1
|
Hooks K, Kiani K, Fu Q. Cortical neural activity during responses to mechanical perturbation: Effects of hand preference and hand used. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625431. [PMID: 39651226 PMCID: PMC11623621 DOI: 10.1101/2024.11.26.625431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Handedness, as measured by self-reported hand preference, is an important feature of human behavioral lateralization that has often been associated with hemispheric specialization. We examined the extent to which hand preference and whether the dominant hand is used or not influence the motor and neural response during voluntary unimanual corrective actions. The experimental task involved controlling a robotic manipulandum to move a cursor from a center start point to a target presented above or below the start. In some trials, a mechanical perturbation of the hand was randomly applied by the robot either consistent or against the target direction, while electroencephalography (EEG) was recorded. Twelve left-handers and ten right-handers completed the experiment. Left-handed individuals had a greater negative peak in the frontal event-related potential (ERP) than right-handed participants during the initial response phase (N150) than right-handed individuals. Furthermore, left-handed individuals showed more symmetrical ERP distributions between two hemispheres than right-handed individuals in the frontal and parietal regions during the late voluntary response phase (P390). To the best of our knowledge, this is the first evidence that demonstrates the differences in the cortical control of voluntary corrective actions between left-handers and right-handers.
Collapse
|
2
|
Blauch NM, Plaut DC, Vin R, Behrmann M. Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618268. [PMID: 39464049 PMCID: PMC11507683 DOI: 10.1101/2024.10.15.618268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The ventral temporal cortex (VTC) of the human cerebrum is critically engaged in computations related to high-level vision. One intriguing aspect of this region is its asymmetric organization and functional lateralization. Notably, in the VTC, neural responses to words are stronger in the left hemisphere, whereas neural responses to faces are stronger in the right hemisphere. Converging evidence has suggested that left-lateralized word responses emerge to couple efficiently with left-lateralized frontotemporal language regions, but evidence is more mixed regarding the sources of the right-lateralization for face perception. Here, we use individual differences as a tool to adjudicate between three theories of VTC organization arising from: 1) local competition between words and faces, 2) local competition between faces and other categories, 3) long-range coupling with VTC and frontotemporal areas subject to their own local competition. First, in an in-house functional MRI experiment, we demonstrated that individual differences in laterality are both substantial and reliable within a right-handed population of young adults. We found no (anti-)correlation in the laterality of word and face selectivity relative to object responses, and a positive correlation when using selectivity relative to a fixation baseline, challenging ideas of local competition between words and faces. We next examined broader local competition with faces using the large-scale Human Connectome Project (HCP) dataset. Face and tool laterality were significantly anti-correlated, while face and body laterality were positively correlated, consistent with the idea that generic local representational competition and cooperation may shape face lateralization. Last, we assessed the role of long-range coupling in the development of VTC laterality. Within our in-house experiment, substantial correlation was evident between VTC text laterality and several other nodes of a distributed text-processing circuit. In the HCP data, VTC face laterality was both negatively correlated with frontotemporal language laterality, and positively correlated with social perception laterality in the same areas, consistent with a long-range coupling effect between face and social processing representations, driven by local competition between language and social processing. We conclude that both local and long-range interactions shape the heterogeneous hemispheric specializations in high-level visual cortex.
Collapse
Affiliation(s)
- Nicholas M Blauch
- Program in Neural Computation, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
- Department of Psychology, Harvard University
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
| | - Raina Vin
- Department of Psychology, Carnegie Mellon University
- Neurosciences Graduate Program, Yale University
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
- Department of Opthamology, University of Pittsburgh
| |
Collapse
|
3
|
Liu X, He D, Zhu M, Li Y, Lin L, Cai Q. Hemispheric dominance in reading system alters contribution to face processing lateralization across development. Dev Cogn Neurosci 2024; 69:101418. [PMID: 39059053 PMCID: PMC11331717 DOI: 10.1016/j.dcn.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Face processing dominates the right hemisphere. This lateralization can be affected by co-lateralization within the same system and influence between different systems, such as neural competition from reading acquisition. Yet, how the relationship pattern changes through development remains unknown. This study examined the lateralization of core face processing and word processing in different age groups. By comparing fMRI data from 36 school-aged children and 40 young adults, we investigated whether there are age and regional effects on lateralization, and how relationships between lateralization within and between systems change across development. Our results showed significant right hemispheric lateralization in the core face system and left hemispheric lateralization in reading-related areas for both age groups when viewing faces and texts passively. While all participants showed stronger lateralization in brain regions of higher functional hierarchy when viewing faces, only adults exhibited this lateralization when viewing texts. In both age cohorts, there was intra-system co-lateralization for face processing, whereas an inter-system relationship was only found in adults. Specifically, functional lateralization of Broca's area during reading negatively predicted functional asymmetry in the FFA during face perception. This study initially provides neuroimaging evidence for the reading-induced neural competition theory from a maturational perspective in Chinese cohorts.
