1
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
2
|
Degraded cortical temporal processing in the valproic acid-induced rat model of autism. Neuropharmacology 2022; 209:109000. [PMID: 35182575 DOI: 10.1016/j.neuropharm.2022.109000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Hearing disorders, such as abnormal speech perception, are frequently reported in individuals with autism. However, the mechanisms underlying these auditory-associated signature deficits in autism remain largely unknown. In this study, we documented significant behavioral impairments in the sound temporal rate discrimination task for rats prenatally exposed to valproic acid (VPA), a well-validated animal model for studying the pathology of autism. In parallel, there was a large-scale degradation in temporal information-processing in their primary auditory cortices (A1) at both levels of spiking outputs and synaptic inputs. Substantially increased spine density of excitatory neurons and decreased numbers of parvalbumin- and somatostatin-labeled inhibitory inter-neurons were also recorded in the A1 after VPA exposure. Given the fact that cortical temporal processing of sound is associated with speech perception in humans, these results in the animal model of VPA exposure provide insight into a possible neurological mechanism underlying auditory and language-related deficits in individuals with autism.
Collapse
|
3
|
Abstract
The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.
Collapse
|
4
|
Svobodová Burianová J, Syka J. Postnatal exposure to an acoustically enriched environment alters the morphology of neurons in the adult rat auditory system. Brain Struct Funct 2020; 225:1979-1995. [PMID: 32588120 DOI: 10.1007/s00429-020-02104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/16/2020] [Indexed: 11/29/2022]
Abstract
The structure of neurons in the central auditory system is vulnerable to various kinds of acoustic exposures during the critical postnatal developmental period. Here we explored long-term effects of exposure to an acoustically enriched environment (AEE) during the third and fourth weeks of the postnatal period in rat pups. AEE consisted of a spectrally and temporally modulated sound of moderate intensity, reinforced by a behavioral paradigm. At the age of 3-6 months, a Golgi-Cox staining was used to evaluate the morphology of neurons in the inferior colliculus (IC), the medial geniculate body (MGB), and the auditory cortex (AC). Compared to controls, rats exposed to AEE showed an increased mean dendritic length and volume and the soma surface in the external cortex and the central nucleus of the IC. The spine density increased in both the ventral and dorsal divisions of the MGB. In the AC, the total length and volume of the basal dendritic segments of pyramidal neurons and the number and density of spines on these dendrites increased significantly. No differences were found on apical dendrites. We also found an elevated number of spines and spine density in non-pyramidal neurons. These results show that exposure to AEE during the critical developmental period can induce permanent changes in the structure of neurons in the central auditory system. These changes represent morphological correlates of the functional plasticity, such as an improvement in frequency tuning and synchronization with temporal parameters of acoustical stimuli.
Collapse
Affiliation(s)
- Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Fernandez-Quezada D, García-Zamudio A, Ruvalcaba-Delgadillo Y, Luquín S, García-Estrada J, Jáuregui Huerta F. Male rats exhibit higher pro-BDNF, c-Fos and dendritic tree changes after chronic acoustic stress. Biosci Trends 2020; 13:546-555. [PMID: 31956226 DOI: 10.5582/bst.2019.01288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prolonged or intense exposure to environmental noise (EN) has been associated with a number of changes in auditory organs as well as other brain structures. Notably, males and females have shown different susceptibilities to acoustic damage as well as different responses to environmental stressors. Rodent models have evidence of sex-specific changes in brain structures involved in noise and sound processing. As a common effect, experimental models have demonstrated that dendrite arborizations reconfigure in response to aversive conditions in several brain regions. Here, we examined the effect of chronic noise on dendritic reorganization and c-Fos expression patterns of both sexes. During 21 days male and female rats were exposed to a rats' audiogram-fitted adaptation of a noisy environment. Golgi-Cox and c-Fos staining were performed at auditory cortices (AC) and hippocampal regions. Sholl analysis and c-Fos counts were conducted for evidence of intersex differences. In addition, pro-BDNF serum levels were also measured. We found different patterns of c-Fos expression in hippocampus and AC. While in AC expression levels showed rapid and intense increases starting at 2 h, hippocampal areas showed slower rises that reached the highest levels at 21 days. Sholl analysis also evidenced regional differences in response to noise. Dendritic trees were reduced after 21 days in hippocampus but not in AC. Meanwhile, pro-BDNF levels augmented after EN exposure. In all analyzed variables, exposed males were the most affected. These findings suggest that noise may exert differential effects on male and female brains and that males could be more vulnerable to the chronic effects of noise.
