1
|
miRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023; 15:v15020429. [PMID: 36851643 PMCID: PMC9965283 DOI: 10.3390/v15020429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.
Collapse
|
2
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
3
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
4
|
Zhang J, Huang Y, Wang Q, Ma Y, Qi Y, Liu Z, Deng J, Ruan Q. Levels of human cytomegalovirus miR-US25-1-5p and miR-UL112-3p in serum extracellular vesicles from infants with HCMV active infection are significantly correlated with liver damage. Eur J Clin Microbiol Infect Dis 2019; 39:471-481. [DOI: 10.1007/s10096-019-03747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
|
5
|
Herpes Simplex Virus Type 1-Encoded miR-H2-3p Manipulates Cytosolic DNA-Stimulated Antiviral Innate Immune Response by Targeting DDX41. Viruses 2019; 11:v11080756. [PMID: 31443275 PMCID: PMC6723821 DOI: 10.3390/v11080756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), one of the human pathogens widely epidemic and transmitted among various groups of people in the world, often causes symptoms known as oral herpes or lifelong asymptomatic infection. HSV-1 employs many sophisticated strategies to escape host antiviral immune response based on its multiple coding proteins. However, the functions involved in the immune evasion of miRNAs encoded by HSV-1 during lytic (productive) infection remain poorly studied. Dual-luciferase reporter gene assay and bioinformatics revealed that Asp-Glu-Ala-Asp (DEAD)-box helicase 41 (DDX41), a cytosolic DNA sensor of the DNA-sensing pathway, was a putative direct target gene of HSV-1-encoded miR-H2-3p. The transfection of miR-H2-3p mimics inhibited the expression of DDX41 at the level of mRNA and protein, as well as the expression of interferon beta (IFN-β) and myxoma resistance protein I (MxI) induced by HSV-1 infection in THP-1 cells, and promoted the viral replication and its gene transcription. However, the transfection of miR-H2-3p inhibitor showed opposite effects. This finding indicated that HSV-1-encoded miR-H2-3p attenuated cytosolic DNA-stimulated antiviral immune response by manipulating host DNA sensor molecular DDX41 to enhance virus replication in cultured cells.
Collapse
|
6
|
Human cytomegalovirus-encoded miR-UL112 contributes to HCMV-mediated vascular diseases by inducing vascular endothelial cell dysfunction. Virus Genes 2018; 54:172-181. [PMID: 29330663 DOI: 10.1007/s11262-018-1532-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection has been linked to the pathogenesis of vasculopathy by inducing dysfunction of vascular cells such as endothelial cells. Hcmv-miR-UL112 is the most well-characterized HCMV-encoded microRNA occurring in the plasma of patients with cardiovascular diseases such as hypertension, while the specific underlying pathophysiological mechanisms are yet to be defined. The current study investigated the effect of hcmv-miR-UL112 on the growth and proliferation of human umbilical vascular endothelial cells (HUVECs); it might also be associated with signaling pathways. An adenovirus vector was designed and synthesized to stably express hcmv-miR-UL112 in HUVECs. Cell Counting Kit-8 results showed that ectopically expressed hcmv-miR-UL112 can significantly increase the proliferation of HUVECs (p < 0.05). Flow cytometry revealed that the S-phase fraction in the cell cycle analysis was raised significantly after overexpression of hcmv-miR-UL112 (p < 0.05). Gene expression profile analysis, using the microarray technology, revealed 303 up-regulated and 62 down-regulated genes in HUVECs by comparing the AD-hcmv-miR-UL112-infected and control groups (p < 0.05 and > 2 fold change). Kyoto Encyclopedia of Genes and Genomes and Reactome Pathway, chosen as the functional annotation categories, were affected by hcmv-miR-UL112 adenovirus vector. The significantly altered pathways mainly include the mitogen-activated protein kinase signaling pathway, cell adhesion molecules, chemokine signaling pathway, cytokine-cytokine receptor interaction, circadian rhythm-mammal, mineral absorption, protein processing in the endoplasmic reticulum, proximal tubule bicarbonate reclamation, vasopressin-regulated water reabsorption, and arachidonic acid metabolism. In conclusion, hcmv-miR-UL112 could serve as a potential biomarker, and the miRNA-mediated regulation of signaling pathways might play significant roles in the physiological effects of hcmv-associated diseases.
Collapse
|
7
|
Li Y, Zheng G, Zhang Y, Yang X, Liu H, Chang H, Wang X, Zhao J, Wang C, Chen L. MicroRNA analysis in mouse neuro-2a cells after pseudorabies virus infection. J Neurovirol 2017; 23:430-440. [PMID: 28130759 DOI: 10.1007/s13365-016-0511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV), an alpha herpesvirus can enter the mammalian nervous system, causing Aujezsky's disease. Previous studies have reported an alteration of microRNA (miRNA) expression levels during PRV infections. However, knowledge regarding miRNA response in nervous cells to PRV infection is still unknown. To address this issue, small RNA libraries from infected and uninfected mouse neuroblastoma cells were assessed after Illumina deep sequencing. A total of eight viral miRNA were identified, and ten host miRNAs showed significantly different expression upon PRV infection. Among these, five were analyzed by stem-loop RT-qPCR, which confirmed the above data. Interestingly, these viral miRNAs were mainly found in the large latency transcript region of PRV, and predicted to target a variety of genes, forming a complicated regulatory network. Moreover, ten cellular miRNAs were expressed differently upon PRV infection, including nine upregulated and one downregulated miRNAs. Host targets of these miRNAs obtained by bioinformatics analysis belonged to large signaling networks, mainly encompassing calcium signaling pathway, cAMP signaling pathway, MAPK signaling pathway, and other nervous-associated pathways. These findings further highlighted miRNA features in nervous cells after PRV infection and contributed to unveil the underlying mechanisms of neurotropism as well as the neuropathogenesis of PRV.
Collapse
Affiliation(s)
- Yongtao Li
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanmin Zheng
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yujuan Zhang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Yang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongying Liu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongtao Chang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinwei Wang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Zhao
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chuanqing Wang
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lu Chen
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
The small noncoding RNAs (sncRNAs) of murine gammaherpesvirus 68 (MHV-68) are involved in regulating the latent-to-lytic switch in vivo. Sci Rep 2016; 6:32128. [PMID: 27561205 PMCID: PMC4999806 DOI: 10.1038/srep32128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023] Open
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), which are associated with a variety of diseases including tumors, produce various small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Like all herpesviruses, they show two stages in their life cycle: lytic replication and latency. During latency, hardly any viral proteins are expressed to avoid recognition by the immune system. Thus, sncRNAs might be exploited since they are less likely to be recognized. Specifically, it has been proposed that sncRNAs might contribute to the maintenance of latency. This has already been shown in vitro, but the respective evidence in vivo is very limited. A natural model system to explore this question in vivo is infection of mice with murine gammaherpesvirus 68 (MHV-68). We used this model to analyze a MHV-68 mutant lacking the expression of all miRNAs. In the absence of the miRNAs, we observed a higher viral genomic load during late latency in the spleens of mice. We propose that this is due to a disturbed regulation of the latent-to-lytic switch, altering the balance between latent and lytic infection. Hence, we provide for the first time evidence that gammaherpesvirus sncRNAs contribute to the maintenance of latency in vivo.
