1
|
Yu M, Rao B, Cao Y, Gao L, Li H, Song X, Xu H. Consistency and stability of individualized cortical functional networks parcellation at 3.0 T and 5.0 T MRI. Front Neurosci 2024; 18:1425032. [PMID: 39224574 PMCID: PMC11366602 DOI: 10.3389/fnins.2024.1425032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Individualized cortical functional networks parcellation has been reported as highly reproducible at 3.0 T. However, in view of the complexity of cortical networks and the greatly increased sensitivity provided by ultra-high field 5.0 T MRI, the parcellation consistency between different magnetic fields is unclear. Purpose To explore the consistency and stability of individualized cortical functional networks parcellation at 3.0 T and 5.0 T MRI based on spatial and functional connectivity analysis. Materials and methods Thirty healthy young participants were enrolled. Each subject underwent resting-state fMRI at both 3.0 T and 5.0 T in a random order in less than 48 h. The individualized cortical functional networks was parcellated for each subject using a previously proposed iteration algorithm. Dice coefficient was used to evaluate the spatial consistency of parcellated networks between 3.0 T and 5.0 T. Functional connectivity (FC) consistency was evaluated using the Euclidian distance and Graph-theory metrics. Results A functional cortical atlas consisting of 18 networks was individually parcellated at 3.0 T and 5.0 T. The spatial consistency of these networks at 3.0 T and 5.0 T for the same subject was significantly higher than that of inter-individuals. The FC between the 18 networks acquired at 3.0 T and 5.0 T were highly consistent for the same subject. Positive cross-subject correlations in Graph-theory metrics were found between 3.0 T and 5.0 T. Conclusion Individualized cortical functional networks at 3.0 T and 5.0 T showed consistent and stable parcellation results both spatially and functionally. The 5.0 T MR provides finer functional sub-network characteristics than that of 3.0 T.
Collapse
Affiliation(s)
- Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Cao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Song
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Chung CF, Dugré JR, Potvin S. Dysconnectivity of the Nucleus Accumbens and Amygdala in Youths with Thought Problems: A Dimensional Approach. Brain Connect 2024; 14:226-238. [PMID: 38526373 DOI: 10.1089/brain.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/26/2024] Open
Abstract
Background: Youths with thought problems (TP) are at risk to develop psychosis and obsessive-compulsive disorder (OCD). Yet, the pathophysiological mechanisms underpinning TP are still unclear. Functional magnetic resonance imaging (fMRI) studies have shown that striatal and limbic alterations are associated with psychosis-like and obsessive-like symptoms in individuals at clinical risk for psychosis, schizophrenia, and OCD. More specifically, nucleus accumbens (NAcc) and amygdala are mainly involved in these associations. The current study aims to investigate the neural correlates of TP in youth populations using a dimensional approach and explore potential cognitive functions and neurotransmitters associated with it. Methods: Seed-to-voxels functional connectivity analyses using NAcc and amygdala as regions-of-interest were conducted with resting-state fMRI data obtained from 1360 young individuals, and potential confounders related to TP such as anxiety and cognitive functions were included as covariates in multiple regression analyses. Replicability was tested in using an adult cohort. In addition, functional decoding and neurochemical correlation analyses were performed to identify the associated cognitive functions and neurotransmitters. Results: The altered functional connectivities between the right NAcc and posterior parahippocampal gyrus, between the right amygdala and lateral prefrontal cortex, and between the left amygdala and the secondary visual area were the best predictors of TP in multiple regression model. These functional connections are mainly involved in social cognition and reward processing. Conclusions: The results show that alterations in the functional connectivity of the NAcc and the amygdala in neural pathways involved in social cognition and reward processing are associated with severity of TP in youths.
Collapse
Affiliation(s)
- Chen-Fang Chung
- Centre de Recherche de l'Institut, Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addiction, Faculty of medicine, University of Montreal, Montreal, Canada
| | - Jules R Dugré
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Potvin
- Centre de Recherche de l'Institut, Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addiction, Faculty of medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
3
|
Jia K, Frangou P, Karlaftis VM, Ziminski JJ, Giorgio J, Rideaux R, Zamboni E, Hodgson V, Emir U, Kourtzi Z. Neurochemical and functional interactions for improved perceptual decisions through training. J Neurophysiol 2022; 127:900-912. [PMID: 35235415 PMCID: PMC8977131 DOI: 10.1152/jn.00308.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Learning and experience are known to improve our ability to make perceptual decisions. Yet, our understanding of the brain mechanisms that support improved perceptual decisions through training remains limited. Here, we test the neurochemical and functional interactions that support learning for perceptual decisions in the context of an orientation identification task. Using magnetic resonance spectroscopy (MRS), we measure neurotransmitters (i.e., glutamate, GABA) that are known to be involved in visual processing and learning in sensory [early visual cortex (EV)] and decision-related [dorsolateral prefrontal cortex (DLPFC)] brain regions. Using resting-state functional magnetic resonance imaging (rs-fMRI), we test for functional interactions between these regions that relate to decision processes. We demonstrate that training improves perceptual judgments (i.e., orientation identification), as indicated by faster rates of evidence accumulation after training. These learning-dependent changes in decision processes relate to lower EV glutamate levels and EV-DLPFC connectivity, suggesting that glutamatergic excitation and functional interactions between visual and dorsolateral prefrontal cortex facilitate perceptual decisions. Further, anodal transcranial direct current stimulation (tDCS) in EV impairs learning, suggesting a direct link between visual cortex excitation and perceptual decisions. Our findings advance our understanding of the role of learning in perceptual decision making, suggesting that glutamatergic excitation for efficient sensory processing and functional interactions between sensory and decision-related regions support improved perceptual decisions.NEW & NOTEWORTHY Combining multimodal brain imaging [magnetic resonance spectroscopy (MRS), functional connectivity] with interventions [transcranial direct current stimulation (tDCS)], we demonstrate that glutamatergic excitation and functional interactions between sensory (visual) and decision-related (dorsolateral prefrontal cortex) areas support our ability to optimize perceptual decisions through training.