Collapse
Affiliation(s)
- David Fernandez-Quezada
- Department of Neurosciences, Health Sciences University Centre, Guadalajara, Jalisco, Mexico
| | | | | | - Sonia Luquín
- Department of Neurosciences, Health Sciences University Centre, Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- Department of Neurosciences, Health Sciences University Centre, Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
6
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Rybalko N, Mitrovic D, Šuta D, Bureš Z, Popelář J, Syka J. Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol Behav 2019; 210:112620. [DOI: 10.1016/j.physbeh.2019.112620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
8
|
Forrest TJ, Desmond TJ, Issa M, Scott PJH, Basura GJ. Evaluating Cholinergic Receptor Expression in Guinea Pig Primary Auditory and Rostral Belt Cortices After Noise Damage Using [ 3H]Scopolamine and [ 18F]Flubatine Autoradiography. Mol Imaging 2019; 18:1536012119848927. [PMID: 31099304 PMCID: PMC6537085 DOI: 10.1177/1536012119848927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Noise-induced hearing loss leads to anatomic and physiologic changes in primary auditory
cortex (A1) and the adjacent dorsal rostral belt (RB). Since acetylcholine is known to
modulate plasticity in other cortical areas, changes in A1 and RB following noise damage
may be due to changes in cholinergic receptor expression. We used
[3H]scopolamine and [18F]flubatine binding to measure muscarinic
acetylcholine receptor (mAChR) and nicotinic acetylcholine receptor (nAChR) expression,
respectively, in guinea pig A1 and RB 3 weeks following unilateral, left ear noise
exposure, and a temporary threshold shift in hearing. [3H]Scopolamine binding
decreased in right A1 and RB (contralateral to noise) compared to sham controls across all
cortical layers. [18F]Flubatine binding showed a nonsignificant upward trend in
right A1 following noise but only significantly increased in right RB and 2 layers of left
RB (ipsilateral to noise). This selective response may ultimately influence cortical
plasticity and function. The mechanism(s) by which cholinergic receptors are altered
following noise exposure remain unknown. However, these data demonstrate noise exposure
may differentially influence mAChRs that typically populate interneurons in A1 and RB more
than nAChRs that are traditionally located on thalamocortical projections and provide
motivation for cholinergic imaging in clinical patient populations of temporary or
permanent hearing loss.
Collapse
Affiliation(s)
- Taylor J Forrest
- 1 Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA.,2 Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA.,3 Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor MI, USA
| | - Timothy J Desmond
- 3 Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor MI, USA
| | - Mohamad Issa
- 1 Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA.,2 Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA
| | - Peter J H Scott
- 3 Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor MI, USA
| | - Gregory J Basura
- 1 Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA.,2 Kresge Hearing Research Institute University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Wang F, Liu J, Zhang J. Early postnatal noise exposure degrades the stimulus-specific adaptation of neurons in the rat auditory cortex in adulthood. Neuroscience 2019; 404:1-13. [DOI: 10.1016/j.neuroscience.2019.01.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
|
10
|
Eckert MA, Vaden KI, Dubno JR. Age-Related Hearing Loss Associations With Changes in Brain Morphology. Trends Hear 2019; 23:2331216519857267. [PMID: 31213143 PMCID: PMC6585256 DOI: 10.1177/2331216519857267] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related hearing loss has been associated with varied auditory cortex morphology in human neuroimaging studies. These findings have suggested that peripheral auditory system declines cause changes in brain morphology but could also be due to latent variables that affect the auditory periphery and brain. The current longitudinal study was designed to evaluate these explanations for pure-tone threshold and brain morphology associations. Thirty adults (mean age at Time 1 = 64.12 ± 10.32 years) were studied at two time points (average duration between visits = 2.62 ± 0.81 years). Small- to medium-effect size associations were observed between high-frequency pure-tone thresholds and auditory cortex gray matter volume at each time point. Although there were significant longitudinal changes in low- and high-frequency hearing measures and brain morphology, those longitudinal changes were not significantly correlated across participants. High-frequency hearing measures at Time 1 were significantly related to more lateral ventricle expansion, such that participants with higher measures exhibited larger increases in ventricle size. This ventricle effect was statistically independent of high-frequency hearing associations with auditory cortex morphology. Together, these results indicate that there are at least two mechanisms for associations between age-related hearing loss and brain morphology. Potential explanations for a direct hearing loss effect on brain morphology, as well as latent variables that likely affect both the inner ear and brain, are discussed.