Collapse
|
9
|
Liu F, Zheng H, Tong W, Li GX, Tian Q, Liang C, Li LW, Zheng XC, Tong GZ. Identification and Analysis of Novel Viral and Host Dysregulated MicroRNAs in Variant Pseudorabies Virus-Infected PK15 Cells. PLoS One 2016; 11:e0151546. [PMID: 26998839 PMCID: PMC4801506 DOI: 10.1371/journal.pone.0151546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies (PR) is one of the most devastating diseases in the pig industry. To identify changes in microRNA (miRNA) expression and post-transcriptional regulatory responses to PRV infection in porcine kidney epithelial (PK15) cells, we sequenced a small RNA (sRNA) library prepared from infected PK15 cells and compared it to a library prepared from uninfected cells using Illumina deep sequencing. Here we found 25 novel viral miRNAs by high-throughput sequencing and 20 of these miRNAs were confirmed through stem-loop RT-qPCR. Intriguingly, unlike the usual miRNAs encoded by the α-herpesviruses, which are found clustered in the large latency transcript (LLT), these novel viral miRNAs are throughout the PRV genome like β-herpesviruses. Viral miRNAs are predicted to target multiple genes and form a complex regulatory network. GO analysis on host targets of viral miRNAs were involved in complex cellular processes, including the metabolic pathway, biological regulation, stimulus response, signaling process and immune response. Moreover, 13 host miRNAs were expressed with significant difference after infection with PRV: 8 miRNAs were up-regulated and 5 miRNAs were down-regulated, which may affect viral replication in host cell. Our results provided new insight into the characteristic of miRNAs in response to PRV infection, which is significant for further study of these miRNAs function.
Collapse
Affiliation(s)
- Fei Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People’s Republic of China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People’s Republic of China
| | - Guo-Xin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People’s Republic of China
| | - Qing Tian
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Chao Liang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Li-Wei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xu-Chen Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Guang-Zhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. mBio 2015; 6:e00668. [PMID: 26045540 PMCID: PMC4462627 DOI: 10.1128/mbio.00668-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.
Collapse
|
11
|
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Walls D. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs. PLoS One 2015; 10:e0125434. [PMID: 25928140 PMCID: PMC4416013 DOI: 10.1371/journal.pone.0125434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.
Collapse
Affiliation(s)
- Owen H. Donohoe
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - David M. Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Weymouth, Dorset, the United Kingdom
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
12
|
Chen JS, Li HC, Lin SI, Yang CH, Chien WY, Syu CL, Lo SY. Cleavage of Dicer protein by I7 protease during vaccinia virus infection. PLoS One 2015; 10:e0120390. [PMID: 25815818 PMCID: PMC4376780 DOI: 10.1371/journal.pone.0120390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
Dicer is the key component in the miRNA pathway. Degradation of Dicer protein is facilitated during vaccinia virus (VV) infection. A C-terminal cleaved product of Dicer protein was detected in the presence of MG132 during VV infection. Thus, it is possible that Dicer protein is cleaved by a viral protease followed by proteasome degradation of the cleaved product. There is a potential I7 protease cleavage site in the C-terminus of Dicer protein. Indeed, reduction of Dicer protein was detected when Dicer was co-expressed with I7 protease but not with an I7 protease mutant protein lack of the protease activity. Mutation of the potential I7 cleavage site in the C-terminus of Dicer protein resisted its degradation during VV infection. Furthermore, Dicer protein was reduced dramatically by recombinant VV vI7Li after the induction of I7 protease. If VV could facilitate the degradation of Dicer protein, the process of miRNA should be affected by VV infection. Indeed, accumulation of precursor miR122 was detected after VV infection or I7 protease expression. Reduction of miR122 would result in the suppression of HCV sub-genomic RNA replication, and, in turn, the amount of viral proteins. As expected, significant reduction of HCVNS5A protein was detected after VV infection and I7 protease expression. Therefore, our results suggest that VV could cleave Dicer protein through I7 protease to facilitate Dicer degradation, and in turn, suppress the processing of miRNAs. Effect of Dicer protein on VV replication was also studied. Exogenous expression of Dicer protein suppresses VV replication slightly while knockdown of Dicer protein does not affect VV replication significantly.
Collapse
Affiliation(s)
- Jhih-Si Chen
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien, Taiwan
| | - Shu-I Lin
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yu Chien
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ciao-Ling Syu
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Medical Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Filatov F, Shargunov A. Short nucleotide sequences in herpesviral genomes identical to the human DNA. J Theor Biol 2015; 372:12-21. [PMID: 25728788 DOI: 10.1016/j.jtbi.2015.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/08/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
In 2010, we described many similar DNA sequences in human and viral genomes, including herpesviral ones. The data obtained allowed us to suggest that these motifs may provide the antiviral protection by mating with a complementary potential target and destroying it by the catalytic way like small interfering RNA, siRNA. Since we have analyzed these viruses as a group, two major issues seemed to us curious: (1) the number of such motifs in genomes of various herpesvirus types, and (2) distribution of these motifs in an individual viral genome. Here we searched only the herpesviral genomes for short (>20nt) continuous sequences (hits) that are totally identical to the sequences of human DNA. We found that different viral genes and genomes of different herpesviruses contain different amount of such hits. Assuming like in previous paper that the density of these hits in viral genes is associated with the probability to be targets for cellular siRNA, we consider the genomic allocation of this density as a hypothetical targetome map of the human herpesviruses. We combined all nine types of herpesviruses in the three groups according the hit concentration in their genomes and found that the resulting sequence corresponds to the type of cellular pathology caused by a virus. We do not assert now that this trend also relates to other human viruses or other viruses in general. As the GenBank continues to fill, it would be highly advisable to conduct further relevant research. We also suggested that a high hits concentration we found in the gene RL1 (ICP34.5) of the herpes simplex virus type 1 (HSV1) can make this gene a likely target for putative cellular endogenous siRNA. Artificial blockade of the gene RL1 attaches oncolytic properties to HSV1, and we do not exclude the possibility that part of the HSV1 population in humans with blocked RL1 in vivo, may participate in early anti-cancer protection during the reactivation of the virus from the latent state.
