1
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
2
|
Handa A, Tsujioka Y, Nishimura G, Nozaki T, Kono T, Jinzaki M, Harms T, Connolly SA, Sato TS, Sato Y. RASopathies for Radiologists. Radiographics 2024; 44:e230153. [PMID: 38602868 DOI: 10.1148/rg.230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
RASopathies are a heterogeneous group of genetic syndromes caused by germline mutations in a group of genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. RASopathies include neurofibromatosis type 1, Legius syndrome, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, central conducting lymphatic anomaly, and capillary malformation-arteriovenous malformation syndrome. These disorders are grouped together as RASopathies based on our current understanding of the Ras/MAPK pathway. Abnormal activation of the Ras/MAPK pathway plays a major role in development of RASopathies. The individual disorders of RASopathies are rare, but collectively they are the most common genetic condition (one in 1000 newborns). Activation or dysregulation of the common Ras/MAPK pathway gives rise to overlapping clinical features of RASopathies, involving the cardiovascular, lymphatic, musculoskeletal, cutaneous, and central nervous systems. At the same time, there is much phenotypic variability in this group of disorders. Benign and malignant tumors are associated with certain disorders. Recently, many institutions have established multidisciplinary RASopathy clinics to address unique therapeutic challenges for patients with RASopathies. Medications developed for Ras/MAPK pathway-related cancer treatment may also control the clinical symptoms due to an abnormal Ras/MAPK pathway in RASopathies. Therefore, radiologists need to be aware of the concept of RASopathies to participate in multidisciplinary care. As with the clinical manifestations, imaging features of RASopathies are overlapping and at the same time diverse. As an introduction to the concept of RASopathies, the authors present major representative RASopathies, with emphasis on their imaging similarities and differences. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Atsuhiko Handa
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Yuko Tsujioka
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Gen Nishimura
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Taiki Nozaki
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Tatsuo Kono
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Masahiro Jinzaki
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Taylor Harms
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Susan A Connolly
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Takashi Shawn Sato
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Yutaka Sato
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| |
Collapse
|
3
|
Kale A, Patil VS, Singh P, Raithatha H, Shah M, Aggarwal R. Congenital Pseudoarthrosis of Tibia With Anterolateral Bowing Treated With Ilizarov Ring Fixator: A Case Report. Cureus 2023; 15:e47615. [PMID: 38021615 PMCID: PMC10667603 DOI: 10.7759/cureus.47615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a rare, dysplastic condition that is characterized by a "false joint" in the tibia, leading to potential disability. We present a rare case report of a 12-year-old male from India with a history of neurofibromatosis type 1 (NF1) and anterolateral bowing of the tibia since birth. He sustained a tibial fracture during play. X-ray evaluation confirmed the fracture, and a clinical diagnosis of CPT was established. The treatment involved corticotomy for deformity correction and stabilization using Ilizarov's ring fixation. The procedure was successful, with post-operative radiological evaluations showing significant improvement in the center of rotation of angulation (CORA) from 60° pre-operatively to 25° post-operatively. The patient was discharged with an external fixator and after seven months, transitioned to full weight-bearing ambulation with a specialized brace. The Ilizarov procedure proved to be a safe and effective treatment for CPT, offering benefits such as limb lengthening and ankle stabilization.
Collapse
Affiliation(s)
- Amit Kale
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Vishal S Patil
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Parminder Singh
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Harsh Raithatha
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Meet Shah
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Rishabh Aggarwal
- Orthopedics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
4
|
Li Z, Mei H, Liu K, Yang G. Differential expression and effect analysis of lncRNA-mRNA in congenital pseudarthrosis of the tibia. Front Genet 2023; 14:1094298. [PMID: 36814904 PMCID: PMC9939773 DOI: 10.3389/fgene.2023.1094298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Background: To analyze the lncRNA-mRNA differential expression and co-expression network of periosteal stem cells (PSCs) from congenital pseudarthrosis of the tibia (CPT) and normal patients, and to explore the role of key lncRNAs. Methods: Differentially expressed lncRNAs and mRNAs in PSCs were obtained by sequencing, and biological functions of differentially expressed mRNAs were detected by gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein -protein interaction (PPI) analysis. The co-expression network of lncRNA-mRNA was constructed by correlation analysis of differentially expressed lncRNAs and mRNAs, and the key lncRNAs were screened according to the connectivity degree. After that, the cis-regulated target genes of differential expressed lncRNAs and mRNAs were predicted. Results: A total of 194 differentially expressed lncRNAs were identified, including 73 upregulated and 121 downregulated genes. A total of 822 differentially expressed mRNAs were identified, including 311 upregulated and 511 downregulated genes. GO, KEGG and PPI enrichment analysis showed that the regulatory function of differentially expressed mRNAs were mainly gathered in skeletal system development and tissue morphogenesis. The co-expression network with 226 nodes and 3,390 edges was constructed based on correlation analysis. A total of 10 key lncRNAs, including FAM227B, POM121L9P, AF165147 and AC103702, were screened according to connectivity degree. Prediction of target genes indicated that FAM227B-FGF7 and AC103702-HOXB4/5/6 may play an important role in the pathogenesis of CPT. Conclusion: A total of 10 key lncRNAs, including FAM227B, POM121L9P, AF165147, and AC103702, occupy the core position in the co-expression network, suggesting that these lncRNAs and their target genes may play an important role in the pathogenesis of CPT.
