1
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Schill DJ, Attili D, DeLong CJ, McInnis MG, Johnson CN, Murphy GG, O’Shea KS. Human-Induced Pluripotent Stem Cell (iPSC)-Derived GABAergic Neuron Differentiation in Bipolar Disorder. Cells 2024; 13:1194. [PMID: 39056776 PMCID: PMC11275104 DOI: 10.3390/cells13141194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Bipolar disorder (BP) is a recurring psychiatric condition characterized by alternating episodes of low energy (depressions) followed by manias (high energy). Cortical network activity produced by GABAergic interneurons may be critical in maintaining the balance in excitatory/inhibitory activity in the brain during development. Initially, GABAergic signaling is excitatory; with maturation, these cells undergo a functional switch that converts GABAA channels from depolarizing (excitatory) to hyperpolarizing (inhibitory), which is controlled by the intracellular concentration of two chloride transporters. The earliest, NKCC1, promotes chloride entry into the cell and depolarization, while the second (KCC2) stimulates movement of chloride from the neuron, hyperpolarizing it. Perturbations in the timing or expression of NKCC1/KCC2 may affect essential morphogenetic events including cell proliferation, migration, synaptogenesis and plasticity, and thereby the structure and function of the cortex. We derived induced pluripotent stem cells (iPSC) from BP patients and undiagnosed control (C) individuals, then modified a differentiation protocol to form GABAergic interneurons, harvesting cells at sequential stages of differentiation. qRT-PCR and RNA sequencing indicated that after six weeks of differentiation, controls transiently expressed high levels of NKCC1. Using multi-electrode array (MEA) analysis, we observed that BP neurons exhibit increased firing, network bursting and decreased synchrony compared to C. Understanding GABA signaling in differentiation may identify novel approaches and new targets for treatment of neuropsychiatric disorders such as BP.
Collapse
Affiliation(s)
- Daniel J. Schill
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Durga Attili
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Cynthia J. DeLong
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Melvin G. McInnis
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Johnson
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - K. Sue O’Shea
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA; (D.A.); (C.J.D.); (C.N.J.); (K.S.O.)
- Department of Psychiatry, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Riedemann T, Sutor B. Cell-Type-Specific Effects of Somatostatin on Synaptic Transmission in the Anterior Cingulate Cortex. J Neurosci 2024; 44:e0598232024. [PMID: 38378274 PMCID: PMC10977029 DOI: 10.1523/jneurosci.0598-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Inhibitory modulation of glutamatergic information processing is a prerequisite for proper network function. Among the many groups of interneurons (INs), somatostatin-expressing interneurons (SOM-INs) play an important role in the maintenance of physiological brain activity. We have previously shown that somatostatin (SOM) causes a reduction in pyramidal cell (PC) excitability. However, the mechanisms of action of the peptide on cortical synaptic circuits are still unclear. To understand the effects of the neuropeptide SOM on cortical synaptic circuits, we performed a detailed side-by-side comparison of its postsynaptic effects on PCs, SOM-INs, and layer 1 interneurons (L1-INs) in the anterior cingulate cortex of male and female mice and found that SOM produced pronounced postsynaptic effects in PCs while having little to no effect on either IN type. This comparison allowed us to link the observed postsynaptic effects to SOM-induced modulations of glutamatergic and GABAergic synaptic transmission and to trace the impact of the neuropeptide on the neuronal circuitry between these three cell types. We show here that SOM depresses glutamatergic synaptic transmission via a presynaptic mechanism while exerting a differential impact on GABAA receptor- and GABAB receptor-mediated transmission at the pre- and postsynaptic level resulting in a shift of inhibition in L2/3 PCs from L1-INs to SOM-INs. In summary, this study unravels a novel aspect by which SOM modulates synaptic signaling between PCs, L1-INs, and SOM-INs.