Collapse
Affiliation(s)
- Felix Filatov
- Department of Scientific and Clinic Viral Diagnostics, Hematology Research Center, Ministry of Public Health, Moscow, Russian Federation.
| | - Alexander Shargunov
- Laboratory of Bioinformatics, Mechnikov Research Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
14
|
Hcmv-miR-UL112 attenuates NK cell activity by inhibition type I interferon secretion. Immunol Lett 2015; 163:151-6. [DOI: 10.1016/j.imlet.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023]
|
15
|
Nightingale K, Levy CS, Hopkins J, Grey F, Esper S, Dalziel RG. Expression of ovine herpesvirus -2 encoded microRNAs in an immortalised bovine - cell line. PLoS One 2014; 9:e97765. [PMID: 24849241 PMCID: PMC4029829 DOI: 10.1371/journal.pone.0097765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/22/2014] [Indexed: 02/05/2023] Open
Abstract
Ovine herpesvirus-2 (OvHV-2) infects most sheep, where it establishes an asymptomatic, latent infection. Infection of susceptible hosts e.g. cattle and deer results in malignant catarrhal fever, a fatal lymphoproliferative disease characterised by uncontrolled lymphocyte proliferation and non MHC restricted cytotoxicity. The same cell populations are infected in both cattle and sheep but only in cattle does virus infection cause dysregulation of cell function leading to disease. The mechanism by which OvHV-2 induces this uncontrolled proliferation is unknown. A number of herpesviruses have been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. We hypothesised that OvHV-2 encodes miRNAs and that these play a role in pathogenesis. Analysis of massively parallel sequencing data from an OvHV-2 persistently-infected bovine lymphoid cell line (BJ1035) identified forty-five possible virus-encoded miRNAs. We previously confirmed the expression of eight OvHV-2 miRNAs by northern hybridization. In this study we used RT-PCR to confirm the expression of an additional twenty-seven OvHV-2-encoded miRNAs. All thirty-five OvHV-2 miRNAs are expressed from the same virus genome strand and the majority (30) are encoded in an approximately 9 kb region that contains no predicted virus open reading frames. Future identification of the cellular and virus targets of these miRNAs will inform our understanding of MCF pathogenesis.
Collapse
Affiliation(s)
- Katie Nightingale
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Claire S. Levy
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - John Hopkins
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Finn Grey
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Suzanne Esper
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Robert G. Dalziel
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
16
|
Human cytomegalovirus-encoded miR-US25-1 aggravates the oxidised low density lipoprotein-induced apoptosis of endothelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:531979. [PMID: 24895586 PMCID: PMC4033414 DOI: 10.1155/2014/531979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (HCMV) infection is linked to the development and severity of the cardiovascular disease atherosclerosis; however, there is little known about the promotion of atherosclerosis. miR-US25-1 is one of HCMV-encoded miRNAs and targets cellular genes that are essential for virus growth to control the life cycle of the virus and host cells. The prominent regulation on cell cycle genes of the miR-US25-1 attracts us to explore its role in the atherosclerosis promotion. It was indicated that miR-US25-1 level was upregulated in subjects or in endothelial cells with HCMV infection; and the miR-US25-1 downregulated the expression of BRCC 3 by targeting the 5′ UTR of BRCC 3. And a miR-US25-1 mimics transfection could reduce the EAhy926 cell viability but did not induce apoptosis in EAhy926 cells. And what is more, miR-US25-1 mimicis transfection deteriorated the ox-LDL-induced apoptosis and aggravated the upregulation of apoptosis-associated molecules by oxidised low density lipoprotein (ox-LDL) in EAhy926 cells. And we have also confirmed the deregulation of BRCC 3 expression by miR-US25-1 by targeting the 5′ UTR of it. Given the vital role of BRCC 3 in DNA damage repairing, we speculated that the targeting inhibition of BRCC 3 by miR-US25-1 may contribute to the aggravation of ox-LDL-promoted apoptosis of endothelial EAhy926 cells.
Collapse
|
17
|
Babu SG, Pandeya A, Verma N, Shukla N, Kumar RV, Saxena S. Role of HCMV miR-UL70-3p and miR-UL148D in overcoming the cellular apoptosis. Mol Cell Biochem 2014; 393:89-98. [PMID: 24737391 DOI: 10.1007/s11010-014-2049-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
Abstract
The studies into the pathophysiology of viral miRNAs are still in infancy; the interspecies regulation at the miRNA level fuels the spark of the investigation into the repertoire of virus-host interactions. Reports pertaining to the viral miRNAs role in modulating/evading the host immune response are surging up; we initiated this in silico study to speculate the role of human cytomegalovirus (HCMV)-encoded miRNAs on human antiviral mechanisms such as apoptosis and autophagy. The results indicate that both the above mechanisms were targeted by the HCMV miRNAs, located in the unique long region of the HCMV genome. The proapoptotic genes MOAP1, PHAP, and ERN1 are identified to be the potential targets for the miR-UL70-3p and UL148D, respectively. The ERN1 gene plays a role in the initiation of Endoplasmic reticulum stress-induced apoptosis as well as autophagosome formation. This study shows that HCMV employs its miRNA repertoire for countering the cellular apoptosis and autophagy, particularly the mitochondrial-dependent intrinsic pathway of apoptosis. In addition, the homology studies reveal no HCMV miRNA bears sequence homology with human miRNAs.
Collapse
Affiliation(s)
- Sunil G Babu
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India,
| | | | | | | | | | | |
Collapse
|
18
|
Wu W, Guo Z, Zhang X, Guo L, Liu L, Liao Y, Wang J, Wang L, Li Q. A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. SCIENCE CHINA-LIFE SCIENCES 2013; 56:373-83. [PMID: 23512275 DOI: 10.1007/s11427-013-4458-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/25/2013] [Indexed: 12/20/2022]
Abstract
Viral microRNAs are one component of the RNA interference phenomenon generated during viral infection. They were first identified in the Herpesviridae family, where they were found to regulate viral mRNA translation. In addition, prior work has suggested that Kaposi's sarcoma-associated herpesvirus (KSHV) is capable of regulating cellular gene transcription by miRNA. We demonstrate that a miRNA, hsv1-mir-H27, encoded within the genome of herpes simplex virus 1 (HSV-1), targets the mRNA of the cellular transcriptional repressor Kelch-like 24 (KLHL24) that inhibits transcriptional efficiency of viral immediate-early and early genes. The viral miRNA is able to block the expression of KLHL24 in cells infected by HSV-1. Our discovery reveals an effective viral strategy for evading host cell defenses and supporting the efficient replication and proliferation of HSV-1.