Collapse
Affiliation(s)
- Xinyang Liu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Danni He
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yinghui Li
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China; School of Life Science Department, East China Normal University, Shanghai 200062, China.
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; Shanghai Center for Brain Science and Brain-Inspired Technology, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University, Shanghai, China.
| |
Collapse
|
4
|
Melcher D, Alaberkyan A, Anastasaki C, Liu X, Deodato M, Marsicano G, Almeida D. An early effect of the parafoveal preview on post-saccadic processing of English words. Atten Percept Psychophys 2024:10.3758/s13414-024-02916-4. [PMID: 38956003 DOI: 10.3758/s13414-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
A key aspect of efficient visual processing is to use current and previous information to make predictions about what we will see next. In natural viewing, and when looking at words, there is typically an indication of forthcoming visual information from extrafoveal areas of the visual field before we make an eye movement to an object or word of interest. This "preview effect" has been studied for many years in the word reading literature and, more recently, in object perception. Here, we integrated methods from word recognition and object perception to investigate the timing of the preview on neural measures of word recognition. Through a combined use of EEG and eye-tracking, a group of multilingual participants took part in a gaze-contingent, single-shot saccade experiment in which words appeared in their parafoveal visual field. In valid preview trials, the same word was presented during the preview and after the saccade, while in the invalid condition, the saccade target was a number string that turned into a word during the saccade. As hypothesized, the valid preview greatly reduced the fixation-related evoked response. Interestingly, multivariate decoding analyses revealed much earlier preview effects than previously reported for words, and individual decoding performance correlated with participant reading scores. These results demonstrate that a parafoveal preview can influence relatively early aspects of post-saccadic word processing and help to resolve some discrepancies between the word and object literatures.
Collapse
Affiliation(s)
- David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ani Alaberkyan
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Chrysi Anastasaki
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Xiaoyi Liu
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Psychology, Princeton University, Washington Rd, Princeton, NJ, 08540, USA
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Gianluca Marsicano
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40121, Bologna, Italy
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Via Rasi e Spinelli 176, 47023, Cesena, Italy
| | - Diogo Almeida
- Psychology Program, Division of Science, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Kosakowski HL, Cohen MA, Herrera L, Nichoson I, Kanwisher N, Saxe R. Cortical Face-Selective Responses Emerge Early in Human Infancy. eNeuro 2024; 11:ENEURO.0117-24.2024. [PMID: 38871455 PMCID: PMC11258539 DOI: 10.1523/eneuro.0117-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
In human adults, multiple cortical regions respond robustly to faces, including the occipital face area (OFA) and fusiform face area (FFA), implicated in face perception, and the superior temporal sulcus (STS) and medial prefrontal cortex (MPFC), implicated in higher-level social functions. When in development, does face selectivity arise in each of these regions? Here, we combined two awake infant functional magnetic resonance imaging (fMRI) datasets to create a sample size twice the size of previous reports (n = 65 infants; 2.6-9.6 months). Infants watched movies of faces, bodies, objects, and scenes, while fMRI data were collected. Despite variable amounts of data from each infant, individual subject whole-brain activation maps revealed responses to faces compared to nonface visual categories in the approximate location of OFA, FFA, STS, and MPFC. To determine the strength and nature of face selectivity in these regions, we used cross-validated functional region of interest analyses. Across this larger sample size, face responses in OFA, FFA, STS, and MPFC were significantly greater than responses to bodies, objects, and scenes. Even the youngest infants (2-5 months) showed significantly face-selective responses in FFA, STS, and MPFC, but not OFA. These results demonstrate that face selectivity is present in multiple cortical regions within months of birth, providing powerful constraints on theories of cortical development.
