1
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Bardol T, Pageaux GP, Assenat E, Alix-Panabières C. Circulating Tumor DNA Clinical Applications in Hepatocellular Carcinoma: Current Trends and Future Perspectives. Clin Chem 2024; 70:33-48. [PMID: 37962158 DOI: 10.1093/clinchem/hvad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/13/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Globally, liver cancers are the second most lethal malignancy after lung cancer (0.83 million deaths in 2020). Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer and is typically associated with liver fibrosis or cirrhosis. HCC diagnosis relies on histologic examination of surgical specimens or conventional tissue biopsy material. However, standard tissue biopsies are invasive and often do not accurately reflect the tumor heterogeneity. On the other hand, the use of liquid biopsies, represented mainly by circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), has greatly increased in the past 2 decades. Indeed, liquid biopsies are a noninvasive, repeatable, and sensitive approach to studying tumor biology. CONTENT This review describes current clinical applications of ctDNA analysis in the management of patients with chronic liver disease, cirrhosis, and HCC. There is a substantial clinical potential of ctDNA, but interventional studies are still lacking for the moment. SUMMARY Detection of ctDNA in both asymptomatic individuals and high-risk patients (with chronic liver disease or cirrhosis) contributes to the early diagnosis of HCC. ctDNA analysis also offer tremendous information on the tumor burden and on the risk of early recurrence. The implementation of ctDNA analysis, in association with classical tumor markers (e.g., alpha-fetoprotein), may improve (a) HCC screening in high-risk patients, (b) stratification of the recurrence risk after surgery, and (c) prognosis evaluation of patients with HCC.
Collapse
Affiliation(s)
- Thomas Bardol
- Laboratory of Rare Human Circulating Cells, University Hospital Center, University of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- Department of Digestive Surgery and Transplantation, Digestive and Mini-invasive Surgery Unit, Montpellier University Hospital, Montpellier University, Montpellier, France
| | - Georges-Philippe Pageaux
- Hepatology and Liver Transplant Unit, Saint Eloi University Hospital, Montpellier University, Montpellier, France
| | - Eric Assenat
- Department of Medical Oncology, Saint Eloi University Hospital Center, Montpellier University, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Hospital Center, University of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
3
|
Manzi J, Hoff CO, Ferreira R, Glehn-Ponsirenas R, Selvaggi G, Tekin A, O'Brien CB, Feun L, Vianna R, Abreu P. Cell-Free DNA as a Surveillance Tool for Hepatocellular Carcinoma Patients after Liver Transplant. Cancers (Basel) 2023; 15:3165. [PMID: 37370775 PMCID: PMC10296050 DOI: 10.3390/cancers15123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the world's sixth most common primary tumor site, responsible for approximately 5% of all cancers and over 8% of cancer-related deaths. Hepatocellular carcinoma (HCC) is the predominant type of liver cancer, accounting for approximately 75% of all primary liver tumors. A major therapeutic tool for this disease is liver transplantation. Two of the most significant issues in treating HCC are tumor recurrence and graft rejection. Currently, the detection and monitoring of HCC recurrence and graft rejection mainly consist of imaging methods, tissue biopsies, and alpha-fetoprotein (AFP) follow-up. However, they have limited accuracy and precision. One of the many possible components of cfDNA is circulating tumor DNA (ctDNA), which is cfDNA derived from tumor cells. Another important component in transplantation is donor-derived cfDNA (dd-cfDNA), derived from donor tissue. All the components of cfDNA can be analyzed in blood samples as liquid biopsies. These can play a role in determining prognosis, tumor recurrence, and graft rejection, assisting in an overall manner in clinical decision-making in the treatment of HCC.
