1
|
Salazar Campos JM, Burbulla LF, Jäkel S. Are oligodendrocytes bystanders or drivers of Parkinson's disease pathology? PLoS Biol 2025; 23:e3002977. [PMID: 39777410 PMCID: PMC11709285 DOI: 10.1371/journal.pbio.3002977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The major pathological feature of Parkinson 's disease (PD), the second most common neurodegenerative disease and most common movement disorder, is the predominant degeneration of dopaminergic neurons in the substantia nigra, a part of the midbrain. Despite decades of research, the molecular mechanisms of the origin of the disease remain unknown. While the disease was initially viewed as a purely neuronal disorder, results from single-cell transcriptomics have suggested that oligodendrocytes may play an important role in the early stages of Parkinson's. Although these findings are of high relevance, particularly to the search for effective disease-modifying therapies, the actual functional role of oligodendrocytes in Parkinson's disease remains highly speculative and requires a concerted scientific effort to be better understood. This Unsolved Mystery discusses the limited understanding of oligodendrocytes in PD, highlighting unresolved questions regarding functional changes in oligodendroglia, the role of myelin in nigral dopaminergic neurons, the impact of the toxic environment, and the aggregation of alpha-synuclein within oligodendrocytes.
Collapse
Affiliation(s)
| | - Lena F. Burbulla
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sarah Jäkel
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Hoops D, Kyne R, Salameh S, MacGowan D, Avramescu RG, Ewing E, He AT, Orsini T, Durand A, Popescu C, Zhao JM, Shatz K, Li L, Carroll Q, Liu G, Paul MJ, Flores C. The scheduling of adolescence with Netrin-1 and UNC5C. eLife 2024; 12:RP88261. [PMID: 39056276 PMCID: PMC11281785 DOI: 10.7554/elife.88261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.
Collapse
Affiliation(s)
- Daniel Hoops
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Robert Kyne
- Neuroscience Program, University at BuffaloSUNYUnited States
| | - Samer Salameh
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Del MacGowan
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Radu Gabriel Avramescu
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Elise Ewing
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Alina Tao He
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Taylor Orsini
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Anais Durand
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Christina Popescu
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Janet Mengyi Zhao
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Kelcie Shatz
- Department of Psychology, University at BuffaloSUNYUnited States
| | - LiPing Li
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Quinn Carroll
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Guofa Liu
- Department of Biological Sciences, University of ToledoToledoUnited States
| | - Matthew J Paul
- Neuroscience Program, University at BuffaloSUNYUnited States
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Cecilia Flores
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontréalCanada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill UniversityMontréalCanada
| |
Collapse
|
4
|
Caldwell M, Mendoza JC, Jiang XYZ, Alarcon C, Ayo-Jibunoh V, Louis S, Maronna D, Darwish R, Tomaio J, Mingote S, Yetnikoff L. Reorganization of dopamine circuitry in the anterior corpus callosum between early adolescence and adulthood in the mouse. Eur J Neurosci 2024; 59:2535-2548. [PMID: 38720367 DOI: 10.1111/ejn.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Shelby Louis
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Daniel Maronna
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Rania Darwish
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Jaquelyn Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| |
Collapse
|
5
|
Liu H, Zhong Y, Liu G, Su H, Liu Z, Wei J, Mo L, Tan C, Liu X, Chen L. Corpus callosum and cerebellum participate in semantic dysfunction of Parkinson's disease: a diffusion tensor imaging-based cross-sectional study. Neuroreport 2024; 35:366-373. [PMID: 38526949 DOI: 10.1097/wnr.0000000000002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Language dysfunction is common in Parkinson's disease (PD) patients, among which, the decline of semantic fluency is usually observed. This study aims to explore the relationship between white matter (WM) alterations and semantic fluency changes in PD patients. 127 PD patients from the Parkinson's Progression Markers Initiative cohort who received diffusion tensor imaging scanning, clinical assessment and semantic fluency test (SFT) were included. Tract-based special statistics, automated fiber quantification, graph-theoretical and network-based analyses were performed to analyze the correlation between WM structural changes, brain network features and semantic fluency in PD patients. Fractional anisotropy of corpus callosum, anterior thalamic radiation, inferior front-occipital fasciculus, and uncinate fasciculus, were positively correlated with SFT scores, while a negative correlation was identified between radial diffusion of the corpus callosum, inferior longitudinal fasciculus, and SFT scores. Automatic fiber quantification identified similar alterations with more details in these WM tracts. Brain network analysis positively correlated SFT scores with nodal efficiency of cerebellar lobule VIII, and nodal local efficiency of cerebellar lobule X. WM integrity and myelin integrity in the corpus callosum and several other language-related WM tracts may influence the semantic function in PD patients. Damage to the cerebellum lobule VIII and lobule X may also be involved in semantic dysfunction in PD patients.
Collapse
Affiliation(s)
- Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|