1
|
Wan C, Cai H, Li F. Age Three: Milestone in the Development of Cognitive Flexibility. Behav Sci (Basel) 2024; 14:578. [PMID: 39062401 PMCID: PMC11274188 DOI: 10.3390/bs14070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Although the cognitive flexibility (CF) of preschool children has been extensively studied, the development of CF in children around three years old is unclear. This study aimed to investigate the CF of three-year-olds in a stepwise rule-induction task (sRIT) comprising nine steps in which children are encouraged to switch attention to a new rule and then implicitly inhibit the old one. A pair of boxes was displayed at each step, and children aged 2.5 to 3.5 years were asked to select the target. When children learned a rule (e.g., the shape rule), they were encouraged to switch rules through negative feedback. The results showed that most children (81.10%) passed at least one of the two sets of the sRIT, and children over the age of three years performed better than those under three years. Additionally, a positive correlation existed between rule switching and rule generalization, whereby the old rule was implicitly inhibited. These findings indicate that age three might be a milestone in the development of CF, and inhibitory control might play a vital role in rule switching.
Collapse
Affiliation(s)
| | | | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China; (C.W.); (H.C.)
| |
Collapse
|
2
|
Geng X, Chan PH, Lam HS, Chu WC, Wong PC. Brain templates for Chinese babies from newborn to three months of age. Neuroimage 2024; 289:120536. [PMID: 38346529 DOI: 10.1016/j.neuroimage.2024.120536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/20/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The infant brain develops rapidly and this area of research has great clinical implications. Neurodevelopmental disorders such as autism and developmental delay have their origins, potentially, in abnormal early brain maturation. Searching for potential early neural markers requires a priori knowledge about infant brain development and anatomy. One of the most common methods of characterizing brain features requires normalization of individual images into a standard stereotactic space and conduct of group-based analyses in this space. A population representative brain template is critical for these population-based studies. Little research is available on constructing brain templates for typical developing Chinese infants. In the present work, a total of 120 babies from 5 to 89 days of age were included with high resolution structural magnetic resonance imaging scans. T1-weighted and T2-weighted templates were constructed using an unbiased registration approach for babies from newborn to 3 months of age. Age-specific templates were also estimated for babies aged at 0, 1, 2 and 3 months old. Then we conducted a series of evaluations and statistical analyses over whole tissue segmentations and brain parcellations. Compared to the use of population mismatched templates, using our established templates resulted in lower deformation energy to transform individual images into the template space and produced a smaller registration error, i.e., smaller standard deviation of the registered images. Significant volumetric growth was observed across total brain tissues and most of the brain regions within the first three months of age. The total brain tissues exhibited larger volumes in baby boys compared to baby girls. To the best of our knowledge, this is the first study focusing on the construction of Chinese infant brain templates. These templates can be used for investigating birth related conditions such as preterm birth, detecting neural biomarkers for neurological and neurodevelopmental disorders in Chinese populations, and exploring genetic and cultural effects on the brain.
Collapse
Affiliation(s)
- Xiujuan Geng
- Brain and Mind Institute The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Peggy Hy Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Winnie Cw Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Patrick Cm Wong
- Brain and Mind Institute The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
3
|
Soltani Kouhbanani S, Arabi SM, Zarenezhad S. Does the Frontal Brain Electrical Activity Mediate the Effect of Home Executive Function Environment and Screen Time on Children's Executive Function? J Genet Psychol 2023; 184:430-445. [PMID: 37335540 DOI: 10.1080/00221325.2023.2223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Executive functions play an important role in various developmental aspects of children; however, environmental factors influencing individual differences in children's executive function and their neural substructures, particularly in middle childhood, are rarely investigated. Therefore, the current study aimed to investigate the relationship between the home executive function environment (HEFE) and screen time with the executive function of children aged 8-12 years by employing the mediating variables of alpha, beta, and theta waves. The parents of 133 normal children completed Barkley Deficits in Executive Functioning, HEFE, and Screen Time Scales. Alpha, beta, and theta brain waves were also measured. Data were examined using correlational and path analysis. The results suggested a positive and significant relationship between home executive functions and the executive functions of children. Furthermore, the results indicated an inverse and significant relationship between screen time and executive function. The results also proved the mediating role of alpha, beta, and theta brain waves in the relationship between screen time and the children's executive function. Environmental factors (such as home environment and screen time) affect the function of brain waves and, thus, the daily executive function of children.