Collapse
Affiliation(s)
- Joao Manzi
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Camilla O Hoff
- School of Medicine, University of Sao Paulo, Sao Paulo 05508-900, Brazil
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Raphaella Ferreira
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | | | - Gennaro Selvaggi
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Akin Tekin
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Christopher B O'Brien
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Lynn Feun
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Rodrigo Vianna
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| | - Phillipe Abreu
- Miami Transplant Institute, Jackson Memorial Hospital, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
4
|
Haque S, Bhushan Raman R, Salam M. Role of Biomarkers in Hepatocellular Carcinoma and Their Disease Progression. LIVER CANCER - GENESIS, PROGRESSION AND METASTASIS 2023. [DOI: 10.5772/intechopen.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the third leading and common lethal cancers worldwide. Early detection of tumorigenesis of hepatocellular carcinoma is through ultrasonography, computerized tomography (CT) scans, and magnetic resonance imaging (MRI) scans; however, these methods are not up to the mark, so a search for an efficient biomarker for early diagnosis and treatment of hepatocarcinogenesis is important. Proteomic and genomic approaches aid to develop new promising biomarkers for the diagnosis of HCC at the early stages. These biomarkers not only help in prognosis but also provide better therapeutic intervention against HCC. Among the different biomarker candidates, liquid biopsy [including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)] has recently emerged as a noninvasive detection technique for the characterization of circulating cells, providing a strong basis and early diagnosis for the individualized treatment of patients. This review provides the current understanding of HCC biomarkers that predict the risk of HCC recurrence.
Collapse
|
5
|
Cox DRA, Chung W, Grace J, Wong D, Kutaiba N, Ranatunga D, Khor R, Perini MV, Fink M, Jones R, Goodwin M, Dobrovic A, Testro A, Muralidharan V. Evaluating treatment response following locoregional therapy for hepatocellular carcinoma: A review of the available serological and radiological tools for assessment. JGH OPEN 2023; 7:249-260. [PMID: 37125252 PMCID: PMC10134770 DOI: 10.1002/jgh3.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary malignancy of the liver and is the third most common cause of cancer-related global mortality. There has been a steady increase in treatment options for HCC in recent years, including innovations in both curative and non-curative therapies. These advances have brought new challenges and necessary improvements in strategies of disease monitoring, to allow early detection of HCC recurrence. Current serological and radiological strategies for post-treatment monitoring and prognostication and their limitations will be discussed and evaluated in this review.
Collapse
Affiliation(s)
- Daniel R A Cox
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - William Chung
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Josephine Grace
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Darren Wong
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Numan Kutaiba
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Dinesh Ranatunga
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Richard Khor
- Department of Radiation Oncology Austin Health Melbourne Victoria Australia
- School of Molecular Sciences, La Trobe University Melbourne Victoria Australia
- Department of Medical Imaging and Radiation Sciences Monash University Melbourne Victoria Australia
| | - Marcos V Perini
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - Michael Fink
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| | - Robert Jones
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Mark Goodwin
- Department of Radiology Austin Health Melbourne Victoria Australia
| | - Alex Dobrovic
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
| | - Adam Testro
- Department of Medicine (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Liver Transplant Unit, Department of Gastroenterology and Hepatology Austin Health Melbourne Victoria Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery (Austin Precinct) The University of Melbourne Melbourne Victoria Australia
- Hepatopancreatobiliary and Liver Transplant Surgery Unit Austin Health Melbourne Victoria Australia
| |
Collapse
|
6
|
Pathology of Combined Hepatocellular Carcinoma-Cholangiocarcinoma: An Update. Cancers (Basel) 2023; 15:cancers15020494. [PMID: 36672443 PMCID: PMC9856551 DOI: 10.3390/cancers15020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that is composed of both hepatocellular and cholangiocellular differentiated cells. It is slightly more common in men and among Asian and Pacific islanders. Overall, risk factors are similar to classic risk factors of hepatocellular carcinoma (HCC). The classification has significantly evolved over time. The last WHO classification (2019) mainly emphasized diagnosis on morphological basis with routine stainings, discarded previously recognized classifications with carcinomas with stem cell features, introduced intermediate cell carcinoma as a specific subtype and considered cholangiolocarcinoma as a subtype of cholangiocellular carcinoma. Immunohistochemical markers may be applied for further specification but have limited value for diagnosis. Recent discoveries in molecular pathway regulation may pioneer new therapeutic approaches for this poor prognostic and challenging diagnosis.
