27242405 PMCID: PMC4862970 DOI: 10.3389/fnins.2016.00199] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss.
Collapse
Affiliation(s)
- Velia Cardin
- Department of Experimental Psychology, Deafness, Cognition and Language Research Centre, University College LondonLondon, UK; Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Swedish Institute for Disability Research, Linköping UniversityLinköping, Sweden
| |
Collapse
|
28
|
Kleber B, Veit R, Moll CV, Gaser C, Birbaumer N, Lotze M. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices. Neuroimage 2016; 133:477-483. [PMID: 27034024 DOI: 10.1016/j.neuroimage.2016.03.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/20/2015] [Accepted: 03/18/2016] [Indexed: 01/28/2023] Open
Abstract
In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured.
Collapse
Affiliation(s)
- Boris Kleber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Ralf Veit
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Christina Valérie Moll
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | | | - Niels Birbaumer
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico, 30126 Venezia, Italy
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
29
|
Deschamps I, Hasson U, Tremblay P. The Structural Correlates of Statistical Information Processing during Speech Perception. PLoS One 2016; 11:e0149375. [PMID: 26919234 PMCID: PMC4771024 DOI: 10.1371/journal.pone.0149375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/01/2016] [Indexed: 11/30/2022] Open
Abstract
The processing of continuous and complex auditory signals such as speech relies on the ability to use statistical cues (e.g. transitional probabilities). In this study, participants heard short auditory sequences composed either of Italian syllables or bird songs and completed a regularity-rating task. Behaviorally, participants were better at differentiating between levels of regularity in the syllable sequences than in the bird song sequences. Inter-individual differences in sensitivity to regularity for speech stimuli were correlated with variations in surface-based cortical thickness (CT). These correlations were found in several cortical areas including regions previously associated with statistical structure processing (e.g. bilateral superior temporal sulcus, left precentral sulcus and inferior frontal gyrus), as well other regions (e.g. left insula, bilateral superior frontal gyrus/sulcus and supramarginal gyrus). In all regions, this correlation was positive suggesting that thicker cortex is related to higher sensitivity to variations in the statistical structure of auditory sequences. Overall, these results suggest that inter-individual differences in CT within a distributed network of cortical regions involved in statistical structure processing, attention and memory is predictive of the ability to detect structural structure in auditory speech sequences.
Collapse
Affiliation(s)
- Isabelle Deschamps
- Département de Réadaptation, Université Laval, Québec City, QC, Canada
- Centre de Recherche de l’Institut Universitaire en santé mentale de Québec, Québec City, QC, Canada
| | - Uri Hasson
- Center for Mind & Brain Sciences (CIMeC), University of Trento, Mattarello (TN), Italy
| | - Pascale Tremblay
- Département de Réadaptation, Université Laval, Québec City, QC, Canada
- Centre de Recherche de l’Institut Universitaire en santé mentale de Québec, Québec City, QC, Canada
| |
Collapse
|
30
|
Roehrich-Gascon D, Small SL, Tremblay P. Structural correlates of spoken language abilities: A surface-based region-of interest morphometry study. BRAIN AND LANGUAGE 2015; 149:46-54. [PMID: 26185048 PMCID: PMC4587378 DOI: 10.1016/j.bandl.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Brain structure can predict many aspects of human behavior, though the extent of this relationship in healthy adults, particularly for language-related skills, remains largely unknown. The objective of the present study was to explore this relation using magnetic resonance imaging (MRI) on a group of 21 healthy young adults who completed two language tasks: (1) semantic fluency and (2) sentence generation. For each region of interest, cortical thickness, surface area, and volume were calculated. The results show that verbal fluency scores correlated mainly with measures of brain morphology in the left inferior frontal cortex and bilateral insula. Sentence generation scores correlated with structure of the left inferior parietal and right inferior frontal regions. These results reveal that the anatomy of several structures in frontal and parietal lobes is associated with spoken language performance. The presence of both negative and positive correlations highlights the complex relation between brain and language.
Collapse
Affiliation(s)
- Didier Roehrich-Gascon
- Centre de Recherche de l'Institut Universitaire en santé mentale de Québec (CRIUSMQ), Québec City, QC, Canada; Université Laval, Faculté de médecine, Québec City, QC, Canada
| | | | - Pascale Tremblay
- Centre de Recherche de l'Institut Universitaire en santé mentale de Québec (CRIUSMQ), Québec City, QC, Canada; Université Laval, Faculté de médecine, Québec City, QC, Canada.
| |
Collapse
|
31
|
Tremblay P, Deschamps I. Structural brain aging and speech production: a surface-based brain morphometry study. Brain Struct Funct 2015; 221:3275-99. [PMID: 26336952 DOI: 10.1007/s00429-015-1100-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 08/27/2015] [Indexed: 11/30/2022]
Abstract
While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.