Collapse
Affiliation(s)
- Wenjuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture. Arch Virol 2012; 157:1677-88. [PMID: 22661375 DOI: 10.1007/s00705-012-1345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
Abstract
The influence of miRNAs on the host-pathogen environment is largely unknown and under intensive investigation. Whether produced by the pathogen or by the host cell, these miRNAs will sculpt the intracellular landscape, as their activity will ultimately affect levels of target proteins. Using a high-throughput sequencing approach, we identified 19 novel small RNAs produced during the early hours of herpes simplex virus type 1 (HSV-1) infection in epithelial cells. Six of the novel RNAs had predicted folds characteristic of miRNAs. One of the six, miR-92944, which resides in the 5' UTR of the ul42 gene in the sense orientation, was confirmed as a bona fide miRNA by RT-PCR and stem-loop PCR analysis. Northern blot analysis was used to observe the precursor forms of miR-92944. Viral mutants that do not produce miR-92944 exhibited significant reductions in viral titers in both single and multi-step growth analysis and a fourfold reduction in plaque size. The miR-92944 mutants produce wild-type levels of ICP4, UL42, VP5, and gC proteins contain no additional changes in the DNA sequence surrounding the site of mutagenesis. The defective phenotype of miR-92944 mutants was complemented in V42.3 cells, which contain the 5'UTR of ul42. We also found that miR-H1 expression was diminished in cells infected with the miR-92944 mutant virus. This study provides new information on the miRNA landscape during the early stages of HSV-1 infection and reveals novel targets for antagonistic molecules that may curtail the establishment of lytic or latent virus infection.
Collapse
|
20
|
The role of microRNAs in viral infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 102:101-39. [PMID: 21846570 DOI: 10.1016/b978-0-12-415795-8.00002-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that have emerged in recent years as central regulators of eukaryotic gene expression. In mammalian systems, miRNAs are associated with numerous pathological and physiological pathways. miRNAs are important in many viral infections, with different viral families expressing their own miRNAs, manipulating host miRNA expression, or showing direct or indirect regulation by host or viral miRNAs. In this chapter we will examine the current evidence for interplay between the miRNA pathway and viral infections in mammals.
Collapse
|
21
|
|
22
|
Amen MA, Griffiths A. Packaging of Non-Coding RNAs into Herpesvirus Virions: Comparisons to Coding RNAs. Front Genet 2011; 2:81. [PMID: 22303375 PMCID: PMC3268634 DOI: 10.3389/fgene.2011.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/29/2011] [Indexed: 12/02/2022] Open
Abstract
The herpesviruses are a family of large DNA viruses capable of establishing lifelong infections. Recent reports have shown that herpesviruses package non-coding RNA into virions; this follows earlier observations showing that coding RNAs are detected in virions. Packaging RNAs allows for their function immediately after virus entry and in the absence of de novo transcription. Despite the collective understanding that RNAs are packaged into herpesvirus virions, many questions remain. This review will highlight what is known regarding packaged coding and non-coding RNAs and discuss their potential impact to virus biology.
Collapse
Affiliation(s)
- Melanie A Amen
- Department of Virology and Immunology, Texas Biomedical Research Institute San Antonio, TX, USA
| | | |
Collapse
|
23
|
Yeung ML, Jeang KT. Roles of miRNAs in virus-mediated cellular transformation: lessons from human T-cell leukemia virus type 1. Future Virol 2011. [DOI: 10.2217/fvl.11.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
miRNAs are small noncoding RNAs of ˜18–25 nucleotides that contribute to the regulation of a diverse variety of biological pathways. Perturbed miRNA expression is seen in many diseases, including cancers. Here, we first discuss the oncogenic and tumor suppressor roles of miRNA, including the roles played by miRNAs in the replication of some oncogenic viruses. Next, using human T-cell leukemia virus type 1 as an example, we discuss the contributions of virus-induced miRNAs in human T-cell leukemia virus type 1-transformation of human cells. Finally, we briefly survey the therapeutic potential of miRNA mimics or anti-miRNAs, antagomirs, to reverse cancer phenotypes.
Collapse
Affiliation(s)
- Man Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection & Immunology, The University of Hong Kong, Hong Kong
- Department of Microbiology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 306, 9000 Rockville Pike, Bethesda, MD 20892–0460, USA
| |
Collapse
|
24
|
Levy CS, Hopkins J, Russell GC, Dalziel RG. Novel virus-encoded microRNA molecules expressed by ovine herpesvirus 2-immortalized bovine T-cells. J Gen Virol 2011; 93:150-154. [PMID: 21957125 DOI: 10.1099/vir.0.037606-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A number of herpesviruses have now been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. Ovine herpesvirus 2 (OvHV-2) is the causative agent of sheep-associated malignant catarrhal fever, a fatal lymphoproliferative disease of cattle. Using massively parallel sequencing and Northern hybridization we have identified eight putative miRNAs encoded by OvHV-2 expressed in an OvHV-2-immortalized bovine lymphocyte cell line. These eight miRNAs are encoded in two areas of the OvHV-2 genome that contain no predicted protein coding regions and show no sequence similarity with other herpesvirus or cellular miRNAs. This represents the first report of the expression of virally encoded miRNAs in the genus Macavirus of herpesviruses.
Collapse
Affiliation(s)
- Claire S Levy
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| | - John Hopkins
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| | - George C Russell
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, UK
| | - Robert G Dalziel
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
25
|
Boss IW, Renne R. Viral miRNAs and immune evasion. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:708-14. [PMID: 21757042 DOI: 10.1016/j.bbagrm.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
Abstract
Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Isaac W Boss
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, FL, USA.
| | | |
Collapse
|
26
|
Li Z, Li F, Ni M, Li P, Bo X, Wang S. Characterization the regulation of herpesvirus miRNAs from the view of human protein interaction network. BMC SYSTEMS BIOLOGY 2011; 5:93. [PMID: 21668952 PMCID: PMC3125315 DOI: 10.1186/1752-0509-5-93] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/13/2011] [Indexed: 11/10/2022]
Abstract
Background miRNAs are a class of non-coding RNA molecules that play crucial roles in the regulation of virus-host interactions. The ever-increasing data of known viral miRNAs and human protein interaction network (PIN) has made it possible to study the targeting characteristics of viral miRNAs in the context of these networks. Results We performed topological analysis to explore the targeting propensities of herpesvirus miRNAs from the view of human PIN and found that (1) herpesvirus miRNAs significantly target more hubs, moreover, compared with non-hubs (non-bottlenecks), hubs (bottlenecks) are targeted by much more virus miRNAs and virus types. (2) There are significant differences in the degree and betweenness centrality between common and specific targets, specifically we observed a significant positive correlation between virus types targeting these nodes and the proportion of hubs, and (3) K-core and ER analysis determined that common targets are closer to the global PIN center. Compared with random conditions, the giant connected component (GCC) and the density of the sub-network formed by common targets have significantly higher values, indicating the module characteristic of these targets. Conclusions Herpesvirus miRNAs preferentially target hubs and bottlenecks. There are significant differences between common and specific targets. Moreover, common targets are more intensely connected and occupy the central part of the network. These results will help unravel the complex mechanism of herpesvirus-host interactions and may provide insight into the development of novel anti-herpesvirus drugs.