Collapse
Affiliation(s)
- Zhuoyang Li
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Mei
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Kun Liu
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China,*Correspondence: Kun Liu, ; Ge Yang,
| | - Ge Yang
- Department of Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China,*Correspondence: Kun Liu, ; Ge Yang,
| |
Collapse
|
5
|
Siebert MJ, Makarewich CA. Anterolateral Tibial Bowing and Congenital Pseudoarthrosis of the Tibia: Current Concept Review and Future Directions. Curr Rev Musculoskelet Med 2022; 15:438-446. [PMID: 35841513 PMCID: PMC9789274 DOI: 10.1007/s12178-022-09779-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Congenital pseudarthrosis of the tibia (CPT) is a rare condition closely associated with neurofibromatosis type I. Affected children are born with anterolateral bowing of the tibia which progresses to pathologic fracture, pseudarthrosis, and high risk of refracture even after initial union has been attained. There is currently no consensus on the classification of this disease or consensus on its treatment. The purpose of this review is to (1) review the clinical presentation, etiology, epidemiology, classification, and natural history of congenital pseudarthrosis of the tibia and (2) review the existing trends in treatment of congenital pseudarthrosis of the tibia and its associated complications. RECENT FINDINGS Current treatment protocols focus primarily on combining intramedullary fixation with external or internal fixation to achieve union rates between 74 and 100%. Intramedullary devices should be retained as long as possible to prevent refracture. Cross-union techniques, though technically difficult, have a reported union rate of 100% and no refractures at mid- to long-term follow-up. Vascularized fibular grafting and induced membrane technique can be successful, but at the cost of numerous surgical procedures. Growth modulation is a promising new approach to preventing fracture altogether, though further study with larger patient series is necessary. The primary consideration in treatment of CPT is expected union rate and refracture risk. Combined intramedullary and external or internal fixation, especially with cross-union techniques, show most promise. Perhaps most exciting is further research on preventing fracture through guided growth, which may reduce the morbidity of multiple surgical procedures which have been the mainstay of treatment for CPT thus far.
Collapse
Affiliation(s)
- Matthew J Siebert
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
| | - Christopher A Makarewich
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
- Primary Children's Hospital, Salt Lake City, UT, USA.
- Shriners Children's, Salt Lake City, Utah, USA.
| |
Collapse
|
6
|
Liu Y, Qin ZQ, Zheng Y, Wu J, Yang G, Tan Q, Zhu G, Liu K, Mei H. New insights into pathogenesis of congenital pseudarthrosis of tibia in children using periosteum proteomics analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9374. [PMID: 35933588 DOI: 10.1002/rcm.9374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The exact etiology and pathogenesis of congenital pseudarthrosis of tibia (CPT) are not clear. Quantitative proteomics analysis plays a vital role in disease pathology research. Tandem mass tag (TMT)-based proteomics techniques were employed to identify and analyze the differentially expressed proteins (DEP) in the tibia periosteum tissues of CPT patients. METHODS The samples were divided into three groups: CPT with NF1 group, CPT without NF1 group (non-NF1-CPT), and control group (patients with open tibial fracture). A fold change ≥1.5 or ≤0.66 and P-value <0.05 were used as the thresholds to screen DEPs. Subsequently, bioinformatics resources such as online tools DAVID and String were used to generate gene ontology (GO) annotation, KEGG pathways enrichment, and protein-protein interaction (PPI) network for these DEPs. RESULTS The results show that a total of 347 proteins were differentially expressed in NF1-CPT groups, 212 of which were upregulated and 135 were downregulated. There were more DEPs in non-NF1-CPT groups; we identified 467 DEPs, including 281 upregulated and 186 downregulated. Among them, NF1-CPT groups and non-NF1-CPT groups shared 231 DEPs, and the remaining 230 DEPs showed the same expression trend in the two disease groups, with 117 upregulated and 113 downregulated. In particular, 116 proteins were altered only in NF1-CPT groups (94 were upregulated and 22 were downregulated), whereas 236 proteins were altered only in non-NF1-CPT groups (164 were upregulated and 72 were downregulated). Finally, compared with non-NF1-CPT groups, 47 proteins changed 1.5-fold and P-value < 0.05 in NF1-CPT groups. CONCLUSIONS To sum up, we found that common DEPS in periosteum of NF1-CPT and non-NF1-CPT groups are mainly involved in cell matrix assembly, cell adhesion, AKT-PI3K signal pathway activation, and vascular agglutination, which indicate that these are the pathological characteristics of CPT. The osteogenic ability is weak, the osteoclastic ability is strong, the vascular lumen is narrow, the invasive growth and the proliferation of fibroblasts are enhanced in CPT patients.