Collapse
Affiliation(s)
- Heather L Kosakowski
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Michael A Cohen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Psychology and Program in Neuroscience, Amherst College, Amherst, Massachusetts 01002
| | - Lyneé Herrera
- Psychology Department, University of Denver, Denver, Colorado 80210
| | - Isabel Nichoson
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
7
|
Volfart A, Rossion B. The neuropsychological evaluation of face identity recognition. Neuropsychologia 2024; 198:108865. [PMID: 38522782 DOI: 10.1016/j.neuropsychologia.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Facial identity recognition (FIR) is arguably the ultimate form of recognition for the adult human brain. Even if the term prosopagnosia is reserved for exceptionally rare brain-damaged cases with a category-specific abrupt loss of FIR at adulthood, subjective and objective impairments or difficulties of FIR are common in the neuropsychological population. Here we provide a critical overview of the evaluation of FIR both for clinicians and researchers in neuropsychology. FIR impairments occur following many causes that should be identified objectively by both general and specific, behavioral and neural examinations. We refute the commonly used dissociation between perceptual and memory deficits/tests for FIR, since even a task involving the discrimination of unfamiliar face images presented side-by-side relies on cortical memories of faces in the right-lateralized ventral occipito-temporal cortex. Another frequently encountered confusion is between specific deficits of the FIR function and a more general impairment of semantic memory (of people), the latter being most often encountered following anterior temporal lobe damage. Many computerized tests aimed at evaluating FIR have appeared over the last two decades, as reviewed here. However, despite undeniable strengths, they often suffer from ecological limitations, difficulties of instruction, as well as a lack of consideration for processing speed and qualitative information. Taking into account these issues, a recently developed behavioral test with natural images manipulating face familiarity, stimulus inversion, and correct response times as a key variable appears promising. The measurement of electroencephalographic (EEG) activity in the frequency domain from fast periodic visual stimulation also appears as a particularly promising tool to complete and enhance the neuropsychological assessment of FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Australia.
| | - Bruno Rossion
- Centre for Biomedical Technologies, Queensland University of Technology, Australia; Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France.
| |
Collapse
|
8
|
Salera C, Boccia M, Pecchinenda A. Segregation of Neural Circuits Involved in Social Gaze and Non-Social Arrow Cues: Evidence from an Activation Likelihood Estimation Meta-Analysis. Neuropsychol Rev 2024; 34:496-510. [PMID: 37067764 PMCID: PMC11166804 DOI: 10.1007/s11065-023-09593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023]
Abstract
Orienting attention by social gaze cues shares some characteristics with orienting attention by non-social arrow cues, but it is unclear whether they rely on similar neural mechanisms. The present ALE-meta-analysis assessed the pattern of brain activation reported in 40 single experiments (18 with arrows, 22 with gaze), with a total number of 806 participants. Our findings show that the network for orienting attention by social gaze and by non-social arrow cues is in part functionally segregated. Orienting by both types of cues relies on the activity of brain regions involved in endogenous attention (the superior frontal gyrus). Importantly, only orienting by gaze cues was also associated with the activity of brain regions involved in exogenous attention (medial frontal gyrus), processing gaze, and mental state attribution (superior temporal sulcus, temporoparietal junction).
Collapse
Affiliation(s)
- Claudia Salera
- Ph.D. Program in Behavioural Neuroscience, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Rome, Italy
| | - Anna Pecchinenda
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Santa Lucia, Rome, Italy.