Collapse
Affiliation(s)
- Zhenpeng Li
- Department of Biotechnology, Beijing Institute of Radiation Medicine, No,27, Taiping Road, Haidian District, Beijing 100850, China
| | | | | | | | | | | |
Collapse
|
27
|
Smith NA, Eamens AL, Wang MB. Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathog 2011; 7:e1002022. [PMID: 21573142 PMCID: PMC3088724 DOI: 10.1371/journal.ppat.1002022] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/15/2011] [Indexed: 12/25/2022] Open
Abstract
The Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco). How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA)-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt) complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi) vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Amino Acid Sequence
- Down-Regulation
- Gene Silencing
- High-Throughput Nucleotide Sequencing
- Host-Pathogen Interactions
- Lyases/genetics
- Molecular Sequence Data
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Viruses/physiology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- Plasmids
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Satellite/genetics
- RNA, Satellite/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/virology
- Virus Replication
Collapse
|
28
|
Poole E, McGregor Dallas SR, Colston J, Joseph RSV, Sinclair J. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34⁺ progenitors. J Gen Virol 2011; 92:1539-1549. [PMID: 21471310 DOI: 10.1099/vir.0.031377-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV; human herpesvirus 5) is known to be CD34(+) haematopoietic progenitor cells, and it is likely that carriage of latent virus has profound effects on cellular gene expression in order to optimize latency and reactivation. As microRNAs (miRNAs) play important roles in regulating stem-cell gene expression, this study asked whether latent carriage of HCMV led to changes in cellular miRNA expression. A comprehensive miRNA screen showed the differential regulation of a number of cellular miRNAs during HCMV latency in CD34(+) progenitor cells. One of these, hsa-miR-92a, was robustly decreased in three independent miRNA screens. Latency-induced change in hsa-miR-92a results in an increase in expression of GATA-2 and subsequent increased expression of cellular IL-10, which aids the maintenance of latent viral genomes in CD34(+) cells, probably resulting from their increased survival.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stuart R McGregor Dallas
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Colston
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert Samuel V Joseph
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Gu W, An J, Ye P, Zhao KN, Antonsson A. Prediction of conserved microRNAs from skin and mucosal human papillomaviruses. Arch Virol 2011; 156:1161-71. [PMID: 21442230 DOI: 10.1007/s00705-011-0974-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 03/08/2011] [Indexed: 12/26/2022]
Abstract
Eight human papillomavirus (HPV) types including four cutaneous HPV types (HPV-5, HPV-8, HPV-20 and HPV-38) and four mucosal HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) were selected for this miRNA study. Pre-miRNAs were predicted using a computer programme, and the conserved mature miRNAs were compared to currently known miRNAs. Predicted HPV miRNAs related to miR-466, -467 and -669 were common and specific to the mucosal HPV types. Northern blot hybridization confirmed a predicted miRNA in HPV-positive cervical cancer cell lines encoded by mucosal HPVs. HPV-38 was predicted to express an miRNA conserved to human let-7a and the expression of let-7a, in HPV-38-positive non-melanoma skin cancer (NMSC) biopsies was 10-fold higher than those with HPV-positive (for other types except HPV-38) and HPV-negative NMSCs, suggesting that let-7a expression might be related to HPV-38 infection. Potential gene targets of the predicted miRNA that may aid HPV in infection and pathogenesis were also analysed.
Collapse
Affiliation(s)
- Wenyi Gu
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, The University of Queensland, Woolloongabba, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
30
|
Lin X, Liang D, He Z, Deng Q, Robertson ES, Lan K. miR-K12-7-5p encoded by Kaposi's sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS One 2011; 6:e16224. [PMID: 21283761 PMCID: PMC3024408 DOI: 10.1371/journal.pone.0016224] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 12/10/2010] [Indexed: 12/15/2022] Open
Abstract
Seventeen miRNAs encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) have been identified and their functions have begun to be characterized. Among these miRNAs, we report here that miR-K12-7 directly targets the replication and transcription activator (RTA) encoded by open reading frame 50. We found that miR-K12-7 targeted the RTA 3' untranslated region (RTA3'UTR) in a seed sequence-dependent manner. miR-K12-7-5p derived from miR-K12-7 mediates the inhibition of RTA expression, and the mutation of the seed match site totally abrogated the inhibitory effect of miR-K12-7 on RTA3'UTR. The inhibition of RTA expression by miR-K12-7 was further confirmed in the latently KSHV-infected 293/Bac36 cell line through transient transfection of miR-K12-7 expression plasmid or specific inhibitor of miR-K12-7-5p, respectively. The transient transfection of miR-K12-7 into 293/Bac36 cells reduced RTA expression and the expression of the downstream early genes regulated by RTA, and also the production of progeny virus was significantly reduced after treatment with chemical inducers. Our study revealed that another miRNA, miR-K12-7-5p, targets the viral immediate early gene RTA and that this miRNA contributes to the maintenance of viral latency.
Collapse
Affiliation(s)
- Xianzhi Lin
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Deguang Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiheng He
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qiang Deng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Erle S. Robertson
- Department of Microbiology and the Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Ke Lan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
Waidner LA, Burnside J, Anderson AS, Bernberg EL, German MA, Meyers BC, Green PJ, Morgan RW. A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA. Virology 2011; 411:25-31. [PMID: 21232778 DOI: 10.1016/j.virol.2010.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Viral microRNAs regulate gene expression using either translational repression or mRNA cleavage and decay. Two microRNAs from infectious laryngotracheitis virus (ILTV), iltv-miR-I5 and iltv-miR-I6, map antisense to the ICP4 gene. Post-transcriptional repression by these microRNAs was tested against a portion of the ICP4 coding sequence cloned downstream of firefly luciferase. Luciferase activity was downregulated by approximately 60% with the iltv-miR-I5 mimic. Addition of an iltv-miR-I5 antagomiR or mutagenesis of the target seed sequence alleviated this effect. The iltv-miR-I5 mimic, when co-transfected with a plasmid expressing ICP4, reduced ICP4 transcript levels by approximately 50%, and inhibition was relieved by an iltv-miR-I5 antagomiR. In infected cells, iltv-miR-I5 mediated cleavage at the canonical site, as indicated by modified RACE analysis. Thus, in this system, iltv-miR-I5 decreased ILTV ICP4 mRNA levels via transcript cleavage and degradation. Downregulation of ICP4 could impact the balance between the lytic and latent states of the virus in vivo.