Collapse
Affiliation(s)
- Yaoxi Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Zhen Qi Qin
- Medical School, Fuyang Normal University, Fuyang, China
| | - Yu Zheng
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Jiangyan Wu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Ge Yang
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Qian Tan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Guanghui Zhu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Kun Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| | - Haibo Mei
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The School of Pediatrics, Heng Yang Medical School, University of South China, Changsha City, Hunan Province, 410007, China
| |
Collapse
|
7
|
Xu J, Zhang Y, Zhu K, Li J, Guan Y, He X, Jin X, Bai G, Hu L. Clinical characteristics and in silico analysis of congenital pseudarthrosis of the tibia combined with neurofibromatosis type 1 caused by a novel NF1 mutation. Front Genet 2022; 13:991314. [PMID: 36246612 PMCID: PMC9553987 DOI: 10.3389/fgene.2022.991314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a rare congenital bone malformation, which has a strong relationship with Neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant disease leading to multisystem disorders. Here, we presented the genotypic and phenotypic characteristics of one unique case of a five-generation Chinese family. The proband was CPT accompanied with NF1 due to NF1 mutation. The proband developed severe early-onset CPT combined with NF1 after birth. Appearance photos and X-ray images of the left limb of the proband showed significant bone malformation. Slit-lamp examination showed Lisch nodules in both eyes of the proband. Whole-exome sequencing (WES) and Sanger sequencing confirmed the truncation variant of NF1 (c.871G>T, p. E291*). Sequence conservative and evolutionary conservation analysis indicated that the novel mutation (p.E291*) was highly conserved. The truncated mutation led to the loss of functional domains, including CSRD, GRD, TBD, SEC14-PH, CTD, and NLS. It may explain why the mutation led to a severe clinical feature. Our report expands the genotypic spectrum of NF1 mutations and the phenotypic spectrum of CPT combined with NF1.
Collapse
Affiliation(s)
- Jingfang Xu
- Department of Orthopaedics, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinyu He
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuejing Jin
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guannan Bai
- Department of Child Health Care, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Guannan Bai, ; Lidan Hu,
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Guannan Bai, ; Lidan Hu,
| |
Collapse
|
8
|
Ahmed R, Uppuganti S, Derasari S, Meyer J, Pennings JS, Elefteriou F, Nyman JS. Identifying Bone Matrix Impairments in a Mouse Model of Neurofibromatosis Type 1 (NF1) by Clinically Translatable Techniques. J Bone Miner Res 2022; 37:1603-1621. [PMID: 35690920 PMCID: PMC9378557 DOI: 10.1002/jbmr.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Three-to-four percent of children with neurofibromatosis type 1 (NF1) present with unilateral tibia bowing, fracture, and recalcitrant healing. Alkaline phosphatase (ALP) enzyme therapy prevented poor bone mineralization and poor mechanical properties in mouse models of NF1 skeletal dysplasia; but transition to clinical trials is hampered by the lack of a technique that (i) identifies NF1 patients at risk of tibia bowing and fracture making them eligible for trial enrollment and (ii) monitors treatment effects on matrix characteristics related to bone strength. Therefore, we assessed the ability of matrix-sensitive techniques to provide characteristics that differentiate between cortical bone from mice characterized by postnatal loss of Nf1 in Osx-creTet-Off ;Nf1flox/flox osteoprogenitors (cKO) and from wild-type (WT) mice. Following euthanasia at two time points of bone disease progression, femur and tibia were harvested from both genotypes (n ≥ 8/age/sex/genotype). A reduction in the mid-diaphysis ultimate force during three-point bending at 20 weeks confirmed deleterious changes in bone induced by Nf1 deficiency, regardless of sex. Pooling females and males, low bound water (BW), and low cortical volumetric bone mineral density (Ct.vBMD) were the most accurate outcomes in distinguishing cKO from WT femurs with accuracy improving with age. Ct.vBMD and the average unloading slope (Avg-US) from cyclic reference point indentation tests were the most sensitive in differentiating WT from cKO tibias. Mineral-to-matrix ratio and carbonate substitution from Raman spectroscopy were not good classifiers. However, when combined with Ct.vBMD and BW (femur), they helped predict bending strength. Nf1 deficiency in osteoprogenitors negatively affected bone microstructure and matrix quality with deficits in properties becoming more pronounced with duration of Nf1 deficiency. Clinically measurable without ionizing radiation, BW and Avg-US are sensitive to deleterious changes in bone matrix in a preclinical model of NF1 bone dysplasia and require further clinical investigation as potential indicators of an onset of bone weakness in children with NF1. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua Meyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