| |
Collapse
|
9
|
Funayama M, Hojo T, Nakagawa Y, Kurose S, Koreki A. Investigating the Link Between Subjective Depth Perception Deficits and Objective Stereoscopic Vision Deficits in Individuals With Acquired Brain Injury. Cogn Behav Neurol 2024; 37:82-95. [PMID: 38682873 DOI: 10.1097/wnn.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Individuals with acquired brain injury have reported subjective complaints of depth perception deficits, but few have undergone objective assessments to confirm these deficits. As a result, the literature currently lacks reports detailing the correlation between subjective depth perception deficits and objective stereoscopic vision deficits in individuals with acquired brain injury, particularly those cases that are characterized by a clearly defined lesion. To investigate this relationship, we recruited three individuals with acquired brain injury who experienced depth perception deficits and related difficulties in their daily lives. We had them take neurologic, ophthalmological, and neuropsychological examinations. We also had them take two types of stereoscopic vision tests: a Howard-Dolman-type stereoscopic vision test and the Topcon New Objective Stereo Test. Then, we compared the results with those of two control groups: a group with damage to the right hemisphere of the brain and a group of healthy controls. Performance on the two stereoscopic vision tests was severely impaired in the three patients. One of the patients also presented with cerebral diplopia. We identified the potential neural basis of these deficits in the cuneus and the posterior section of the superior parietal lobule, which play a role in vergence fusion and are located in the caudal region of the dorso-dorsal visual pathway, which is known to be crucial not only for visual spatial perception, but also for reaching, grasping, and making hand postures in the further course of that pathway.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Rehabilitation, Edogawa Hospital, Tokyo, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tomohito Hojo
- Department of Rehabilitation, Edogawa Hospital, Tokyo, Japan
- Department of Rehabilitation, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | | | - Shin Kurose
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Akihiro Koreki
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| |
Collapse
|
10
|
Kubota E, Grill-Spector K, Nordt M. Rethinking cortical recycling in ventral temporal cortex. Trends Cogn Sci 2024; 28:8-17. [PMID: 37858388 PMCID: PMC10841108 DOI: 10.1016/j.tics.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
High-level visual areas in ventral temporal cortex (VTC) support recognition of important categories, such as faces and words. Word-selective regions are left lateralized and emerge at the onset of reading instruction. Face-selective regions are right lateralized and have been documented in infancy. Prevailing theories suggest that face-selective regions become right lateralized due to competition with word-selective regions in the left hemisphere. However, recent longitudinal studies examining face- and word-selective responses in childhood do not provide support for this theory. Instead, there is evidence that word representations recycle cortex previously involved in processing other stimuli, such as limbs. These findings call for more longitudinal investigations of cortical recycling and a new era of work that links visual experience and behavior with neural responses.
Collapse
Affiliation(s)
- Emily Kubota
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Marisa Nordt
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Juelich, Juelich, Germany
| |
Collapse
|
11
|
Liu L, Liu D, Guo T, Schwieter JW, Liu H. The right superior temporal gyrus plays a role in semantic-rule learning: Evidence supporting a reinforcement learning model. Neuroimage 2023; 282:120393. [PMID: 37820861 DOI: 10.1016/j.neuroimage.2023.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
In real-life communication, individuals use language that carries evident rewarding and punishing elements, such as praise and criticism. A common trend is to seek more praise while avoiding criticism. Furthermore, semantics is crucial for conveying information, but such semantic access to native and foreign languages is subtly distinct. To investigate how rule learning occurs in different languages and to highlight the importance of semantics in this process, we investigated both verbal and non-verbal rule learning in first (L1) and second (L2) languages using a reinforcement learning framework, including a semantic rule and a color rule. Our computational modeling on behavioral and brain imaging data revealed that individuals may be more motivated to learn and adhere to rules in an L1 compared to L2, with greater striatum activation during the outcome phase in the L1. Additionally, results on the learning rates and inverse temperature in the two rule learning tasks showed that individuals tend to be conservative and are reluctant to change their judgments regarding rule learning of semantic information. Moreover, the greater the prediction errors, the greater activation of the right superior temporal gyrus in the semantic-rule learning condition, demonstrating that such learning has differential neural correlates than symbolic rule learning. Overall, the findings provide insight into the neural mechanisms underlying rule learning in different languages, and indicate that rule learning involving verbal semantics is not a general symbolic learning that resembles a conditioned stimulus-response, but rather has its own specific characteristics.