Collapse
Affiliation(s)
- Sakineh Soltani Kouhbanani
- Department of Educational Sciences, Educational Sciences and Psychology Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyedeh Manizheh Arabi
- Department of Motor Behavior, Faculty of Sports Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Somayeh Zarenezhad
- Department of Educational Sciences, Educational Sciences and Psychology Faculty, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Short SJ, Jang DK, Steiner RJ, Stephens RL, Girault JB, Styner M, Gilmore JH. Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations. Front Neurosci 2022; 16:806268. [PMID: 35401073 PMCID: PMC8985548 DOI: 10.3389/fnins.2022.806268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
Diffusion Tensor Imaging (DTI) is a non-invasive neuroimaging method that has become the most widely employed MRI modality for investigations of white matter fiber pathways. DTI has proven especially valuable for improving our understanding of normative white matter maturation across the life span and has also been used to index clinical pathology and cognitive function. Despite its increasing popularity, especially in pediatric research, the majority of existing studies examining infant white matter maturation depend on regional or white matter skeleton-based approaches. These methods generally lack the sensitivity and spatial specificity of more advanced functional analysis options that provide information about microstructural properties of white matter along fiber bundles. DTI studies of early postnatal brain development show that profound microstructural and maturational changes take place during the first two years of life. The pattern and rate of these changes vary greatly throughout the brain during this time compared to the rest of the life span. For this reason, appropriate image processing of infant MR imaging requires the use of age-specific reference atlases. This article provides an overview of the pre-processing, atlas building, and the fiber tractography procedures used to generate two atlas resources, one for neonates and one for 1- to 2-year-old populations. Via the UNC-NAMIC DTI Fiber Analysis Framework, our pediatric atlases provide the computational templates necessary for the fully automatic analysis of infant DTI data. To the best of our knowledge, these atlases are the first comprehensive population diffusion fiber atlases in early pediatric ages that are publicly available.
Collapse
Affiliation(s)
- Sarah J. Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI, United States
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dae Kun Jang
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel J. Steiner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca L. Stephens
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John H. Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Korom M, Camacho MC, Filippi CA, Licandro R, Moore LA, Dufford A, Zöllei L, Graham AM, Spann M, Howell B, Shultz S, Scheinost D. Dear reviewers: Responses to common reviewer critiques about infant neuroimaging studies. Dev Cogn Neurosci 2022; 53:101055. [PMID: 34974250 PMCID: PMC8733260 DOI: 10.1016/j.dcn.2021.101055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/28/2021] [Accepted: 12/26/2021] [Indexed: 01/07/2023] Open
Abstract
The field of adult neuroimaging relies on well-established principles in research design, imaging sequences, processing pipelines, as well as safety and data collection protocols. The field of infant magnetic resonance imaging, by comparison, is a young field with tremendous scientific potential but continuously evolving standards. The present article aims to initiate a constructive dialog between researchers who grapple with the challenges and inherent limitations of a nascent field and reviewers who evaluate their work. We address 20 questions that researchers commonly receive from research ethics boards, grant, and manuscript reviewers related to infant neuroimaging data collection, safety protocols, study planning, imaging sequences, decisions related to software and hardware, and data processing and sharing, while acknowledging both the accomplishments of the field and areas of much needed future advancements. This article reflects the cumulative knowledge of experts in the FIT'NG community and can act as a resource for both researchers and reviewers alike seeking a deeper understanding of the standards and tradeoffs involved in infant neuroimaging.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| | - M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University School of Medicine, St. Louis, MO, USA.