Collapse
|
7
|
Li JJ, Lv Y, Ji H. Diagnostic performance of circulating tumor DNA as a minimally invasive biomarker for hepatocellular carcinoma: a systematic review and meta-analysis. PeerJ 2022; 10:e14303. [PMID: 36348665 PMCID: PMC9637356 DOI: 10.7717/peerj.14303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study aimed to assess the diagnostic performance of circulating tumor DNA (ctDNA) in hepatocellular carcinoma (HCC). Materials and Methods We enrolled all relevant studies published up to 5 January 2022. Three primary subgroups were investigated: qualitative or quantitative ctDNA analyses, combined alpha-fetoprotein (AFP), and ctDNA assay. In addition to the three primary subgroups, we also evaluated the diagnostic value of methylated SEPTIN9 (mSEPT9), which has been studied extensively in the diagnosis of hepatocellular carcinoma. After a search based on four primary databases, we used a bivariate linear mixed model to analyze the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). We also plotted hierarchical summary receiver operating characteristics (HSROC) and utilized lambda as well as the area under the curve (AUC) to create summary receiver operating characteristic (SROC) curves to estimate the diagnostic value of ctDNA. Results A total of 59 qualified articles with 9,766 subjects were incorporated into our meta-analysis. The integrated SEN, SPE, and DOR in the qualitative studies were 0.50 (95% CI [0.43-0.56]), 0.90 (95% CI [0.86-0.93]), and 8.72 (95% CI [6.18-12.32]), respectively, yielding an AUC of 0.78 and lambda of 1.93 (95% CI [1.56-2.33]). For quantitative studies, the corresponding values were 0.69 (95% CI [0.63-0.74]), 0.84 (95% CI [0.77-0.89]), 11.88 (95% CI [7.78-18.12]), 0.81, and 2.32 (95% CI [1.96-2.69]), respectively. Six studies were included to evaluate the SETP9 methylation, which yielded an AUC of 0.86, a SEN of 0.80 (95% CI [0.71-0.87]), and a SPE of 0.77 (95% CI [0.68-0.85]). Likewise, ctDNA concentration yielded an AUC of 0.73, with a SEN of 0.63 (95% CI [0.56-0.70]) and a SPE of 0.86 (95% CI [0.74-0.93]). AFP combined with ctDNA assay resulted in an AUC of 0.89, with a SEN of 0.82 (95% CI [0.77-0.86]) and a SPE of 0.84 (95% CI [0.76-0.90]). Conclusion This study shows that circulating tumor DNA, particularly mSEPT9, shows promising diagnostic potential in HCC; however, it is not enough to diagnose HCC independently, and ctDNA combined with conventional assays such as AFP can effectively improve diagnostic performance.
Collapse
Affiliation(s)
- Jia Jie Li
- Hepatobiliary Pancreatic Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanqing Lv
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huifan Ji
- Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Higuera M, Vargas-Accarino E, Torrens M, Gregori J, Salcedo MT, Martínez-Campreciós J, Torres G, Bermúdez-Ramos M, Bilbao I, Guerrero-Murillo M, Serres-Créixams X, Merino X, Rodríguez-Frías F, Quer J, Mínguez B. Ultra Deep Sequencing of Circulating Cell-Free DNA as a Potential Tool for Hepatocellular Carcinoma Management. Cancers (Basel) 2022; 14:cancers14163875. [PMID: 36010868 PMCID: PMC9406074 DOI: 10.3390/cancers14163875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this unicentric prospective study, we analyzed the most prevalent mutations in HCC (TERT promoter, TP53, CTNNB1, AXIN1 and ARID1A) in plasma cfDNA by next-generation sequencing, aiming to elucidate their value as prognostic noninvasive biomarkers. Total cfDNA (cut-off value 2 ng/µL), number of mutated genes and number of detectable mutations on cfDNA were significantly related to mortality. Number of mutated genes and number of detected mutations in cfDNA and the ratio between number of mutations and total amount of cfDNA were also significantly associated with recurrence. Detection of more than four mutations in cfDNA correlated with a higher risk of death. Dynamic changes in cfDNA mutations were detected prior to radiological detection of HCC recurrence. We believe that these results support the proof of principle and launching of validation studies to confirm that total cfDNA and detection of prevalent HCC mutations could have prognostic implications in early-stage HCC patients. Abstract Background: Cell-free DNA (cfDNA) concentrations have been described to be inversely correlated with prognosis in cancer. Mutations in HCC-associated driver genes in cfDNA have been reported, but their relation with patient’s outcome has not been described. Our aim was to elucidate whether mutations found in cfDNA could be representative from those present in HCC tissue, providing the rationale to use the cfDNA to