Collapse
Affiliation(s)
- Linyan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Dongxue Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China
| | - John W Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ Wilfrid Laurier University, Canada; Department of Linguistics and Languages, McMaster University, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, China.
| |
Collapse
|
12
|
Manippa V, Palmisano A, Ventura M, Rivolta D. The Neural Correlates of Developmental Prosopagnosia: Twenty-Five Years on. Brain Sci 2023; 13:1399. [PMID: 37891769 PMCID: PMC10605188 DOI: 10.3390/brainsci13101399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Faces play a crucial role in social interactions. Developmental prosopagnosia (DP) refers to the lifelong difficulty in recognizing faces despite the absence of obvious signs of brain lesions. In recent decades, the neural substrate of this condition has been extensively investigated. While early neuroimaging studies did not reveal significant functional and structural abnormalities in the brains of individuals with developmental prosopagnosia (DPs), recent evidence identifies abnormalities at multiple levels within DPs' face-processing networks. The current work aims to provide an overview of the convergent and contrasting findings by examining twenty-five years of neuroimaging literature on the anatomo-functional correlates of DP. We included 55 original papers, including 63 studies that compared the brain structure (MRI) and activity (fMRI, EEG, MEG) of healthy control participants and DPs. Despite variations in methods, procedures, outcomes, sample selection, and study design, this scoping review suggests that morphological, functional, and electrophysiological features characterize DPs' brains, primarily within the ventral visual stream. Particularly, the functional and anatomical connectivity between the Fusiform Face Area and the other face-sensitive regions seems strongly impaired. The cognitive and clinical implications as well as the limitations of these findings are discussed in light of the available knowledge and challenges in the context of DP.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Martina Ventura
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney 2145, Australia
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy; (V.M.); (A.P.); (M.V.)
| |
Collapse
|
13
|
Kotlewska I, Panek B, Nowicka A, Asanowicz D. Posterior theta activity reveals an early signal of self-face recognition. Sci Rep 2023; 13:13823. [PMID: 37620563 PMCID: PMC10449829 DOI: 10.1038/s41598-023-41071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Self-related visual information, especially one's own face and name, are processed in a specific, prioritized way. However, the spatio-temporal brain dynamics of self-prioritization have remained elusive. Moreover, it has been unclear whether this prioritization is an effect of enhancement and amplification, or rather a facilitating automatization of processing self-referential information. In this EEG study, 25 married women (who changed their surnames after marriage, so that their past and present surnames could be used as stimuli) performed a detection task with faces and names from five categories: self, self from the past, friend, famous, and unknown person. The aim was to determine the temporal and spatial characteristics of early electrophysiological markers of self-referential processing. We report results of event-related component (ERP) and time-frequency analyses. In the ERPs, the earliest self-relevance effect was displayed only 300 ms after stimulus onset in the midfrontal N2, and later in the parietal P3b, independently of the stimulus type. No self-relevance effect was found on the N170 component. However, local theta power at the occipito-temporal (visual) areas and inter-regional theta phase coherence between the visual and midfrontal areas showed that self-relevance differentiation of faces began already about 100-300 ms after stimulus onset. No such early effects were found for names. The results are discussed in terms of the time-course, functional localization, stimulus-specificity, and automatization of self-prioritization.
Collapse
Affiliation(s)
- Ilona Kotlewska
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland.
| | - Bartłomiej Panek
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| | - Anna Nowicka
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland
| | - Dariusz Asanowicz
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Krakow, Poland
| |
Collapse
|
14
|
Dȩbska A, Wójcik M, Chyl K, Dziȩgiel-Fivet G, Jednoróg K. Beyond the Visual Word Form Area - a cognitive characterization of the left ventral occipitotemporal cortex. Front Hum Neurosci 2023; 17:1199366. [PMID: 37576470 PMCID: PMC10416454 DOI: 10.3389/fnhum.2023.1199366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The left ventral occipitotemporal cortex has been traditionally viewed as a pathway for visual object recognition including written letters and words. Its crucial role in reading was strengthened by the studies on the functionally localized "Visual Word Form Area" responsible for processing word-like information. However, in the past 20 years, empirical studies have challenged the assumptions of this brain region as processing exclusively visual or even orthographic stimuli. In this review, we aimed to present the development of understanding of the left ventral occipitotemporal cortex from the visually based letter area to the modality-independent symbolic language related region. We discuss theoretical and empirical research that includes orthographic, phonological, and semantic properties of language. Existing results showed that involvement of the left ventral occipitotemporal cortex is not limited to unimodal activity but also includes multimodal processes. The idea of the integrative nature of this region is supported by the broad functional and structural connectivity with language-related and attentional brain networks. We conclude that although the function of the area is not yet fully understood in human cognition, its role goes beyond visual word form processing. The left ventral occipitotemporal cortex seems to be crucial for combining higher-level language information with abstract forms that convey meaning independently of modality.