Collapse
Affiliation(s)
- Ke Jia
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Polytimi Frangou
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis M Karlaftis
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph J Ziminski
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Giorgio
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Reuben Rideaux
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Zamboni
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Hodgson
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, Indiana
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Busler JN, Coello E, Liao H, Taylor J, Zhao W, Holsen LM, Lin AP, Mahon PB. Perceived Stress, Cortical GABA, and Functional Connectivity Correlates: A Hypothesis-Generating Preliminary Study. Front Psychiatry 2022; 13:802449. [PMID: 35350427 PMCID: PMC8957825 DOI: 10.3389/fpsyt.2022.802449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposures and dysregulated responses to stress are implicated in psychiatric disorders of mood, anxiety, and cognition. Perceived stress, an individual's appraisal of experienced stress and ability for coping, relates to dysregulated functioning in resting state brain networks. Alterations in GABAergic function may underlie perceived stress-related functional dysregulation in resting state networks but this has not yet been explored. Therefore, the current study examined the association of perceived stress, via the Perceived Stress Scale (PSS), with prefrontal GABA levels and corresponding resting state functional connectivity (RSFC) alterations. Twelve women and five men, ages 35-61, participated. MR spectroscopy was used to measure brain GABA levels in the anterior cingulate cortex (ACC), left dorsolateral prefrontal cortex (DLPFC), and ventromedial prefrontal cortex (VMPFC). Resting state functional scans acquired at 3 Tesla were used to measure RSFC within and between the default mode (DMN), salience (SN), and central executive networks (CEN), hippocampus and amygdala. We observed significant negative correlations between total PSS scores and left DLPFC GABA levels (r = -0.62, p = 0.023). However, PSS scores were not significantly correlated with RSFC measures (all p > 0.148). These preliminary results support a relationship between perceived stress and GABAergic functioning in DLPFC, a core node of the CEN, an intrinsic network thought to underlie goal-directed attentional processes. Our findings extend previous work suggesting that functioning in the CEN is related to perceived stress and may inform treatment strategies to improve outcomes in stress-related conditions.
Collapse
Affiliation(s)
- Jessica N. Busler
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Eduardo Coello
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Huijun Liao
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Jacob Taylor
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Wufan Zhao
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Laura M. Holsen
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Alexander P. Lin
- Harvard Medical School, Boston, MA, United States
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States
| | - Pamela B. Mahon
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Li M, Danyeli LV, Colic L, Wagner G, Smesny S, Chand T, Di X, Biswal BB, Kaufmann J, Reichenbach JR, Speck O, Walter M, Sen ZD. The differential association between local neurotransmitter levels and whole-brain resting-state functional connectivity in two distinct cingulate cortex subregions. Hum Brain Mapp 2022; 43:2833-2844. [PMID: 35234321 PMCID: PMC9120566 DOI: 10.1002/hbm.25819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen R Reichenbach
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany.,Michael Stifel Center Jena for Data-Driven & Simulation Science (MSCJ), Jena, Germany.,Center of Medical Optics and Photonics (CeMOP), Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Wang R, Hu B, Sun C, Geng D, Lin J, Li Y. Metabolic abnormality in acute stroke-like lesion and its relationship with focal cerebral blood flow in patients with MELAS: Evidence from proton MR spectroscopy and arterial spin labeling. Mitochondrion 2021; 59:276-282. [PMID: 34186261 DOI: 10.1016/j.mito.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022]
Abstract
Our purpose is to detect the metabolic alterations in acute stroke-like lesions (SLLs) and further investigate the correlations between metabolic concentrations and focal cerebral blood flow in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) using proton MR spectroscopy (1H-MRS) and arterial spin labeling (ASL). A total of 23 patients with MELAS at acute stage of stroke-like episodes (SLEs) and 20 normal controls (NC) were recruited in this study, respectively. All subjects underwent conventional MRI and1H-MRS. In addition, ASL was performed in each patient. The measurements of creatine (Cr), choline (Cho), N-acetyl aspartate (NAA), lactate (Lac), glutamine/glutamate (Glx) levels and the ratios of Cho/Cr, NAA/Cr, Lac/Cr and Glx/Cr in acute SLLs for MELAS patients and left parietal and occipital lobes for NC were measured using LC-model software. Furthermore, in MELAS group, the associations between relative cerebral blood flow (rCBF) and metabolite concentrations in acute SLLs were also assessed. In MELAS group, acute SLLs were identified with metabolic abnormalities and increased rCBF. Specifically, compared with controls, MELAS patients exhibited significantly higher Lac, Cho levels and Lac/Cr, Cho/Cr ratios, and lower NAA, Glx levels and NAA/Cr and Glx/Cr ratios. Moreover, for MELAS patients, Lac concentration in acute SLLs was positively correlated with focal rCBF. This study exhibited the neural injury with increasing lactate and cerebral blood flow in the acute SLEs. It might shed light on the underlying biochemical mechanism of mitochondrial cytopathy and angiopathy in MELAS.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Bin Hu
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Chong Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Shanghai Institution of Medical Imaging, Shanghai 200032, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuxin Li
- Department of Radiology, HuaShan Hospital, Fudan University, Shanghai 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China.
| |
Collapse
|