monitor HCC. Methods: Tumoral tissue, paired nontumor adjacent tissue and blood samples were collected from 30 HCC patients undergoing curative therapies. Deep sequencing targeting HCC driver genes was performed. Results: Patients with more than 2 ng/µL of cfDNA at diagnosis had higher mortality (mean OS 24.6 vs. 31.87 months, p = 0.01) (AUC = 0.782). Subjects who died during follow-up, had a significantly higher number of mutated genes (p = 0.015) and number of mutations (p = 0.015) on cfDNA. Number of mutated genes (p = 0.001), detected mutations (p = 0.001) in cfDNA and ratio (number of mutations/cfDNA) (p = 0.003) were significantly associated with recurrence. However, patients with a ratio (number of mutations/cfDNA) above 6 (long-rank p = 0.0003) presented a higher risk of recurrence than those with a ratio under 6. Detection of more than four mutations in cfDNA correlated with higher risk of death (long-rank p = 0.042). Conclusions: In summary, cfDNA and detection of prevalent HCC mutations could have prognostic implications in early-stage HCC patients
Collapse
Affiliation(s)
- Mónica Higuera
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Elena Vargas-Accarino
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - María Torrens
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Josep Gregori
- Viral Hepatitis Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Teresa Salcedo
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Pathology Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joan Martínez-Campreciós
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Gloria Torres
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - María Bermúdez-Ramos
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Itxarone Bilbao
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hepatobiliary Surgery and Transplant Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Mercedes Guerrero-Murillo
- Viral Hepatitis Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Xavier Serres-Créixams
- Radiology Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Xavier Merino
- Radiology Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Biochemistry and Microbiology Department, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Josep Quer
- Viral Hepatitis Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Beatriz Mínguez
- Liver Cancer Research Group, Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Department of Medicine, Campus de la UAB, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Liver Unit, Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-274-61-40 (ext. 6561)
| |
Collapse
|
9
|
Prognostic Value of Circulating Tumour DNA in Asian Patients with Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8019652. [PMID: 35251214 PMCID: PMC8893997 DOI: 10.1155/2022/8019652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) is a noninvasive method of detecting tumours, and its prognostic significance in hepatocellular carcinoma (HCC) patients is controversial. We conducted a systematic review of published research data to evaluate the prognostic value of ctDNA in HCC patients. METHODS The PubMed, Embase, Web of Science, Cochrane Library, and Scopus databases were searched to identify eligible studies reporting disease-free survival (DFS) and overall survival (OS) stratified by ctDNA prior to January 2022. We evaluated the quality and design of these studies. The hazard ratio (HR) was used to combine the survivorship curve and univariate and multivariate results of the included studies. RESULTS In total, 8 articles were included, encompassing 577 HCC patients. The results of survival curve analysis showed that ctDNA was related to poor OS and DFS, and the effect sizes were HR = 2.44, 95% CI (1.42, 4.20), P=0.001; HR = 2.63, 95% CI (1.96, 3.53), P < 0.001. The univariate analysis results showed that ctDNA was related to poor OS (HR = 4.48, 95% CI (1.17, 13.70), P=0.003). The combined results of multivariate analysis showed that ctDNA was related to a shorter risk of OS (HR = 3.74, 95% CI (1.45, 9.65), P=0.006). The univariate and multivariate descriptive analysis results showed that ctDNA was related to shorter DFS, and the effect sizes were HR = 3.28, 95% CI (1.23, 11.30), P=0.011; HR = 3.01, 95% CI (1.11, 10.5), P < 0.001. CONCLUSION The evidence provided by this analysis suggests that ctDNA may be a prognostic biomarker and is negatively correlated with the survival of HCC patients. Mutations in the TERT and SOCS3 promoters in ctDNA are associated with poor prognosis and are expected to become good targets for liquid biopsy and to help select treatment strategies.