Collapse
Affiliation(s)
- Mark A. Eckert
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth I. Vaden
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Judy R. Dubno
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat. Neural Plast 2018; 2018:5903720. [PMID: 30002673 PMCID: PMC5998158 DOI: 10.1155/2018/5903720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022] Open
Abstract
It is well known that auditory experience during early development shapes response properties of auditory cortex (AC) neurons, influencing, for example, tonotopical arrangement, response thresholds and strength, or frequency selectivity. Here, we show that rearing rat pups in a complex acoustically enriched environment leads to an increased reliability of responses of AC neurons, affecting both the rate and the temporal codes. For a repetitive stimulus, the neurons exhibit a lower spike count variance, indicating a more stable rate coding. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Furthermore, the neurons follow more precisely the temporal course of the stimulus, as manifested by improved phase-locking to temporally modulated sounds. The changes are persistent and present up to adulthood. The results document that besides basic alterations of receptive fields presented in our previous study, the acoustic environment during the critical period of postnatal development also leads to a decreased stochasticity and a higher reproducibility of neuronal spiking patterns.
Collapse
|
12
|
Su YT, Meng XX, Zhang X, Guo YB, Zhang HJ, Cheng YP, Xie XP, Chang YM, Bao JX. Doxepin Mitigates Noise-induced Neuronal Damage in Primary Auditory Cortex of Mice via Suppression of Acid Sphingomyelinase/Ceramide Pathway. Anat Rec (Hoboken) 2017; 300:2220-2232. [PMID: 28806500 DOI: 10.1002/ar.23677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Abstract
Neuronal damage in primary auditory cortex (A1) underlies complex manifestations of noise exposure, prevention of which is critical for health maintenance. Acid sphingomyelinase (ASM) catalyzes generation of ceramide (Cer) which if over-activated mediates neuronal disorders in various diseases. Tricyclic antidepressants (TCAs), by restraining ASM/Cer, benefits multiple neuronal anomalies, so we aimed to elucidate the effect of TCA on noise induced hearing loss and auditory cortex derangement, unraveling mechanism involved. The mice were exposed to noise with frequencies of 20-20 KHz and intensity of 95 dB. Doxepin hydrochloride (DOX), a kind of TCAs, was given intragastrically by 5 mg kg-1 days-1 . Morphology of neurons was examined using hematoxylin-eosin (HE) and Nissl staining. Apoptosis was assayed through transferase-mediated dUTP nick end labeling (TUNEL). The content of ASM, Cer or acid ceramidase (AC) was detected by western blot and immunohistochemistry analysis. We demonstrated intense, broad band noise caused upward shift of auditory brainstem response (ABR) threshold to sound over frequencies 4-32 KHz, with prominent morphologic changes and enhanced apoptosis in neurons of primary auditory cortex (A1) (P < 0.05). DOX partly restored noise-caused hearing loss alleviating morphologic changes or apoptosis remarkably (P < 0.05). Both ASM and Cer abundance were elevated significantly by noise which was reversed upon DOX treatment (P < 0.05), but neither noise nor DOX altered AC content. DOX had no influence on hearing, neuronal morphology or ASM/Cer in control mice. Our result suggests DOX palliates noise induced hearing loss and neuronal damage in auditory cortex by correcting over-activation of ASM/Cer without hampering intrinsic behavior of it. Anat Rec, 300:2220-2232, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu-Ting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xing-Xing Meng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xi Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yi-Bin Guo
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Hai-Jun Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yao-Ping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiao-Ping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
13
|
Synaptic distribution and plasticity in primary auditory cortex (A1) exhibits laminar and cell-specific changes in the deaf. Hear Res 2017; 353:122-134. [PMID: 28697947 DOI: 10.1016/j.heares.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