9
|
Castaldo A, Siervo A, Ferrara D, Giugliano AM, Errico ME, Zeccolini M, Esposito F. Osteofibrous dysplasia: A rare case in 3-day-old female. Radiol Case Rep 2022; 17:825-831. [PMID: 35024084 PMCID: PMC8733038 DOI: 10.1016/j.radcr.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022] Open
Abstract
Osteofibrous dysplasia (OFD) is a nonneoplastic tumor-like lesion, made up of fibrous matrix with immature bone tissue surrounded by osteoblasts, occurring usually in the cortex of tibial diaphysis. OFD is usually seen in the first decade of life and, according to literature, it is rarely seen in the newborn period. Diagnosis of congenital OFD in the newborn is challenging because it is uncommon in this age group and can be confused with other bone benign or malignant lesions. Imaging plays an important role in diagnosis, although histological confirmation is often required. Our report presents a rare case of pathologically confirmed congenital OFD in 3-day-old female which presented with a swelling of her right leg. We will focus on imaging findings of OFD and main differential diagnosis of this lesion in neonatal age.
Collapse
Affiliation(s)
- Anna Castaldo
- Advanced Biomedical Sciences Department, University Federico II of Naples, 80131, Naples, Italy
| | - Angela Siervo
- Advanced Biomedical Sciences Department, University Federico II of Naples, 80131, Naples, Italy
| | - Dolores Ferrara
- Department of Radiology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | - Massimo Zeccolini
- Department of Radiology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | - Francesco Esposito
- Department of Radiology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| |
Collapse
|
10
|
Case series of congenital pseudarthrosis of the tibia unfulfilling neurofibromatosis type 1 diagnosis: 21% with somatic NF1 haploinsufficiency in the periosteum. Hum Genet 2022; 141:1371-1383. [DOI: 10.1007/s00439-021-02429-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
|
11
|
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet 2021; 141:177-191. [PMID: 34928431 PMCID: PMC8807470 DOI: 10.1007/s00439-021-02410-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene and choroidal anomalies, for achieving an early and accurate diagnosis.
Collapse
Affiliation(s)
- Hildegard Kehrer-Sawatzki
- Institute of Human Genetics, University Hospital Ulm, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
12
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
13
|
Balaji A, Toga A, Kano J, Fujimaru A, Matsumoto T, Katoh S. Unicompartmental Knee Arthroplasty for Severe Osteoarthritis and Pseudarthrosis in a Patient with Neurofibromatosis. Orthop Res Rev 2021; 13:63-71. [PMID: 34017204 PMCID: PMC8131347 DOI: 10.2147/orr.s304651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
We describe the case of a 76-year-old Asian female patient who presented with severe pain and a valgus deformity of the right knee. Her past medical history included neurofibromatosis, which resulted in a severe anterior slope of the right knee, limb shortening, and congenital pseudarthrosis. She was diagnosed with severe anterolateral osteoarthritis and eburnation of the right knee that was treated surgically with a lateral unicompartmental knee arthroplasty (UKA). Bone and cartilage fragments were removed from the joint space and a UKA implant (Zimmer®) with dimensions of 29 mm × 50 mm was inserted. Perioperative imaging revealed that the procedure resulted in the correction of the valgus deformity. Pain was reduced and the patient was able to walk for 10 meters with support during the immediate postoperative period. One week post-surgery, the patient sustained an oblique tibial fracture that extended from the medial edge of the implant to the medial slope of the proximal tibia. This complication may have been attributed to large implant size or sagittal overcutting. The fracture was treated surgically with a rotated anterolateral locking plate (A.L.P.S®) inserted into the distal tibia. The patient was capable of ambulation at full weight load at two months after the second procedure. It is critical to recognize that there are no standard protocols that can be used to guide the treatment of neurofibromatosis-induced osteoarthritis. The specific preoperative condition of the individual patient plays a large role in determining the appropriate treatment option. In this case, the availability of custom-fitted UKA implants might have improved outlook, we understand that these devices are costly and may not be available at all hospitals. However, we strongly believe that the "gold standard" in these cases is patient-specific treatment that addresses the issues of the highest concern using the resources that are available at that time.