Collapse
|
10
|
Yang JC, Hu JJ, Li YX, Luo W, Liu JZ, Ye DW. Clinical Applications of Liquid Biopsy in Hepatocellular Carcinoma. Front Oncol 2022; 12:781820. [PMID: 35211399 PMCID: PMC8860830 DOI: 10.3389/fonc.2022.781820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognosis in the world. The low rate of early diagnosis, as well as the high risk of postoperative metastasis and recurrence, led to the poor clinical prognosis of HCC patients. Currently, it mainly depends on serum markers, imaging examination, and tissue biopsy to diagnose and determine the recurrence and metastasis of HCC after treatments. Nevertheless, the accuracy and sensitivity of serum markers and imaging for early HCC diagnosis are suboptimal. Tissue biopsy, containing limited tissue samples, is insufficient to reveal comprehensive tumor biology information and is inappropriate to monitor dynamic tumor progression due to its invasiveness. Thus, low invasive diagnostic methods and novel biomarkers with high sensitivity and reliability must be found to improve HCC detection and prediction. As a non-invasive, dynamic, and repeatable detection method, “liquid biopsy”, has attracted much attention to early diagnosis and monitoring of treatment response, which promotes the progress of precision medicine. This review summarizes the clinical applications of liquid biopsy in HCC, including circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosome in early diagnosis, prognostic evaluation, disease monitoring, and guiding personalized treatment.
Collapse
Affiliation(s)
- Jin-Cui Yang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Jie Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Xin Li
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Luo
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Liu
- Department of Pain Management, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pancreatic-Biliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Tan P, Grundy L, Makary P, Eng KH, Ramsay G, Bekheit M. The value of liquid biopsy in the diagnosis and staging of hepatocellular carcinoma: a systematic review. Transl Gastroenterol Hepatol 2021; 6:54. [PMID: 34805576 PMCID: PMC8573369 DOI: 10.21037/tgh.2020.01.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Blood-borne tumour markers in the form of circulating tumour cells (CTCs) are of intense research interest in the diagnostic and prognostic work-up of hepatocellular carcinoma (HCC). METHODS This is a meta-analysis. Using a PICO strategy, adults with HCC was the population, with the individual CTCs as the intervention and comparators. The primary outcome was the sensitivity and specificity of HCC detection with tumour specific single gene methylation alteration. Secondary outcomes were the comparison using specific assay methods and the effect of early vs. late stages on CTC positivity. We included patients with HCC who had samples taken from peripheral blood and had sufficient data to assess the outcome data. ASSIA, Cochrane library, EMbase, Medline, PubMed and the knowledge network Scotland were systematically searched with appropriate Mesh terms employed. The quality assessment of diagnostic accuracy studies (QUADAS) was used to ensure quality of data. Statistical analysis was performed using the 'Rev Man' meta-analysis soft ward for Windows. RESULTS The review included 36 studies, with a total of 5,853 patients. Here, we found that AFP has the highest overall diagnostic performance. The average Youden index amongst all CTC was 0.46 with a mode and median of 0.5 with highest of 0.87 and lowest of 0.01. CONCLUSIONS The available literature provides weak evidence that there is potential in the use of CTC, however the lack of a standardised procedure in the study of CTC contribute to the lack of consensus of use. Future research should include large scaled, standardized studies for the diagnostic accuracy of CTCs.
Collapse
Affiliation(s)
- Poh Tan
- Department of General Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lisa Grundy
- Department of General Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Peter Makary
- Department of General Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - George Ramsay
- Rowette institute of Health Sciences, Medical School, University of Aberdeen, Aberdeen, UK
| | - Mohamed Bekheit
- Department of General Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
- Department of Surgery, El Kabbary Hospital, Alexandria, Egypt
| |
Collapse
|
12
|
Tran NH, Kisiel J, Roberts LR. Using cell-free DNA for HCC surveillance and prognosis. JHEP Rep 2021; 3:100304. [PMID: 34136776 PMCID: PMC8182265 DOI: 10.1016/j.jhepr.2021.100304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. Its incidence is rising faster than any other cancer in the United States and it remains one of the leading causes of cancer-related deaths worldwide. While advances in massive parallel sequencing and integration of 'omics information have transformed the field of oncology, tissue access is often limited in HCC and a single biopsy is poorly representative of the known genetic heterogeneity of tumours. Liquid biopsy has emerged as a promising strategy for analysing circulating tumour components including circulating tumour DNA. Cell-free DNA and tumour DNA are derived from necrotic, apoptotic and living eukaryotic cells. The profiling of genetic and epigenetic alterations in circulating cell-free DNA has potential clinical applications including early disease detection, prediction of treatment response and prognostication in real time. Novel biomarker candidates for disease detection and monitoring are under study. Of these, methylation analyses of circulating tumour DNA have shown promising performance for early HCC detection in at-risk patients. Assessments of assay performance in longitudinal validation cohorts are ongoing. Implementation of liquid biopsy for HCC will likely improve upon the current surveillance strategy. This review summarises the most recent developments on the role and utility of circulating cell-free DNA in the detection and management of HCC.