Collapse
Affiliation(s)
- Lisa A Waidner
- Elcriton, Inc. 15 Innovation Way, Suite 288, Newark, DE 19711, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu H, Yue D, Zhang L, Chen Y, Gao SJ, Huang Y. A Bayesian approach for identifying miRNA targets by combining sequence prediction and gene expression profiling. BMC Genomics 2010; 11 Suppl 3:S12. [PMID: 21143779 PMCID: PMC2999342 DOI: 10.1186/1471-2164-11-s3-s12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs shown to plays important regulatory roles in a wide range of biological processes and diseases. The functions and regulatory mechanisms of most of miRNAs are still poorly understood in part because of the difficulty in identifying the miRNA regulatory targets. To this end, computational methods have evolved as important tools for genome-wide target screening. Although considerable work in the past few years has produced many target prediction algorithms, most of them are solely based on sequence, and the accuracy is still poor. In contrast, gene expression profiling from miRNA transfection experiments can provide additional information about miRNA targets. However, most of existing research assumes down-regulated mRNAs as targets. Given the fact that the primary function of miRNA is protein inhibition, this assumption is neither sufficient nor necessary. Results A novel Bayesian approach is proposed in this paper that integrates sequence level prediction with expression profiling of miRNA transfection. This approach does not restrict the target to be down-expressed and thus improve the performance of existing target prediction algorithm. The proposed algorithm was tested on simulated data, proteomics data, and IP pull-down data and shown to achieve better performance than existing approaches for target prediction. All the related materials including source code are available at http://compgenomics.utsa.edu/expmicro.html. Conclusions The proposed Bayesian algorithm integrates properly the sequence paring data and mRNA expression profiles for miRNA target prediction. This algorithm is shown to have better prediction performance than existing algorithms.
Collapse
Affiliation(s)
- Hui Liu
- SIEE, China University of Mining and Technology, Xuzhou, China.
| | | | | | | | | | | |
Collapse
|
33
|
Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 2010; 85:378-89. [PMID: 20980502 DOI: 10.1128/jvi.01900-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in posttranscriptional regulation. miRNAs are utilized in organisms ranging from plants to higher mammals, and data have shown that DNA viruses also use this method for host and viral gene regulation. Here, we report the sequencing of the small RNAs in rat cytomegalovirus (RCMV)-infected fibroblasts and persistently infected salivary glands. We identified 24 unique miRNAs that mapped to hairpin structures found within the viral genome. While most miRNAs were detected in both samples, four were detected exclusively in the infected fibroblasts and two were specific for the infected salivary glands. The RCMV miRNAs are distributed across the viral genome on both the positive and negative strands, with clusters of miRNAs at a number of locations, including near viral genes r1 and r111. The RCMV miRNAs have a genomic positional orientation similar to that of the miRNAs described for mouse cytomegalovirus, but they do not share any substantial sequence conservation. Similar to other reported miRNAs, the RCMV miRNAs had considerable variation at their 3' and 5' ends. Interestingly, we found a number of specific examples of differential isoform usage between the fibroblast and salivary gland samples. We determined by real-time PCR that expression of the RCMV miRNA miR-r111.1-2 is highly expressed in the salivary glands and that miR-R87-1 is expressed in most tissues during the acute infection phase. Our study identified the miRNAs expressed by RCMV in vitro and in vivo and demonstrated that expression is tissue specific and associated with a stage of viral infection.
Collapse
|
34
|
Michaelis M, Baumgarten P, Mittelbronn M, Driever PH, Doerr HW, Cinatl J. Oncomodulation by human cytomegalovirus: novel clinical findings open new roads. Med Microbiol Immunol 2010; 200:1-5. [PMID: 20967552 DOI: 10.1007/s00430-010-0177-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The question whether human cytomegalovirus may affect cancer diseases has been discussed (very controversially) for decades. There are convinced believers and strict opponents of the idea that HCMV might be able to play a role in the course of cancer diseases. In parallel, the number of published reports on the topic is growing. Recently published and presented (Ranganathan P, Clark P, Kuo JS, Salamat S, Kalejta RF. A Survey of Human Cytomegalovirus Genomic Loci Present in Glioblastoma Multiforme Tissue Samples. 35th Annual International Herpes Workshop, Salt Lake City, 2010) data on HCMV detection in glioblastoma tissues and colocalisation of HCMV proteins with cellular proteins known to be relevant for glioblastoma progression motivated us to recapitulate the current state of evidence.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Improving performance of mammalian microRNA target prediction. BMC Bioinformatics 2010; 11:476. [PMID: 20860840 PMCID: PMC2955701 DOI: 10.1186/1471-2105-11-476] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/22/2010] [Indexed: 11/26/2022] Open
Abstract
Background MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing. Constructing a richer and more reliable training data set and developing an algorithm that properly exploits this data set would be the key to improve the performance current prediction algorithms. Results A comprehensive training data set is constructed for mammalian miRNAs with its positive targets obtained from the most up-to-date miRNA target depository called miRecords and its negative targets derived from 20 microarray data. A new algorithm SVMicrO is developed, which assumes a 2-stage structure including a site support vector machine (SVM) followed by a UTR-SVM. SVMicrO makes prediction based on 21 optimal site features and 18 optimal UTR features, selected by training from a comprehensive collection of 113 site and 30 UTR features. Comprehensive evaluation of SVMicrO performance has been carried out on the training data, proteomics data, and immunoprecipitation (IP) pull-down data. Comparisons with some popular algorithms demonstrate consistent improvements in prediction specificity, sensitivity and precision in all tested cases. All the related materials including source code and genome-wide prediction of human targets are available at http://compgenomics.utsa.edu/svmicro.html. Conclusions A 2-stage SVM based new miRNA target prediction algorithm called SVMicrO is developed. SVMicrO is shown to be able to achieve robust performance. It holds the promise to achieve continuing improvement whenever better training data that contain additional verified or high confidence positive targets and properly selected negative targets are available.