Collapse
Affiliation(s)
- Ayush Balaji
- Department of Orthopedic Surgery, Edogawa Hospital, Tokyo, Japan
| | - Akira Toga
- Department of Orthopedic Surgery, Edogawa Hospital, Tokyo, Japan
| | - Jun Kano
- Department of Orthopedic Surgery, Edogawa Hospital, Tokyo, Japan
| | - Atsuki Fujimaru
- Department of Orthopedic Surgery, Edogawa Hospital, Tokyo, Japan
| | | | - Shojiro Katoh
- Department of Orthopedic Surgery, Edogawa Hospital, Tokyo, Japan
| |
Collapse
|
14
|
Yang G, Yu H, Liu Y, Ye W, Zhu G, Yan A, Tan Q, Mei H. Serum-derived exosomes from neurofibromatosis type 1 congenital tibial pseudarthrosis impaired bone by promoting osteoclastogenesis and inhibiting osteogenesis. Exp Biol Med (Maywood) 2021; 246:130-141. [PMID: 33023333 PMCID: PMC7871115 DOI: 10.1177/1535370220962737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment of congenital pseudarthrosis of the tibia (CPT) still is full of challenges in pediatric orthopedist. Serum-derived exosomes (SDEs) have been proven to be participated in bone remodeling. However, the molecular changes in SDEs of CPT children and their pathologies have not been elucidated. In this study, SDEs were isolated and purified from CPT patients (CPT-SDEs) associated with neurofibromatosis type 1 (NF1) and normal children (Norm-SDEs). Then we obtained the proteomics profile of SDEs by combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) and tandem mass tag label-based quantitation. In vitro, the efficacy of SDEs on osteoblastic differentiation of MC3T3-E1 cells and osteoclastogenesis ability of RAW264.7 cells were evaluated by quantitative real-time PCR (qRT-PCR) and cytochemical staining. In vivo, we used micro-CT to assess cortical bone mass and trabecular microstructures to reflect the influence of SDEs on bone remodeling after injection into the tail vein of rats. Based on proteomics analysis, 410 differentially expressed proteins, including 289 downregulated proteins and 121 upregulated proteins, were identified in the CPT-SDEs. These proteins have multiple biological functions associated with cellular metabolic processes, catalytic activity, and protein binding, which are important for cell differentiation and proliferation. In vitro, CPT-SDEs decreased the osteogenic differentiation of MC3T3-E1 cells and promoted the osteoclastogenesis of RAW264.7 cells. Injection of CPT-SDEs into the tail vein for two months resulted in bone loss in rats, as indicated by the decrease in trabecular and cortical bone mass. Our findings demonstrated the differences in proteins in SDEs between normal and CPT children with NF1. These differentially expressed proteins in CPT-SDEs contributed to deteriorating trabecular bone microstructures by inhibiting bone formation and stimulating bone resorption.
Collapse
Affiliation(s)
- Ge Yang
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Hui Yu
- Department of Orthopedic and Trauma Surgery, University Hospital Bonn, Bonn 39062, Germany
| | - Yaoxi Liu
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Weihua Ye
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Guanghui Zhu
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - An Yan
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Qian Tan
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| | - Haibo Mei
- Pediatric orthopedic lab, Department of Orthopedic Surgery, the Hunan Children's Hospital, Hunan 410000, PR China
| |
Collapse
|
15
|
Reconstructive Approaches in Surgical Management of Congenital Pseudarthrosis of the Tibia. J Clin Med 2020; 9:jcm9124132. [PMID: 33371504 PMCID: PMC7767548 DOI: 10.3390/jcm9124132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of congenital pseudarthrosis of the tibia remains a major challenge in pediatric orthopedics. Ideal timing and preference of surgical procedures are discussed controversially. A variety of reconstructive treatment strategies have been described in literature, but so far none has proven its superiority. The aim of treatment is to obtain long-term bone union, to prevent refracture, and to correct angular deformities and leg length discrepancies. This study retrospectively evaluates the outcome of different reconstructive strategies. Sixty-nine patients were identified who presented to our outpatient department between 1997 and 2019. Twenty-six of these patients underwent reconstructive surgical treatment and were included in this study. The study cohort was divided into three groups. Excision of the pseudarthrosis was performed in all patients in Group A and B, and in two patients of Group C. Group A (six/26 patients) received subsequent bone transport through external fixation maintaining original length. In Group B (15/26 patients), patients underwent either previous, simultaneous, or subsequent extrafocal lengthening through external fixation to reconstitute length. In Group C (five/26 patients), internal fixation with intramedullary nails was applied. Radiological and clinical evaluation was performed to assess bone union and complication rates. Results varied considerably between the study groups. Overall, the primary bone fusion rate was 69.2%. There were four refractures, all occurring in Group B. The long-term bone union rate without refracture was 53.8%. The overall complication rate was 53.8% and 23.1% showed persistent pseudarthrosis. Two secondary amputations were performed due to failed bone fusion. In conclusion, excision of the pseudarthrosis and extrafocal lengthening achieves a satisfying bone union rate and limb reconstruction, while bone transport does not offer significant advantages but shows higher complication rates. Intramedullary stabilization should be applied to maintain bone union, but shows lower bone union rates when used as a stand-alone treatment regimen. Regardless of the primary bone fusion rates, the probability of long-term bone union remains unpredictable.