Collapse
Affiliation(s)
- Nguyen H Tran
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, United States
| | - John Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
13
|
Pelizzaro F, Cardin R, Penzo B, Pinto E, Vitale A, Cillo U, Russo FP, Farinati F. Liquid Biopsy in Hepatocellular Carcinoma: Where Are We Now? Cancers (Basel) 2021; 13:2274. [PMID: 34068786 PMCID: PMC8126224 DOI: 10.3390/cancers13092274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death worldwide. Diagnostic, prognostic, and predictive biomarkers are urgently needed in order to improve patient survival. Indeed, the most widely used biomarkers, such as alpha-fetoprotein (AFP), have limited accuracy as both diagnostic and prognostic tests. Liver biopsy provides an insight on the biology of the tumor, but it is an invasive procedure, not routinely used, and not representative of the whole neoplasia due to the demonstrated intra-tumoral heterogeneity. In recent years, liquid biopsy, defined as the molecular analysis of cancer by-products, released by the tumor in the bloodstream, emerged as an appealing source of new biomarkers. Several studies focused on evaluating extracellular vesicles, circulating tumor cells, cell-free DNA and non-coding RNA as novel reliable biomarkers. In this review, we aimed to provide a comprehensive overview on the most relevant available evidence on novel circulating biomarkers for early diagnosis, prognostic stratification, and therapeutic monitoring. Liquid biopsy seems to be a very promising instrument and, in the near future, some of these new non-invasive tools will probably change the clinical management of HCC patients.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Elisa Pinto
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (A.V.); (U.C.)
| | - Francesco Paolo Russo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (F.P.); (R.C.); (B.P.); (E.P.); (F.P.R.)
| |
Collapse
|
14
|
Nakatsuka T, Nakagawa H, Hayata Y, Wake T, Yamada T, Nishibatake Kinoshita M, Nakagomi R, Sato M, Minami T, Uchino K, Enooku K, Kudo Y, Tanaka Y, Kishikawa T, Otsuka M, Tateishi R, Koike K. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma. J Gastroenterol 2021; 56:456-469. [PMID: 33712873 DOI: 10.1007/s00535-021-01773-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/27/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA), are rapidly emerging as a non-invasive alternative to tumor biopsies. However, clinical applications of ctDNA analysis in hepatocellular carcinoma (HCC) have not been fully elucidated. METHODS We measured the amount of plasma-derived cell-free DNA (cfDNA) in HCC patients before (n = 100) and a few days after treatment (n = 87), including radiofrequency ablation, transarterial chemoembolization, and molecular-targeted agents (MTAs), and prospectively analyzed their associations with clinical parameters and prognosis. TERT promoter mutations in cfDNA were analyzed using droplet digital PCR. Furthermore, we performed a comprehensive mutational analysis of post-treatment cfDNA via targeted ultra-deep sequencing (22,000× coverage) in a panel of 275 cancer-related genes in selected patients. RESULTS Plasma cfDNA levels increased significantly according to HCC clinical stage, and a high cfDNA level was independently associated with a poor prognosis. TERT promoter mutations were detected in 45% of all cases but were not associated with any clinical characteristics. cfDNA levels increased significantly a few days after treatment, and a greater increase in post-treatment cfDNA levels was associated with a greater therapeutic response to MTAs. The detection rate of TERT mutations increased to 57% using post-treatment cfDNA, suggesting that the ctDNA was enriched. Targeted ultra-deep sequencing using post-treatment cfDNA after administering lenvatinib successfully detected various gene mutations and obtained promising results in lenvatinib-responsive cases. CONCLUSIONS Post-treatment cfDNA analysis may facilitate the construction of biomarkers for predicting MTA treatment effects.