Collapse
Affiliation(s)
- Agnieszka Dȩbska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Wójcik
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- The Educational Research Institute, Warsaw, Poland
| | - Gabriela Dziȩgiel-Fivet
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Zhang H, Feng Z, Zang Y, Zhang Y. Hemispheric lateralization and top-down regulation of the prefrontal cortex on sequential memory of familiar faces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082719 DOI: 10.1109/embc40787.2023.10340231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Working memory of familiar faces involves the coordination of multiple brain regions in sensory processing, attention and memory, and relies on robust representations in long-term memory. It is not clear how prior knowledge interacts with bottom-up visual processing at different phases of working memory. In this study, we collected functional magnetic resonance imaging (fMRI) data of 40 right-handed participants during the sequential memory task and recognition task of familiar celebrity faces. We observed strong left-lateralized neural activity in the language-processing areas and right-lateralized activity for visual processing in the dorsal stream. Yet, no obvious hemispheric lateralization was found in either face-selective (fusiform gyrus) or memory-specific (hippocampus) areas. Besides, the left lateralization of prefrontal activity and its task-evoked regulation on visual areas boost face memory performance, i.e., faster reaction and higher accuracy. These findings suggest that the top-down prefrontal regulation plays a critical role in the successful memory of familiar faces. Our study provides neural substrates underlying how familiarity boosts face memory by endorsing prior/common knowledge through left-lateralized language network.
Collapse
|
16
|
Gainotti G, Quaranta D, Luzzi S. Apperceptive and Associative Forms of Phonagnosia. Curr Neurol Neurosci Rep 2023; 23:327-333. [PMID: 37133717 PMCID: PMC10257619 DOI: 10.1007/s11910-023-01271-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE OF REVIEW Pronagnosia is a rare acquired or developmental pathological condition that consists of a selective difficulty to recognize familiar people by their voices. It can be distinguished into two different categories: apperceptive phonagnosia, which denotes a purely perceptual form of voice recognition disorder; and associative phonagnosia, in which patients have no perceptual defects, but cannot evaluate if the voice of a known person is or not familiar. The neural substrate of these two forms of voice recognition is still controversial, but it could concern different components of the core temporal voice areas and of extratemporal voice processing areas. This article reviews recent research on the neuropsychological and anatomo-clinical aspects of this condition. RECENT FINDINGS Data obtained in group studies or single case reports of phonagnosic patients suggest that apperceptive phonagnosia might be due to disruption of the core temporal voice areas, bilaterally located in the posterior parts of the superior temporal gyrus, whereas associative phonagnosia might result from impaired access to structures where voice representations are stored, due to a disconnection of these areas from structures of the voice extended system. Although these results must be confirmed by further investigations, they represent an important step toward understanding the nature and neural substrate of apperceptive and associative forms of phonagnosia.
Collapse
Affiliation(s)
- Guido Gainotti
- Institute of Neurology, Catholic University of the Sacred Heart, Largo A. Gemell, 8, 00168, Rome, Italy.
| | - Davide Quaranta
- Neurology Unit, Department of Science of Elderly, Neuroscience, Head and Neck and Orthopaedics, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Simona Luzzi
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
17
|
Yang Q, Zhang L, Chen C, Cao X. Literacy acquisition facilitates inversion effects for faces with full-, low-, and high-spatial frequency: evidence from illiterate and literate adults. Front Psychol 2023; 14:1061232. [PMID: 37168431 PMCID: PMC10164973 DOI: 10.3389/fpsyg.2023.1061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/14/2023] [Indexed: 05/13/2023] Open
Abstract
Previous studies have found that literacy acquisition modulates configural face processing (i.e., holistic and second-order configural processing). However, it remains unclear how literacy acquisition impacts the configural processing indexed by the inversion effect of normal or filtered faces. We asked Chinese illiterate and literate adults to judge whether two sequentially-presented stimuli, including faces, houses (experiment 1), and high- or low-pass filtered faces (experiment 2) were identical. Literate adults outperformed illiterate controls in the upright face and house conditions (experiment 1) and the upright high- and low-pass filtered conditions (experiment 2) but not in the inverted conditions. Notably, the size of an inversion effect (i.e., subtracting inverted accuracy from upright accuracy) was greater among literate adults than that among illiterate adults in both experiments. These findings support that literacy acquisition promotes configural face processing.