Collapse
Affiliation(s)
- Therese Riedemann
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria
| | - Bernd Sutor
- Department of Physiological Genomics, Institute of Physiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
4
|
Lambert GA, Zagami AS. Effects of somatostatin, a somatostatin agonist, and an antagonist, on a putative migraine trigger pathway. Neuropeptides 2024; 103:102399. [PMID: 38118293 DOI: 10.1016/j.npep.2023.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE To determine whether somatostatin (SST) could be a cortico-brainstem neurotransmitter involved in producing the headache of migraine. BACKGROUND There is evidence to support the idea that a cortico-brainstem-trigeminal nucleus neuraxis might be responsible for producing migraine headache; we have suggested that SST may be one of the neurotransmitters involved. METHODS Rats were anesthetised and prepared for recording neurons in either the periaqueductal gray matter (PAG) or nucleus raphe magnus (NRM), as well as the trigeminal nucleus caudalis (TNC). The dura mater and facial skin were stimulated electrically or mechanically. SST, the SST agonist L054264 and the SST antagonist CYN54806 were injected intravenously, by microinjection, or by iontophoresis into the PAG or NRM. Cortical neuronal activity was provoked by cortical spreading depression (CSD) or light flash (LF) and was monitored by recording cortical blood flow (CBF). RESULTS Intravenous injection of SST: (a) selectively decreased the responses of TNC neurons to stimulation of the dura, but not skin, for up to 5 h; (b) decreased the ongoing discharge rate of TNC neurons while simultaneously increasing the discharge rate of neurons in either brainstem nucleus and; (c) prevented, or reversed, the effect of CSD and LF on brainstem and trigeminal neuron discharge rates. CSD and LF decreased the discharge rate of neurons in both brainstem nuclei and increased the discharge rate of TNC neurons. These effects were reversed by L054264 and mimicked by CYN54806. Injections of L054264 into the PAG or NRM reduced the response of TNC neurons to dural stimulation and skin stimulation differentially, depending on the nucleus injected. Injections of CYN54806 into either brainstem nucleus potentiated the responses of TNC neurons to dural and skin stimulation, but without a marked differential effect. CONCLUSIONS These results imply that SST could be a neurotransmitter in a pathway responsible for migraine pain.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Australia.
| | - Alessandro S Zagami
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Australia; Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
5
|
Leng L, Zhuang K, Lin H, Ding J, Yang S, Yuan Z, Huang C, Chen G, Chen Z, Wang M, Wang H, Sun H, Li H, Chang H, Chen Z, Xu Q, Yuan T, Zhang J. Menin Reduces Parvalbumin Expression and is Required for the Anti-Depressant Function of Ketamine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305659. [PMID: 38044302 PMCID: PMC10837338 DOI: 10.1002/advs.202305659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Dysfunction of parvalbumin (PV) neurons is closely involved in depression, however, the detailed mechanism remains unclear. Based on the previous finding that multiple endocrine neoplasia type 1 (Protein: Menin; Gene: Men1) mutation (G503D) is associated with a higher risk of depression, a Menin-G503D mouse model is generated that exhibits heritable depressive-like phenotypes and increases PV expression in brain. This study generates and screens a serial of neuronal specific Men1 deletion mice, and found that PV interneuron Men1 deletion mice (PcKO) exhibit increased cortical PV levels and depressive-like behaviors. Restoration of Menin, knockdown PV expression or inhibition of PV neuronal activity in PV neurons all can ameliorate the depressive-like behaviors of PcKO mice. This study next found that ketamine stabilizes Menin by inhibiting protein kinase A (PKA) activity, which mediates the anti-depressant function of ketamine. These results demonstrate a critical role for Menin in depression, and prove that Menin is key to the antidepressant function of ketamine.