Collapse
|
16
|
Van Den Heuvel SCM, Winters HAH, Ultee KH, Zijlstra-Koenrades N, Sakkers RJB. Combined massive allograft and intramedullary vascularized fibula transfer: the Capanna technique for treatment of congenital pseudarthrosis of the tibia. Acta Orthop 2020; 91:605-610. [PMID: 32507071 PMCID: PMC8023909 DOI: 10.1080/17453674.2020.1773670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background and purpose - Congenital pseudarthrosis of the tibia (CPT) is caused by local periosteal disease that can lead to bowing, fracturing, and pseudarthrosis. Current most successful treatment methods are segmental bone transport and vascularized and non-vascularized bone grafting. These methods are commonly hampered by discomfort, reoperations, and long-term complications. We report a combination of a vascularized fibula graft and large bone segment allograft, to improve patient comfort with similar outcomes.Patients and methods - 7 limbs that were operated on in 6 patients between November 2007 and July 2018 with resection of the CPT and reconstruction with a vascularized fibula graft in combination with a bone allograft were retrospectively studied. The mean follow-up time was 5.4 years (0.9-9.6). Postoperative endpoints: time to discharge, time to unrestricted weight bearing, complications within 30 days, consolidation, number of fractures, and secondary deformities.Results - The average time to unrestricted weight bearing with removable orthosis was 3.5 months (1.2-7.8). All proximal anastomoses consolidated within 10 months (2-10). 4 of the 7 grafts fractured at the distal anastomosis between 6 and 14 months postoperatively. After reoperation, consolidation of the distal anastomosis was seen after 2.8 months (2-4). 1 patient required a below-knee amputation.Interpretation - This case series showed favorable results of the treatment of CPT through a combination of a vascularized fibula graft and large bone segment allograft, avoiding the higher reintervention rate and discomfort with ring frame bone transport, and the prolonged non-weight bearing with vascularized fibula transfer without reinforcement with a massive large bone segment allograft.
Collapse
|
17
|
Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol 2020; 84:1667-1676. [PMID: 32771543 DOI: 10.1016/j.jaad.2020.07.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 is the most common neurocutaneous syndrome, with a frequency of 1 in 2500 persons. Diagnosis is paramount in the pretumor stage to provide proper anticipatory guidance for a number of neoplasms, both benign and malignant. Loss-of-function mutations in the NF1 gene result in truncated and nonfunctional production of neurofibromin, a tumor suppressor protein involved in downregulating the RAS signaling pathway. New therapeutic and preventive options include tyrosine kinase inhibitors, mTOR inhibitors, interferons, and radiofrequency therapy. This review summarizes recent updates in genetics, mutation analysis assays, and treatment options targeting aberrant genetic pathways. We also propose modified diagnostic criteria and provide an algorithm for surveillance of patients with neurofibromatosis type 1.
Collapse
|
18
|
Abstract
Over the past 5 years, published literature regarding treatment of pediatric limb deformity and limb length discrepancy demonstrates much interest in better understanding, categorizing and treating these challenging problems. Many studies explore expanding and refining indications for traditional treatment methods like guided growth techniques. Other studies have evaluated the results of new techniques such as lengthening via mechanized intramedullary nails. Additionally, series comparing older and newer techniques such as lengthening with external devices versus mechanized nails are becoming increasingly available.