Collapse
Affiliation(s)
- Qi Yang
- School of Humanities, Tongji University, Shanghai, China
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Lina Zhang
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Changming Chen
- School of Educational Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaohua Cao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
18
|
Blum ASS, Riggins NY, Hersey DP, Atwood GS, Littenberg B. Left- vs right-sided migraine: a scoping review. J Neurol 2023; 270:2938-2949. [PMID: 36882660 DOI: 10.1007/s00415-023-11609-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Migraine is a historically unilateral head pain condition, the cause of which is not currently known. A growing body of literature suggests individuals who experience migraine with left-sided headache ("left-sided migraine") may be distinguished from those who experience migraine with right-sided headache ("right-sided migraine"). OBJECTIVE In this scoping review, we explore migraine unilaterality by summarizing what is currently known about left- and right-sided migraine. METHODS Two senior medical librarians worked with the lead authors to construct and refine a set of search terms to identify studies of subjects with left- or right-sided migraine published between 1988, which is the year of publication of the first edition of the International Classification of Headache Disorders (ICHD), and December 8, 2021 (the date the searches were conducted). The following databases were searched: Medline, Embase, PsycINFO, PubMed, Cochrane Library, and Web of Science. Abstracts were loaded into Covidence review software, deduplicated, then screened by two authors to determine study eligibility. Eligible studies were those involving subjects diagnosed with migraine (according to ICHD criteria) in which the authors either: a) compared left- to right-sided migraine; or b) described (with analysis) a characteristic that differentiated the two. Data were extracted by the lead author, including ICHD version, the definition of unilateral migraine used by the authors, sample size, whether the findings were collected during or between attacks, and their key findings. The key findings were grouped into the following themes: handedness, symptoms, psychiatric assessments, cognitive testing, autonomic function, and imaging. RESULTS After deduplication, the search yielded 5428 abstracts for screening. Of these, 179 met eligibility criteria and underwent full text review. 26 articles were included in the final analysis. All of the studies were observational. One study was performed during attack, nineteen between attacks, and six both during and between attacks. Left- and right-sided migraine were found to differ across multiple domains. In several cases, reciprocal findings were reported in left- and right-migraine. For example, both left- and right-sided migraine were associated with ipsilateral handedness, tinnitus, onset of first Parkinson's symptoms, changes in blood flow across the face, white matter hyperintensities on MRI, activation of the dorsal pons, hippocampal sclerosis, and thalamic NAA/Cho and NAA/Cr concentrations. In other cases, however, the findings were specific to one migraine laterality. For example, left-sided migraine was associated with worse quality of life, anxiety, bipolar disorder, PTSD, lower sympathetic activity, and higher parasympathetic activity. Whereas right-sided migraine was associated with poorer performance on multiple cognitive tests, a greater degree of anisocoria, changes in skin temperature, higher diastolic blood pressure, changes in blood flow through the middle cerebral and basilar arteries, and changes on EEG. CONCLUSION Left- and right-sided migraine differed across a wide range of domains, raising the possibility that the pathophysiology of left- and right-migraine may not be identical.
Collapse
Affiliation(s)
- Adam S Sprouse Blum
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Nina Y Riggins
- Department of Neurological Sciences, University of California San Diego, San Diego, CA, USA
| | - Denise P Hersey
- Dana Medical Library, University of Vermont, Burlington, VT, USA
| | - Gary S Atwood
- Dana Medical Library, University of Vermont, Burlington, VT, USA
| | - Benjamin Littenberg
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
20
|
The mechanisms supporting holistic perception of words and faces are not independent. Mem Cognit 2022; 51:966-981. [PMID: 36376620 DOI: 10.3758/s13421-022-01369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Abstract
The question of whether word and face recognition rely on overlapping or dissociable neural and cognitive mechanisms received considerable attention in the literature. In the present work, we presented words (aligned or misaligned) superimposed on faces (aligned or misaligned) and tested the interference from the unattended stimulus category on holistic processing of the attended category. In Experiment 1, we found that holistic face processing is reduced when a face was overlaid with an unattended, aligned word (processed holistically). In Experiment 2, we found a similar reduction of holistic processing for words when a word was superimposed on an unattended, aligned face (processed holistically). This reciprocal interference effect indicates a trade-off in holistic processing of the two stimuli, consistent with the idea that word and face recognition may rely on non-independent, overlapping mechanisms.