The processing sequence through primary auditory cortex (A1) is impaired by deafness as evidenced by reduced neuronal activation in A1 of cochlear-implanted deaf cats. Such a loss of neuronal excitation should be manifest as changes in excitatory synaptic number and/or size, for which the post-synaptic correlate is the dendritic spine. Therefore, the present study sought evidence for this functional disruption using Golgi-Cox/light microscopic techniques that examined spine-bearing neurons and their dendritic spine features across all laminae in A1 of early-deaf (ototoxic lesion <1 month; raised into adulthood >16 months) and hearing cats. Surprisingly, in the early-deaf significant increases in spine density and size were observed in the supragranular layers, while significant reductions in spine density were observed for spiny non-pyramidal, but not pyramidal, neurons in the granular layer. No changes in dendritic spine density consistent with loss of excitatory inputs were seen for infragranular neurons. These results indicate that long-term early-deafness induces plastic changes in the excitatory circuitry of A1 that are laminar and cell-specific. An additional finding was that, unlike the expected abundance of stellate neurons that characterize the granular layer of other primary sensory cortices, pyramidal neurons predominate within layer 4 of A1. Collectively, these observations are important for understanding how neuronal connectional configurations contribute to region-specific processing capabilities in normal brains as well as those with altered sensory experiences.
Collapse
|
14
|
Meredith MA, Clemo HR, Lomber SG. Is territorial expansion a mechanism for crossmodal plasticity? Eur J Neurosci 2017; 45:1165-1176. [PMID: 28370755 DOI: 10.1111/ejn.13564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 01/08/2023]
Abstract
Crossmodal plasticity is the phenomenon whereby, following sensory damage or deprivation, the lost sensory function of a brain region is replaced by one of the remaining senses. One of several proposed mechanisms for this phenomenon involves the expansion of a more active brain region at the expense of another whose sensory inputs have been damaged or lost. This territorial expansion hypothesis was examined in the present study. The cat ectosylvian visual area (AEV) borders the auditory field of the anterior ectosylvian sulcus (FAES), which becomes visually reorganized in the early deaf. If this crossmodal effect in the FAES is due to the expansion of the adjoining AEV into the territory of the FAES after hearing loss, then the reorganized FAES should exhibit connectional features characteristic of the AEV. However, tracer injections revealed significantly different patterns of cortical connectivity between the AEV and the early deaf FAES, and substantial cytoarchitectonic and behavioral distinctions occur as well. Therefore, the crossmodal reorganization of the FAES cannot be mechanistically attributed to the expansion of the adjoining cortical territory of the AEV and an overwhelming number of recent studies now support unmasking of existing connections as the operative mechanism underlying crossmodal plasticity.
Collapse
Affiliation(s)
- M A Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Sanger Hall Rm. 12-067, Richmond, VA, 23298, USA
| | - H R Clemo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Sanger Hall Rm. 12-067, Richmond, VA, 23298, USA
| | - S G Lomber
- Departments of Physiology and Pharmacology, & Psychology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
King J, Insanally M, Jin M, Martins ARO, D'amour JA, Froemke RC. Rodent auditory perception: Critical band limitations and plasticity. Neuroscience 2015; 296:55-65. [PMID: 25827498 DOI: 10.1016/j.neuroscience.2015.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception.
Collapse
Affiliation(s)
- J King
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - M Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - M Jin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - A R O Martins
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; PhD Programme in Experimental Biology and Biomedicine, Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - J A D'amour
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - R C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|