Collapse
|
19
|
Mladenov KV, Spiro AS, Krajewski KL, Stücker R, Kunkel P. Management of spinal deformities and tibial pseudarthrosis in children with neurofibromatosis type 1 (NF-1). Childs Nerv Syst 2020; 36:2409-2425. [PMID: 32613421 PMCID: PMC8346390 DOI: 10.1007/s00381-020-04775-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
UNLABELLED The skeletal system is affected in up to 60% of patients with neurofibromatosis type 1. The most commonly observed entities are spinal deformities and tibial dysplasia. Early recognition of radiologic osseous dystrophy signs is of utmost importance because worsening of the deformities without treatment is commonly observed and surgical intervention is often necessary. Due to the relative rarity and the heterogenic presentation of the disease, evidence regarding the best surgical strategy is still lacking. PURPOSE To report our experience with the treatment of skeletal manifestations in pediatric patients with (neurofibromatosis type 1) NF-1 and to present the results with our treatment protocols. MATERIALS AND METHODS This is a retrospective, single expert center study on children with spinal deformities and tibial dysplasia associated with NF-1 treated between 2006 and 2020 in a tertiary referral institution. RESULTS Spinal deformity: Thirty-three patients (n = 33) were included. Mean age at index surgery was 9.8 years. In 30 patients (91%), the deformity was localized in the thoracic and/or lumbar spine, and in 3 patients (9%), there was isolated involvement of the cervical spine. Eleven patients (33%) received definitive spinal fusion as an index procedure and 22 (67%) were treated by means of "growth-preserving" spinal surgery. Halo-gravity traction before index surgery was applied in 11 patients (33%). Progression of deformity was stopped in all patients and a mean curve correction of 60% (range 23-98%) was achieved. Mechanical problems with instrumentation requiring revision surgery were observed in 55% of the patients treated by growth-preserving techniques and in none of the patients treated by definitive fusion. One patient (3%) developed a late incomplete paraplegia due to a progressive kyphotic deformity. Tibial dysplasia: The study group comprised of 14 patients. In 5 of them (36%) pathological fractures were present on initial presentation. In the remaining 9 patients (64%), anterior tibial bowing without fracture was observed initially. Four of them (n = 4, 28%) subsequently developed a pathologic fracture despite brace treatment. Surgical treatment was indicated in 89% of the children with pathological fractures. This involved resection of the pseudarthrosis, autologous bone grafting, and intramedullary nailing combined with external fixation in some of the cases. In 50% of the patients, bone morphogenic protein was used "off-label" in order to promote union. Healing of the pseudarthrosis was achieved in all of the cases and occurred between 5 to 13 months after the index surgical intervention. Four of the patients treated surgically needed more than one surgical intervention in order to achieve union; one patient had a re-fracture. All patients had a good functional result at last follow-up. CONCLUSION Early surgical intervention is recommended for the treatment dystrophic spinal deformity in children with NF-1. Good and sustainable curve correction without relevant thoracic growth inhibition can be achieved with growth-preserving techniques alone or in combination with short spinal fusion at the apex of the curve. Preoperative halo-gravity traction is a safe and very effective tool for the correction of severe and rigid deformity in order to avoid neurologic injury. Fracture union in tibial dysplasia with satisfactory functional results can be obtained in over 80% of the children by means of surgical resection of the pseudarthrosis, intramedullary nailing, and bone grafting. Wearing a brace until skeletal maturity is achieved is mandatory in order to minimize the risk of re-fracture.
Collapse
Affiliation(s)
- Kiril V. Mladenov
- Altona Children’s Hospital – AKK/UKE, Bleickenallee 38, 22763 Hamburg, Germany
| | | | | | - Ralf Stücker
- Altona Children’s Hospital – AKK/UKE, Bleickenallee 38, 22763 Hamburg, Germany
| | - Philip Kunkel
- Altona Children’s Hospital – AKK/UKE, Bleickenallee 38, 22763 Hamburg, Germany
| |
Collapse
|
20
|
Zhu G, Zheng Y, Liu Y, Yan A, Hu Z, Yang Y, Xiang S, Li L, Chen W, Peng Y, Zhong N, Mei H. Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants: genetic and clinical analysis of 75 patients. Orphanet J Rare Dis 2019; 14:221. [PMID: 31533797 PMCID: PMC6751843 DOI: 10.1186/s13023-019-1196-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Congenital pseudarthrosis of the tibia (CPT) is a rare disease. Some patients present neurofibromatosis type 1 (NF1), while some others do not manifest NF1 (non-NF1). The etiology of CPT, particularly non-NF1 CPT, is not well understood. Here we screened germline variants of 75 CPT cases, including 55 NF1 and 20 non-NF1. Clinical data were classified and analyzed based on NF1 gene variations to investigate the genotype-phenotype relations of the two types of patients. Results Using whole-exome sequencing and Multiplex Ligation-Dependent Probe Amplification, 44 out of 55 NF1 CPT patients (80.0%) were identified as carrying pathogenic variants of the NF1 gene. Twenty-five variants were novel; 53.5% of variants were de novo, and a higher proportion of their carriers presented bone fractures compared to inherited variant carriers. No NF1 pathogenic variants were found in all 20 non-NF1 patients. Clinical features comparing NF1 CPT to non-NF1 CPT did not show significant differences in bowing or fracture onset, lateralization, tissue pathogenical results, abnormality of the proximal tibial epiphysis, and follow-up tibial union after surgery. A considerably higher proportion of non-NF1 patients have cystic lesion (Crawford type III) and used braces after surgery. Conclusions We analyzed a large cohort of non-NF1 and NF1 CPT patients and provided a new perspective for genotype-phenotype features related to germline NF1 variants. Non-NF1 CPT in general had similar clinical features of the tibia as NF1 CPT. Germline NF1 pathogenic variants could differentiate NF1 from non-NF1 CPT but could not explain the CPT heterogeneity of NF1 patients. Our results suggested that non-NF1 CPT was probably not caused by germline NF1 pathogenic variants. In addition to NF1, other genetic variants could also contribute to CPT pathogenesis. Our findings would facilitate the interpretation of NF1 pathogenic variants in CPT genetic counseling. Supplementary information The online version of this article (10.1186/s13023-019-1196-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanghui Zhu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China.,Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yaoxi Liu