| | - Courtney A Filippi
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Roxane Licandro
- Institute of Visual Computing and Human-Centered Technology, Computer Vision Lab, TU Wien, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research, Medical University of Vienna, Vienna, Austria
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Alexander Dufford
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Marisa Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Department of Human Development and Family Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Sarah Shultz
- Division of Autism & Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Dustin Scheinost
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Bouyeure A, Bekha D, Patil S, Hertz-Pannier L, Noulhiane M. OUP accepted manuscript. Cereb Cortex Commun 2022; 3:tgac004. [PMID: 35261977 PMCID: PMC8895309 DOI: 10.1093/texcom/tgac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/13/2022] Open
Abstract
The structure-function relationship between white matter microstructure and episodic memory (EM) has been poorly studied in the developing brain, particularly in early childhood. Previous studies in adolescents and adults have shown that episodic memory recall is associated with prefrontal-limbic white matter microstructure. It is unknown whether this association is also observed during early ontogeny. Here, we investigated the association between prefrontal-limbic tract microstructure and EM performance in a cross-sectional sample of children aged 4 to 12 years. We used a multivariate partial least squares correlation approach to extract tract-specific latent variables representing shared information between age and diffusion parameters describing tract microstructure. Individual projections onto these latent variables describe patterns of interindividual differences in tract maturation that can be interpreted as scores of white matter tract microstructural maturity. Using these estimates of microstructural maturity, we showed that maturity scores of the uncinate fasciculus and dorsal cingulum bundle correlated with distinct measures of EM recall. Furthermore, the association between tract maturity scores and EM recall was comparable between younger and older children. Our results provide new evidence on the relation between white matter maturity and EM performance during development.
Collapse
Affiliation(s)
- Antoine Bouyeure
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Dhaif Bekha
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Sandesh Patil
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Lucie Hertz-Pannier
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
| | - Marion Noulhiane
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- UMR1141, Inserm, Université de Paris, 75019 Paris, France
- Corresponding author: UNIACT, NeuroSpin, CEA, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
7
|
McHarg G, Ribner AD, Devine RT, Hughes C. Screen Time and Executive Function in Toddlerhood: A Longitudinal Study. Front Psychol 2020; 11:570392. [PMID: 33192857 PMCID: PMC7643631 DOI: 10.3389/fpsyg.2020.570392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Technology is pervasive in homes with young children. Emerging evidence that electronic screen-based media use has adverse effects on executive functions may help explain negative relations between media use and early academic skills. However, longitudinal investigations are needed to test this idea. In a sample of 193 British toddlers tracked from age 2 to 3 years, we test concurrent and predictive relations between screen use and children’s executive function. We find no concurrent association between screen use and executive function; however, screen time at age 2 is negatively associated with the development of executive functions in toddlerhood from age 2 to 3, controlling for a range of covariates including verbal ability. Implications for parenting, education, and pediatric recommendations are discussed.
Collapse
Affiliation(s)
- Gabrielle McHarg
- Centre for Family Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D Ribner
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rory T Devine
- Department of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Claire Hughes
- Centre for Family Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Willoughby M, Hong Y, Hudson K, Wylie A. Between- and within-person contributions of simple reaction time to executive function skills in early childhood. J Exp Child Psychol 2020; 192:104779. [PMID: 31952815 DOI: 10.1016/j.jecp.2019.104779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/23/2023]
Abstract
This study tested whether the bivariate association between simple reaction time (SRT) and executive function (EF) performance that has been observed in early childhood represented a between- and/or within-person association. Up to three repeated assessments (i.e., fall, winter, and spring assessments from September to May) were available for 282 preschool-aged children (Mage = 4.2 years; 54% female) who participated in the Kids Activity and Learning Study. A series of three-level hierarchical linear models (repeated measures nested in child; child nested in classroom) was used to disaggregate the observed variation in EF and SRT into between-classroom, between-person, and within-person components. EF composite scores were regressed on two indicators of SRT, which reflected between- and within-child sources of variation, along with demographic covariates (child age, gender, and parental education). Both between-person (b = -21.2, p < 0.001) and within-person (b = -13.2, p < 0.001) sources of SRT variation were uniquely related to EF performance. These results are discussed with respect to interest in using SRT as a proxy for foundational cognitive processes that contribute to EF task performance in early childhood, including the appropriateness of using SRT to refine EF task scores.
Collapse
Affiliation(s)
- Michael Willoughby
- Education & Workforce Development, RTI International, Research Triangle Park, NC 27709, USA.
| | - Yihua Hong
- Education & Workforce Development, RTI International, Research Triangle Park, NC 27709, USA
| | - Kesha Hudson
- Education & Workforce Development, RTI International, Research Triangle Park, NC 27709, USA
| | - Amanda Wylie
- Education & Workforce Development, RTI International, Research Triangle Park, NC 27709, USA
| |
Collapse
|