Collapse
Affiliation(s)
- Lige Leng
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Kai Zhuang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hui Lin
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Jinjun Ding
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Shangchen Yang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Ziqi Yuan
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Changquan Huang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Guimiao Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Zhenlei Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Mengdan Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Han Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hao Sun
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Huifang Li
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - He Chang
- Department of GeriatricsXiang'an Hospital of Xiamen universityXiamenFujian361102P. R. China
| | - Zhenyi Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Qi Xu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical CollegeNeuroscience CenterChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Tifei Yuan
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Jie Zhang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| |
Collapse
|
6
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
7
|
Shayan TK, Abdolmaleki A, Asadi A, Hassanpour H. Neuroprotective anticonvulsant and anxiolytic effects of octreotide in wistar rats. J Chem Neuroanat 2023; 132:102320. [PMID: 37499770 DOI: 10.1016/j.jchemneu.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Somatostatin interneurons exhibited anti-epileptic activity. As a result, somatostatin agonists appear to be a promising target for antiepileptic drug development (AEDs). In this regard, we investigated the effects of octreotide, a somatostatin analog, on pentylenetetrazol (PTZ)-induced seizures in male Wistar rats. Animals were given octreotide at doses of 50 or 100 µg/kg for seven days. The anxiolytic effects of octreotide were then evaluated using open field and elevated plus-maze tests. Following that, mice were intraperitoneally given a single convulsive dosage of PTZ (60 mg/kg) and then monitored for 30 min for symptoms of seizures. Finally, the antioxidant capacity of brain tissue and histopathological changes in the hippocampus were investigated. Octreotide therapy for seven days at 50 or 100 µg/kg was more effective than diazepam in preventing acute PTZ-induced seizures (P < 0.05). Furthermore, both octreotide dosages revealed substantial anxiolytic effects in open-field and elevated plus-maze tests compared to untreated rats. Nonetheless, octreotide's anxiolytic impact was less effective than diazepam's. On the other hand, octreotide also suppressed neuronal apoptosis and attenuated oxidative stress. Our results suggest that chronic administration of octreotide has anticonvulsant, anxiolytic, and antioxidant activity in the male Wistar rat model.
Collapse
Affiliation(s)
- Tahereh Karimi Shayan
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Hossein Hassanpour
- Department of Basic Science, Faculty of Veterinary Medicine Shahrekord University, Saman Road P.O.115, Shahrekord, Iran
| |
Collapse
|
8
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
10
|
Liu S, Zhang C, Meng C, Wang R, Jiang P, Cai H, Zhao W, Yu Y, Zhu J. Frequency-dependent genetic modulation of neuronal oscillations: a combined transcriptome and resting-state functional MRI study. Cereb Cortex 2022; 32:5132-5144. [PMID: 35106539 DOI: 10.1093/cercor/bhac003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/27/2022] Open
Abstract
Neuronal oscillations within certain frequency bands are assumed to associate with specific neural processes and cognitive functions. To examine this hypothesis, transcriptome-neuroimaging spatial correlation analysis was applied to resting-state functional magnetic resonance imaging data from 793 healthy individuals and gene expression data from the Allen Human Brain Atlas. We found that expression measures of 336 genes were correlated with fractional amplitude of low-frequency fluctuations (fALFF) in the slow-4 band (0.027-0.073 Hz), whereas there were no expression-fALFF correlations for the other frequency bands. Furthermore, functional enrichment analyses showed that these slow-4 fALFF-related genes were mainly enriched for ion channel, synaptic function, and neuronal system as well as many neuropsychiatric disorders. Specific expression analyses demonstrated that these genes were specifically expressed in brain tissue, in neurons, and during the late stage of cortical development. Concurrently, the fALFF-related genes were linked to multiple behavioral domains, including dementia, attention, and emotion. In addition, these genes could construct a protein-protein interaction network supported by 30 hub genes. Our findings of a frequency-dependent genetic modulation of spontaneous neuronal activity may support the concept that neuronal oscillations within different frequency bands capture distinct neurobiological processes from the perspective of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Chun Meng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Department of Radiology, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China.,Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
11
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
12
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
13
|
Ren X, Wang Y, He Z, Liu H, Xue K. Effects of cefuroxime axetil combined with Xingpi Yanger granules on the serum gastrin, motilin, and somatostatin levels in children with upper respiratory tract infection accompanied by diarrhea: results of a randomized trial. Transl Pediatr 2021; 10:2106-2113. [PMID: 34584881 PMCID: PMC8429862 DOI: 10.21037/tp-21-314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The purpose of the study was to investigate the effects of cefuroxime axetil combined with Xingpi Yanger granules on the treatment of upper respiratory tract infection accompanied by diarrhea and on serum gastrin (GAS), motilin (MOT), and somatostatin (SS) levels in children. METHODS In total, 124 children with upper respiratory tract infection accompanied by diarrhea admitted to the department of pediatrics in our hospital from May 2019 to May 2020 were selected and divided into a study group (n=62) and a reference group (n=62), according to admission number. The reference group children received routine treatment, while the children in the study group were treated with cefuroxime axetil combined with Xingpi Yanger granules. After treatment, each clinical index of the children in both groups was detected to evaluate the clinical efficacy of the different treatment methods. RESULTS There were no significant differences in gender ratio, average age, mean body temperature, mean duration of diarrhea, average weight, or place of residence between the 2 groups (P>0.05); the total clinical effective rate after treatment in the study group was significantly higher than that in the reference group (P<0.05); the dehydration correction time, antipyretic time, antidiarrheal time, and total treatment time in the study group were all significantly lower than those in the reference group (P<0.001); the serum GAS and MOT levels at T1, T2, and T3 in the study group were significantly lower than those in the reference group (P<0.001), whereas the SS levels at T1, T2, and T3 in the study group were significantly higher than those in the reference group (P<0.001); and the incidence of adverse reactions of the children in the study group was significantly lower than that in the reference group (P<0.05). CONCLUSIONS Cefuroxime axetil combined with Xingpi Yanger granules can significantly lower serum GAS, MOT, and SS levels and shorten treatment time in children with upper respiratory tract infection accompanied by diarrhea, with significant clinical efficacy and high safety, and is thus worthy of application and promotion. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100049234.