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - An Yan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan Province, People's Republic of China
| | - Yongjia Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Weijian Chen
- Pathology Department, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China
| | - Nanbert Zhong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Road, Changsha, Hunan Province, People's Republic of China. .,New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Haibo Mei
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, The Pediatric Academy of the University of South China, 86# Ziyuan Road, Changsha, Hunan Province, 410007, People's Republic of China.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Congenital pseudoarthrosis of the tibia and fibula are rare conditions that share common treatment strategies. The purpose of this review is to provide an overview of the recent developments in treatments for both conditions. RECENT FINDINGS Recent literature has focused on the use of BMP and on gait analysis as a tool for measuring long-term functional outcomes. Recent study has indicated rhBMP-2 may shorten the time to initial healing of pseudoarthroses, but not guarantee bony union. Children with initial fractures before the age of four have been shown to have long-term gait outcomes that may be ultimately comparable to children with prostheses. Both congenital pseudoarthrosis of the tibia and fibula are challenging conditions to treat, which require comprehensive approaches to account for both the biological and mechanical components of the conditions.
Collapse
Affiliation(s)
- Katherine A Eisenberg
- Department of Orthopedic Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Carley B Vuillermin
- Department of Orthopedic Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA.
| |
Collapse
|
22
|
Ritter A, Cuddapah S, Degenhardt K, Kasperski S, Johnson MP, O'Connor MJ, Ahrens-Nicklas R. Fetal cardiomyopathy in neurofibromatosis type I: Novel phenotype and review of the literature. Am J Med Genet A 2019; 179:1042-1046. [PMID: 30919579 DOI: 10.1002/ajmg.a.61123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 11/10/2022]
Abstract
Neurofibromatosis type I (NF1) is a relatively common genetic disorder characterized by neurocutaneous lesions, neurofibromas, skeletal anomalies, iris hamartomas, and predisposition to other tumors. NF1 results from heterozygous loss-of-function mutations in neurofibromin (NF1), and diagnosis is most often made using clinical diagnostic criteria. Cardiac manifestations of NF1 include congenital heart disease (such as valvar pulmonary stenosis), left ventricular hypertrophy, and adult-onset pulmonary hypertension. Prenatal features of NF1 are often nonspecific and diagnoses are infrequently made prenatally without a known family history. Herein, we report the first case, to the best of our knowledge, of fetal cardiomyopathy as the presenting feature in NF1 and review NF1-related left ventricular hypertrophy. NF1 should be considered in the differential diagnosis for fetuses with cardiomyopathy, even in the absence of a known family history of the condition.
Collapse
Affiliation(s)
- Alyssa Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sanmati Cuddapah
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karl Degenhardt
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stefanie Kasperski
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mark P Johnson
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J O'Connor
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rebecca Ahrens-Nicklas
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Greer MLC. Imaging of cancer predisposition syndromes. Pediatr Radiol 2018; 48:1364-1375. [PMID: 30078044 DOI: 10.1007/s00247-018-4113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/28/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
Abstract
Pediatric cancer predisposition syndromes comprise a group of diseases characterized by specific tumors or a concomitance of tumors in infants, children and adolescents, suggesting a genetic cancer susceptibility condition. Most but not all have germline pathogenic variants on genetic testing. For some children with cancer predisposition syndromes, this diagnosis is based on their own or a family history of related neoplasms, or associated clinical manifestations. These tumors have variable incidence and age of onset. Imaging encompasses investigation in symptomatic children for diagnosis, staging and monitoring for treatment response and metastatic disease, as well as surveillance for primary tumors in asymptomatic children. In this review the author focuses on the role of surveillance imaging in childhood cancer predisposition syndromes, whole-body magnetic resonance imaging (whole-body MRI) in particular. Diagnosis and staging of specific tumors are addressed elsewhere in this series. The benefits of surveillance imaging include early detection and improved outcomes and are still being established for a number of cancer predisposition syndromes. The benefits must be weighed against risks including potential technique-related issues relating to sedation or contrast agents, false-positive imaging findings, and cost - both financial and psychosocial. The author discusses general principles for whole-body MRI interpretation along with findings in specific syndromes where whole-body MRI screening is recommended, such as Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, 555 University Ave., Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|