Collapse
|
36
|
Lin YT, Kincaid RP, Arasappan D, Dowd SE, Hunicke-Smith SP, Sullivan CS. Small RNA profiling reveals antisense transcription throughout the KSHV genome and novel small RNAs. RNA (NEW YORK, N.Y.) 2010; 16:1540-1558. [PMID: 20566670 PMCID: PMC2905754 DOI: 10.1261/rna.1967910] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 04/27/2010] [Indexed: 05/29/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus that encodes 12 precursor microRNAs (pre-miRNAs) that give rise to 17 different known approximately 22-nucleotide (nt) effector miRNAs. Like all herpesviruses, KSHV has two modes of infection: (1) a latent mode whereby only a subset of viral genes are expressed and (2) a lytic mode during which the full remaining viral genes are expressed. To date, KSHV miRNAs have been mostly identified via analysis of cells that are undergoing latent infection. Here, we developed a method to profile small RNAs ( approximately 18-75 nt) from populations of cells undergoing predominantly lytic infection. Using two different next-generation sequencing platforms, we cloned and sequenced both pre-miRNAs and derivative miRNAs. Our analysis shows that the vast majority of viral and host 5p miRNAs are co-terminal with the 5' end of the cloned pre-miRNAs, consistent with both being defined by microprocessor cleavage. We report the complete repertoire (25 total) of 5p and 3p derivative miRNAs from all 12 previously described KSHV pre-miRNAs. Two KSHV pre-miRNAs, pre-miR-K12-8 and pre-miR-K12-12, encode abundant derivative miRNAs from the previously unreported strands of the pre-miRNA. We identify several novel small RNAs of low abundance, including viral miRNA-offset-RNAs (moRNAs), and antisense viral miRNAs (miRNA-AS) that are encoded antisense to previously reported KSHV pre-miRNAs. Finally, we observe widespread antisense transcription relative to known coding sequences during lytic replication. Despite the enormous potential to form double-stranded RNA in KSHV-infected cells, we observe no evidence for the existence of abundant viral-derived small interfering RNAs (siRNAs).
Collapse
Affiliation(s)
- Yao-Tang Lin
- Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712-0162, USA
| | | | | | | | | | | |
Collapse
|
37
|
Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs. PLoS Pathog 2010; 6:e1000967. [PMID: 20585629 PMCID: PMC2891821 DOI: 10.1371/journal.ppat.1000967] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022] Open
Abstract
Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs. Regulation of gene expression is as important as the genes themselves in determining the diverse array of living creatures we see in nature. Recently, scientists have discovered a whole new level of gene regulation through the actions of small molecules called microRNAs (miRNAs). It is currently thought that miRNAs regulate gene expression primarily through binding to target sites within the 3′UTR of mRNAs. Here we identify a population of cellular genes that are targeted by a virally encoded miRNA. Many of the genes are related to cell cycle control, suggesting that the viral miRNA is targeting genes within a related pathway. In contrast to most miRNAs, this miRNA inhibits gene expression through binding to target sites within the 5′UTRs, suggesting that viral miRNAs may target genes through mechanisms divergent from cellular miRNAs.
Collapse
Affiliation(s)
- Finn Grey
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein-Barr virus. PLoS One 2010; 5:e9092. [PMID: 20161707 PMCID: PMC2817001 DOI: 10.1371/journal.pone.0009092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/11/2009] [Indexed: 12/16/2022] Open
Abstract
Background Non-coding RNAs have critical functions in diverse biological processes, particularly in gene regulation. Viruses, like their host cells, employ such functional RNAs and the human cancer associated Epstein-Barr virus (EBV) is no exception. Nearly all EBV associated tumours express the EBV small, non-coding RNAs (EBERs) 1 and 2, however their role in viral pathogenesis remains largely obscure. Methodology/Principal Findings To investigate the action of EBER1 in vivo, we produced ten transgenic mouse lines expressing EBER1 in the lymphoid compartment using the mouse immunoglobulin heavy chain intronic enhancer Eμ. Mice of several of these EμEBER1 lines developed lymphoid hyperplasia which in some cases proceeded to B cell malignancy. The hallmark of the transgenic phenotype is enlargement of the spleen and mesenteric lymph nodes and in some cases enlargement of the thymus, liver and peripheral lymph nodes. The tumours were found to be of B cell origin and showed clonal IgH rearrangements. In order to explore if EBER1 would cooperate with c-Myc (deregulated in Burkitt's lymphoma) to accelerate lymphomagenesis, a cross-breeding study was undertaken with EμEBER1 and EμMyc mice. While no significant reduction in latency to lymphoma onset was observed in bi-transgenic mice, c-Myc induction was detected in some EμEBER1 single transgenic tumours, indicative of a functional cooperation. Conclusions/Significance This study is the first to describe the in vivo expression of a polymerase III, non-coding viral gene and demonstrate its oncogenic potential. The data suggest that EBER1 plays an oncogenic role in EBV associated malignant disease.
Collapse
|
39
|
Reichenstein I, Aizenberg N, Goshen M, Bentwich Z, Avni YS. A novel qPCR assay for viral encoded microRNAs. J Virol Methods 2010; 163:323-8. [DOI: 10.1016/j.jviromet.2009.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 12/26/2022]
|
40
|
Abstract
Viruses are associated with 15-20% of human cancers worldwide. In the last century, many studies were directed towards elucidating the molecular mechanisms and genetic alterations by which viruses cause cancer. The importance of epigenetics in the regulation of gene expression has prompted the investigation of virus and host interactions not only at the genetic level but also at the epigenetic level. In this study, we summarize the published epigenetic information relating to the genomes of viruses directly or indirectly associated with the establishment of tumorigenic processes. We also review aspects such as viral replication and latency associated with epigenetic changes and summarize what is known about epigenetic alterations in host genomes and the implications of these for the tumoral process. The advances made in characterizing epigenetic features in cancer-causing viruses have improved our understanding of their functional mechanisms. Knowledge of the epigenetic changes that occur in the genome of these viruses should provide us with markers for following cancer progression, as well as new tools for cancer therapy.
Collapse
Affiliation(s)
- A F Fernandez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Catalonia, Spain
| | | |
Collapse
|
41
|
Abstract
MicroRNAs (miRNAs) are expressed in a wide variety of organisms, ranging from plants to animals, and are key posttranscriptional regulators of gene expression. Virally encoded miRNAs are unique in that they could potentially target both viral and host genes. Indeed, we have previously demonstrated that a human cytomegalovirus (HCMV)-encoded miRNA, miR-UL112, downregulates the expression of a host immune gene, MICB. Remarkably, it was shown that the same miRNA also downregulates immediate-early viral genes and that its ectopic expression resulted in reduced viral replication and viral titers. The targets for most of the viral miRNAs, and hence their functions, are still unknown. Here we demonstrate that miR-UL112 also targets the UL114 gene, and we present evidence that the reduction of UL114 by miR-UL112 reduces its activity as uracil DNA glycosylase but only minimally affects virus growth. In addition, we show that two additional HCMV-encoded miRNAs, miR-US25-1 and miR-US25-2, reduce the viral replication and DNA synthesis not only of HCMV but also of other viruses, suggesting that these two miRNAs target cellular genes that are essential for virus growth. Thus, we suggest that in addition to miR-UL112, two additional HCMV miRNAs control the life cycle of the virus.
