1
|
Abstract
PURPOSE OF REVIEW Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.
Collapse
Affiliation(s)
- Christophe Lopez
- Aix Marseille Univ, CNRS, Laboratory of Cognitive Neuroscience (LNC), FR3C, Marseille, France
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University
- Department of Neuroscience, Johns Hopkins University
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| |
Collapse
|
2
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
3
|
Kearney BE, Terpou BA, Densmore M, Shaw SB, Théberge J, Jetly R, McKinnon MC, Lanius RA. How the body remembers: Examining the default mode and sensorimotor networks during moral injury autobiographical memory retrieval in PTSD. Neuroimage Clin 2023; 38:103426. [PMID: 37207593 PMCID: PMC10206209 DOI: 10.1016/j.nicl.2023.103426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Neural representations of sensory percepts and motor responses constitute key elements of autobiographical memory. However, these representations may remain as unintegrated sensory and motor fragments in traumatic memory, thus contributing toward re-experiencing and reliving symptoms in trauma-related conditions such as post-traumatic stress disorder (PTSD). Here, we investigated the sensorimotor network (SMN) and posterior default mode network (pDMN) using a group independent component analysis (ICA) by examining their functional connectivity during a script-driven memory retrieval paradigm of (potentially) morally injurious events in individuals with PTSD and healthy controls. Moral injury (MI), where an individual acts or fails to act in a morally aligned manner, is examined given its inherent ties to disrupted motor planning and thus sensorimotor mechanisms. Our findings revealed significant differences in functional network connectivity across the SMN and pDMN during MI retrieval in participants with PTSD (n = 65) as compared to healthy controls (n = 25). No such significant group-wise differences emerged during retrieval of a neutral memory. PTSD-related alterations included hyperconnectivity between the SMN and pDMN, enhanced within-network connectivity of the SMN with premotor areas, and increased recruitment of the supramarginal gyrus into both the SMN and the pDMN during MI retrieval. In parallel with these neuroimaging findings, a positive correlation was found between PTSD severity and subjective re-experiencing intensity ratings after MI retrieval. These results suggest a neural basis for traumatic re-experiencing, where reliving and/or re-enacting a past morally injurious event in the form of sensory and motor fragments occurs in place of retrieving a complete, past-contextualized narrative as put forth by Brewin and colleagues (1996) and Conway and Pleydell-Pearce (2000). These findings have implications for bottom-up treatments targeting directly the sensory and motoric elements of traumatic experiences.
Collapse
Affiliation(s)
- Breanne E Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - Braeden A Terpou
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh B Shaw
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Rakesh Jetly
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada
| | - Ruth A Lanius
- Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Neumann N, Fullana MA, Radua J, Brandt T, Dieterich M, Lotze M. Common neural correlates of vestibular stimulation and fear learning: an fMRI meta-analysis. J Neurol 2023; 270:1843-1856. [PMID: 36723684 PMCID: PMC10025232 DOI: 10.1007/s00415-023-11568-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND A bidirectional functional link between vestibular and fear-related disorders has been previously suggested. OBJECTIVE To test a potential overlap of vestibular and fear systems with regard to their brain imaging representation maps. METHODS By use of voxel-based mapping permutation of subject images, we conducted a meta-analysis of earlier functional magnetic resonance imaging (fMRI) studies applying vestibular stimulation and fear conditioning in healthy volunteers. RESULTS Common clusters of concordance of vestibular stimulation and fear conditioning were found in the bilateral anterior insula cortex, ventrolateral prefrontal cortex and the right temporal pole, bilaterally in the adjacent ventrolateral prefrontal cortex, cingulate gyrus, secondary somatosensory cortex, superior temporal and intraparietal lobe, supplementary motor area and premotor cortex, as well as subcortical areas, such as the bilateral thalamus, mesencephalic brainstem including the collicular complex, pons, cerebellar vermis and bilateral cerebellar hemispheres. Peak areas of high concordance for activations during vestibular stimulation but deactivations during fear conditioning were centered on the posterior insula and S2. CONCLUSIONS The structural overlap of both networks allows the following functional interpretations: first, the amygdala, superior colliculi, and antero-medial thalamus might represent a release of preprogramed sensorimotor patterns of approach or avoidance. Second, the activation (vestibular system) and deactivation (fear system) of the bilateral posterior insula is compatible with the view that downregulation of the fear network by acute vestibular disorders or unfamiliar vestibular stimulation makes unpleasant perceived body accelerations less distressing. This also fits the clinical observation that patients with bilateral vestibular loss suffer from less vertigo-related anxiety.
Collapse
Affiliation(s)
- Nicola Neumann
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475, Greifswald, Germany
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- SyNergy-Munich Cluster for Systems Neurology, Munich, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, 17475, Greifswald, Germany.
| |
Collapse
|
5
|
Rolls ET, Deco G, Huang CC, Feng J. The human posterior parietal cortex: effective connectome, and its relation to function. Cereb Cortex 2023; 33:3142-3170. [PMID: 35834902 PMCID: PMC10401905 DOI: 10.1093/cercor/bhac266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/04/2023] Open
Abstract
The effective connectivity between 21 regions in the human posterior parietal cortex, and 360 cortical regions was measured in 171 Human Connectome Project (HCP) participants using the HCP atlas, and complemented with functional connectivity and diffusion tractography. Intraparietal areas LIP, VIP, MIP, and AIP have connectivity from early cortical visual regions, and to visuomotor regions such as the frontal eye fields, consistent with functions in eye saccades and tracking. Five superior parietal area 7 regions receive from similar areas and from the intraparietal areas, but also receive somatosensory inputs and connect with premotor areas including area 6, consistent with functions in performing actions to reach for, grasp, and manipulate objects. In the anterior inferior parietal cortex, PFop, PFt, and PFcm are mainly somatosensory, and PF in addition receives visuo-motor and visual object information, and is implicated in multimodal shape and body image representations. In the posterior inferior parietal cortex, PFm and PGs combine visuo-motor, visual object, and reward input and connect with the hippocampal system. PGi in addition provides a route to motion-related superior temporal sulcus regions involved in social interactions. PGp has connectivity with intraparietal regions involved in coordinate transforms and may be involved in idiothetic update of hippocampal visual scene representations.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, United Kingdom
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, Shanghai 200602, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
6
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|