Collapse
Affiliation(s)
- Xiaohong Ren
- The Fifth Department of Pediatrics, Baoji Maternal and Child Health Hospital, Baoji, China
| | - Yuying Wang
- The Second Department of Pediatrics, Baoji Maternal and Child Health Hospital, Baoji, China
| | - Zimeng He
- Qilu Medical College of Shandong University, Jinan, China
| | - Hongli Liu
- Department of Pediatrics, Northwest Women and Children Hospital, Xian, China
| | - Kun Xue
- The Fifth Department of Pediatrics, Baoji Maternal and Child Health Hospital, Baoji, China
| |
Collapse
|
14
|
Solomon E, Davis-Anderson K, Hovde B, Micheva-Viteva S, Harris JF, Twary S, Iyer R. Global transcriptome profile of the developmental principles of in vitro iPSC-to-motor neuron differentiation. BMC Mol Cell Biol 2021; 22:13. [PMID: 33602141 PMCID: PMC7893891 DOI: 10.1186/s12860-021-00343-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00343-z.
Collapse
Affiliation(s)
- Emilia Solomon
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | - Blake Hovde
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | | | - Scott Twary
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Rashi Iyer
- Los Alamos National Laboratory, Analytics, Intelligence, and Technology Division, Los Alamos, NM, USA.
| |
Collapse
|
15
|
Kwak JH, Kim S, Yu NK, Seo H, Choi JE, Kim JI, Choi DI, Kim MW, Kwak C, Lee K, Kaang BK. Loss of the neuronal genome organizer and transcription factor CTCF induces neuronal death and reactive gliosis in the anterior cingulate cortex. GENES BRAIN AND BEHAVIOR 2020; 20:e12701. [PMID: 32909350 DOI: 10.1111/gbb.12701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
CCCTC-binding factor (CTCF) is a genome organizer that regulates gene expression through transcription and chromatin structure regulation. CTCF also plays an important role during the developmental and adult stages. Cell-specific CTCF deletion studies have shown that a reduction in CTCF expression leads to the development of distinct clinical features and cognitive disorders. Therefore, we knocked out Ctcf (CTCF cKO) in the excitatory neurons of the forebrain in a Camk2a-Cre mouse strain to examine the role of CTCF in cell death and gliosis in the cortex. CTCF cKO mice were viable, but they demonstrated an age-dependent increase in reactive gliosis of astrocytes and microglia in the anterior cingulate cortex (ACC) from 16 weeks of age prior to neuronal loss observed at over 20 weeks of age. Consistent with these data, qRT-PCR analysis of the CTCF cKO ACC revealed changes in the expression of inflammation-related genes (Hspa1a, Prokr2 and Itga8) linked to gliosis and neuronal death. Our results suggest that prolonged Ctcf gene deficiency in excitatory neurons results in neuronal cell death and gliosis, possibly through functional changes in inflammation-related genes.
Collapse
Affiliation(s)
- Ji-Hye Kwak
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Somi Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Nam-Kyung Yu
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Hyunhyo Seo
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Il Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Dong Il Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Myung Won Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Chuljung Kwak
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|