Collapse
|
21
|
Jacques C, Jonas J, Colnat-Coulbois S, Maillard L, Rossion B. Low and high frequency intracranial neural signals match in the human associative cortex. eLife 2022; 11:e76544. [PMID: 36074548 PMCID: PMC9457683 DOI: 10.7554/elife.76544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here, we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure category-selective responses to complex ecologically salient visual stimuli - human faces - across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.
Collapse
Affiliation(s)
- Corentin Jacques
- Université de Lorraine, CNRS, CRANNancyFrance
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain)Louvain-la-NeuveBelgium
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| | | | - Louis Maillard
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| |
Collapse
|
22
|
Thome I, García Alanis JC, Volk J, Vogelbacher C, Steinsträter O, Jansen A. Let's face it: The lateralization of the face perception network as measured with fMRI is not clearly right dominant. Neuroimage 2022; 263:119587. [PMID: 36031183 DOI: 10.1016/j.neuroimage.2022.119587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
The neural face perception network is distributed across both hemispheres. However, the dominant role in humans is virtually unanimously attributed to the right hemisphere. Interestingly, there are, to our knowledge, no imaging studies that systematically describe the distribution of hemispheric lateralization in the core system of face perception across subjects in large cohorts so far. To address this, we determined the hemispheric lateralization of all core system regions (i.e., occipital face area (OFA), fusiform face area (FFA), posterior superior temporal sulcus (pSTS)) in 108 healthy subjects using functional magnetic resonance imaging (fMRI). We were particularly interested in the variability of hemispheric lateralization across subjects and explored how many subjects can be classified as right-dominant based on the fMRI activation pattern. We further assessed lateralization differences between different regions of the core system and analyzed the influence of handedness and sex on the lateralization with a generalized mixed effects regression model. As expected, brain activity was on average stronger in right-hemispheric brain regions than in their left-hemispheric homologues. This asymmetry was, however, only weakly pronounced in comparison to other lateralized brain functions (such as language and spatial attention) and strongly varied between individuals. Only half of the subjects in the present study could be classified as right-hemispheric dominant. Additionally, we did not detect significant lateralization differences between core system regions. Our data did also not support a general leftward shift of hemispheric lateralization in left-handers. Only the interaction of handedness and sex in the FFA revealed that specifically left-handed men were significantly more left-lateralized compared to right-handed males. In essence, our fMRI data did not support a clear right-hemispheric dominance of the face perception network. Our findings thus ultimately question the dogma that the face perception network - as measured with fMRI - can be characterized as "typically right lateralized".
Collapse
Affiliation(s)
- Ina Thome
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
| | - José C García Alanis
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Clinical Child and Adolescent Psychology, Department of Psychology, University of Marburg, Marburg, Germany; Analysis and Modeling of Complex Data Lab, Institute of Psychology, University of Mainz, Mainz, Germany
| | - Jannika Volk
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Christoph Vogelbacher
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Olaf Steinsträter
- Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.
| |
Collapse
|
23
|
Partial overlap between holistic processing of words and Gestalt line stimuli at an early perceptual stage. Mem Cognit 2022; 50:1215-1229. [DOI: 10.3758/s13421-022-01333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
|
24
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
25
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
26
|
Ocklenburg S, Peterburs J, Mundorf A. Hemispheric asymmetries in the amygdala: a comparative primer. Prog Neurobiol 2022; 214:102283. [DOI: 10.1016/j.pneurobio.2022.102283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
27
|
Asymmetry of brain structure and function: 40 years after Sperry's Nobel Prize. Brain Struct Funct 2021; 227:421-424. [PMID: 34779912 DOI: 10.1007/s00429-021-02426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|