Collapse
Affiliation(s)
- Pascale Tremblay
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC, Canada. .,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC, Canada. .,Département de Rehabilitation, Université Laval, Office 4462, 1050 avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.
| | - Isabelle Deschamps
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC, Canada.,Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
32
|
Martins R, Joanette Y, Monchi O. The implications of age-related neurofunctional compensatory mechanisms in executive function and language processing including the new Temporal Hypothesis for Compensation. Front Hum Neurosci 2015; 9:221. [PMID: 25964754 PMCID: PMC4408858 DOI: 10.3389/fnhum.2015.00221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/07/2015] [Indexed: 11/16/2022] Open
Abstract
As the passage of time structurally alters one’s brain, cognition does not have to suffer the same faith, at least not to the same extent. Indeed, the existence of age-related compensatory mechanisms allow for some cognitive preservation. This paper attempts to coherently review the existing concepts of neurofunctional compensation when applied to two different cognitive domains, namely executive function and language processing. More precisely, we explore the Cognitive reserve (CR) model in healthy aging as well as its two underlying mechanisms: neural reserve and neural compensation. Furthermore, we review the Compensation-Related Utilization of Neural Circuits Hypothesis as well as the Growing Of Life Differences Explains Normal Aging model. Finally, we propose, based on some functional neuroimaging studies, the existence of another compensatory mechanism characterized by age-related delayed cerebral activation allowing for cognitive performance to be preserved at the expense of speed processing: the Temporal Hypothesis for Compensation.
Collapse
Affiliation(s)
- Ruben Martins
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Faculty of Medicine of the University of Montreal Montréal, QC, Canada ; Department of psychiatry, Faculty of Medicine of McGill University Montreal, QC, Canada
| | - Yves Joanette
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Faculty of Medicine of the University of Montreal Montréal, QC, Canada
| | - Oury Monchi
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada ; Department of Radiology, Faculty of Medicine of the University of Montreal Montréal, QC, Canada ; Departments of Clinical Neurosciences, Radiology, and Hotchkiss Bran Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
33
|
Deschamps I, Tremblay P. Sequencing at the syllabic and supra-syllabic levels during speech perception: an fMRI study. Front Hum Neurosci 2014; 8:492. [PMID: 25071521 PMCID: PMC4086203 DOI: 10.3389/fnhum.2014.00492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
The processing of fluent speech involves complex computational steps that begin with the segmentation of the continuous flow of speech sounds into syllables and words. One question that naturally arises pertains to the type of syllabic information that speech processes act upon. Here, we used functional magnetic resonance imaging to profile regions, using a combination of whole-brain and exploratory anatomical region-of-interest (ROI) approaches, that were sensitive to syllabic information during speech perception by parametrically manipulating syllabic complexity along two dimensions: (1) individual syllable complexity, and (2) sequence complexity (supra-syllabic). We manipulated the complexity of the syllable by using the simplest syllable template—a consonant and vowel (CV)-and inserting an additional consonant to create a complex onset (CCV). The supra-syllabic complexity was manipulated by creating sequences composed of the same syllable repeated six times (e.g., /pa-pa-pa-pa-pa-pa/) and sequences of three different syllables each repeated twice (e.g., /pa-ta-ka-pa-ta-ka/). This parametrical design allowed us to identify brain regions sensitive to (1) syllabic complexity independent of supra-syllabic complexity, (2) supra-syllabic complexity independent of syllabic complexity and, (3) both syllabic and supra-syllabic complexity. High-resolution scans were acquired for 15 healthy adults. An exploratory anatomical ROI analysis of the supratemporal plane (STP) identified bilateral regions within the anterior two-third of the planum temporale, the primary auditory cortices as well as the anterior two-third of the superior temporal gyrus that showed different patterns of sensitivity to syllabic and supra-syllabic information. These findings demonstrate that during passive listening of syllable sequences, sublexical information is processed automatically, and sensitivity to syllabic and supra-syllabic information is localized almost exclusively within the STP.
Collapse
Affiliation(s)
- Isabelle Deschamps
- Département de Réadaptation, Université Laval Québec City, QC, Canada ; Centre de recherche de l'Institut universitaire en santé mentale de Québec Québec City, QC, Canada
| | - Pascale Tremblay
- Département de Réadaptation, Université Laval Québec City, QC, Canada ; Centre de recherche de l'Institut universitaire en santé mentale de Québec Québec City, QC, Canada
| |
Collapse
|