Collapse
|
42
|
Human herpesvirus miRNAs statistically preferentially target host genes involved in cell signaling and adhesion/junction pathways. Cell Res 2009; 19:665-7. [PMID: 19381166 DOI: 10.1038/cr.2009.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Silencing viral microRNA as a novel antiviral therapy? J Biomed Biotechnol 2009; 2009:419539. [PMID: 19704916 PMCID: PMC2688686 DOI: 10.1155/2009/419539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/20/2009] [Indexed: 12/16/2022] Open
Abstract
Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases.
Collapse
|
44
|
Novel microRNAs (miRNAs) encoded by herpesvirus of Turkeys: evidence of miRNA evolution by duplication. J Virol 2009; 83:6969-73. [PMID: 19403687 DOI: 10.1128/jvi.00322-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesviruses account for 134 out of the 140 virus-encoded microRNAs (miRNAs) known today. Here we report the identification of 11 novel miRNAs encoded by herpesvirus of turkey (HVT), a virus used as a live vaccine in poultry against the highly oncogenic Marek's disease virus type 1. Ten of these miRNAs were clustered together within the repeat long region of the viral genome, demonstrating some degree of positional conservation with other mardiviruses. Close sequence and phylogenetic relationships of some miRNAs in this cluster indicate evolution by duplication. HVT miRNAs represent the first example of virus-encoded miRNAs that show evolution by duplication.
Collapse
|
45
|
MicroRNAs of Gallid and Meleagrid herpesviruses show generally conserved genomic locations and are virus-specific. Virology 2009; 388:128-36. [PMID: 19328516 DOI: 10.1016/j.virol.2009.02.043] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 01/04/2023]
Abstract
Many herpesviruses, including Marek's disease viruses (MDV1 and MDV2), encode microRNAs. In this study, we report microRNAs of two related herpesviruses, infectious laryngotracheitis virus (ILTV) and herpesvirus of turkeys (HVT), as well as additional MDV2 microRNAs. The genome locations, but not microRNA sequences, are conserved among all four of these avian herpesviruses. Most are clustered in the repeats flanking the unique long region (I/TR(L)), except in ILTV which lacks these repeats. Two abundant ILTV microRNAs are antisense to the immediate early gene ICP4. A homologue of host microRNA, gga-miR-221, was found among the HVT microRNAs. Additionally, a cluster of HVT microRNAs was found in a region containing two locally duplicated segments, resulting in paralogous HVT microRNAs with 96-100% identity. The prevalence of microRNAs in the genomic repeat regions as well as in local repeats suggests the importance of genetic plasticity in herpesviruses for microRNA evolution and preservation of function.
Collapse
|
46
|
Sullivan CS, Sung CK, Pack CD, Grundhoff A, Lukacher AE, Benjamin TL, Ganem D. Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection. Virology 2009; 387:157-67. [PMID: 19272626 DOI: 10.1016/j.virol.2009.02.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small regulatory RNAs that post-transcriptionally regulate gene expression and can be encoded by viral as well as cellular genomes. The functions of most viral miRNAs are unknown and few have been studied in an in vivo context. Here we show that the murine polyomavirus (PyV) encodes a precursor microRNA that is processed into two mature microRNAs, both of which are active at directing the cleavage of the early PyV mRNAs. Furthermore, we identify a deletion mutant of polyomavirus that is defective in encoding the microRNAs. This mutant replicates normally and transforms cultured cells with efficiencies comparable to wildtype PyV. The miRNA mutant is competent to establish a transient infection of mice following parenteral inoculation, and is cleared post infection at approximately the same rate as the wildtype virus. In addition, under these laboratory conditions, we observe no differences in anti-viral CD8 T cell responses. These results indicate that PyV miRNA expression is not essential for infection of cultured cells or experimentally inoculated mice, and raise the possibility that its role in natural infection might involve aspects of acquisition or spread that are not recapitulated by experimental inoculation.
Collapse
Affiliation(s)
- Christopher S Sullivan
- The University of Texas at Austin, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, 1 University Station A5000, Austin TX 78712-0162, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Michaelis M, Doerr HW, Cinatl J. Oncomodulation by human cytomegalovirus: evidence becomes stronger. Med Microbiol Immunol 2009; 198:79-81. [PMID: 19198878 DOI: 10.1007/s00430-009-0107-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Paul Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
48
|
Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009; 364:99-115. [PMID: 18926973 PMCID: PMC2592633 DOI: 10.1098/rstb.2008.0168] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
49
|
Seo GJ, Chen CJ, Sullivan CS. Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology 2008; 383:183-7. [PMID: 19046593 DOI: 10.1016/j.virol.2008.11.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/29/2008] [Accepted: 11/03/2008] [Indexed: 01/31/2023]
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of gene expression that play a role in viral infection. We have developed a method to identify viral-encoded miRNAs from viruses in which abundant amounts of infected material is limiting. We show that Merkel Cell Polyomavirus (MCV), a recently identified human virus associated with cancer, encodes a miRNA. This miRNA is expressed from the late strand, lies antisense to the early transcripts and negatively regulates expression of chimeric reporters containing a portion of the early transcripts. Interestingly, different viral isolates have sequence polymorphisms in the pre-miRNA region that result in amino acids substitutions but fully preserve the processing and activity of the miRNAs.
Collapse
Affiliation(s)
- Gil Ju Seo
- The University of Texas at Austin, Molecular Genetics and Microbiology, 78712-0162, USA
| | | | | |
Collapse
|
50
|
Seo GJ, Fink LHL, O'Hara B, Atwood WJ, Sullivan CS. Evolutionarily conserved function of a viral microRNA. J Virol 2008; 82:9823-8. [PMID: 18684810 PMCID: PMC2566259 DOI: 10.1128/jvi.01144-08] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/03/2008] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are potent RNA regulators of gene expression. Some viruses encode miRNAs, most of unknown function. The majority of viral miRNAs are not conserved, and whether any have conserved functions remains unclear. Here, we report that two human polyomaviruses associated with serious disease in immunocompromised individuals, JC virus and BK virus, encode miRNAs with the same function as that of the monkey polyomavirus simian virus 40 miRNAs. These miRNAs are expressed late during infection to autoregulate early gene expression. We show that the miRNAs generated from both arms of the pre-miRNA hairpin are active at directing the cleavage of the early mRNAs. This finding suggests that despite multiple differences in the miRNA seed regions, the primary target (the early mRNAs) and function (the downregulation of early gene expression) are evolutionarily conserved among the primate polyomavirus-encoded miRNAs. Furthermore, we show that these miRNAs are expressed in individuals diagnosed with polyomavirus-associated disease, suggesting their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- G J Seo
- Molecular Genetics and Microbiology, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA
| | | | | | | | | |
Collapse
|