Collapse
Affiliation(s)
- Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yuki Hayata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taijiro Wake
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mizuki Nishibatake Kinoshita
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryo Nakagomi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Minami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Uchino
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuo Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
15
|
Zhang J, Yuan Y, Gao S, Zhao X, Li H. Diagnostic performance of circulating cell-free DNA for hepatocellular carcinoma: a systematic review and meta-analysis. Biomark Med 2021; 15:219-239. [PMID: 33470842 DOI: 10.2217/bmm-2020-0334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background: We aimed to assess the diagnostic performance of circulating cell-free DNA (cfDNA) in hepatocellular carcinoma (HCC). Materials & methods: After a systematic literature search bivariate linear mixed models were used to integrate sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio. The area under receiver operating characteristics curves of the included studies was used to estimate the diagnostic value. Results: Thirty-eight articles enrolled in quantitative synthesis. In overall analysis the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under receiver operating characteristics curves for cfDNA in distinguishing HCC patients from healthy controls were 0.54, 0.90, 5.23, 0.51, 10.27 and 0.82, respectively. Conclusion: This study suggests that cfDNA has a promising diagnostic accuracy in detection of HCC.
Collapse
Affiliation(s)
- Jinmei Zhang
- Department of Infectious Diseases, Weifang Yidu Central Hospital, Qingzhou 262500, China
| | - Yuan Yuan
- Department of Infectious Diseases, Weifang Yidu Central Hospital, Qingzhou 262500, China
| | - Shuxia Gao
- GI Medicine Department, Weifang Yidu Central Hospital, Qingzhou 262500, China
| | - Xue Zhao
- Respiratory Department, Weifang Yidu Central Hospital, Qingzhou 262500, China
| | - Hong Li
- Department of Infectious Diseases, Weifang Yidu Central Hospital, Qingzhou 262500, China
| |
Collapse
|
16
|
Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND. Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:2879-2902.e9. [PMID: 32289533 PMCID: PMC7554087 DOI: 10.1016/j.cgh.2020.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liquid biopsies, or blood samples, can be analyzed to detect circulating tumor cells (CTCs), cell-free DNA (cfDNA), and extracellular vesicles, which might identify patients with hepatocellular carcinoma (HCC) or help determine their prognoses. We performed a systematic review of studies of analyses of liquid biopsies from patients with HCC and their comparisons with other biomarkers. METHODS We performed a systematic review of original studies published before December 1, 2019. We included studies that compared liquid biopsies alone and in combination with other biomarkers for the detection of HCC, performed multivariate analyses of the accuracy of liquid biopsy analysis in determining patient prognoses, or evaluated the utility of liquid biopsy analysis in monitoring treatment response. RESULTS Our final analysis included 112 studies: 67 on detection, 46 on determining prognosis, and 25 on treatment monitoring or selection. Ten studies evaluated assays that characterized cfDNA for detection of HCC in combination with measurement of α-fetoprotein (AFP)-these studies found that the combined measurement of cfDNA and AFP more accurately identified patients with HCC than measurement of AFP alone. Six studies evaluated assays for extracellular vesicles and 2 studies evaluated assays for CTC in detection of HCC, with and without other biomarkers-most of these studies found that detection of CTCs or extracellular vesicles with AFP more accurately identified patients with HCC than measurement of AFP alone. Detection of CTCs before surgery was associated with HCC recurrence after resection in 13 of 14 studies; cfDNA and extracellular vesicles have been studied less frequently as prognostic factors. Changes in CTC numbers before vs after treatment more accurately identify patients with HCC recurrence than pretreatment counts alone, and measurements of cfDNA can identify patients with disease recurrence or progression before changes can be detected by imaging. We found little evidence that analyses of liquid biopsies can aid in the selection of treatment for HCC. Quality assessment showed risk of bias in studies of HCC detection and determination of prognosis. CONCLUSIONS In a systematic review of 112 studies of the accuracy of liquid biopsy analysis, we found that assays for CTCs and cfDNA might aid in determining patient prognoses and monitoring HCC, and assays for cfDNA might aid in HCC detection, but there is a risk of bias in these studies. Studies must be standardized before we can assess the clinical utility of liquid biopsy analysis in the detection and management of patients with HCC.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan.
| | - Dabo Xu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Max S Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Neehar D Parikh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
17
|
Kim SS, Eun JW, Choi JH, Woo HG, Cho HJ, Ahn HR, Suh CW, Baek GO, Cho SW, Cheong JY. MLH1 single-nucleotide variant in circulating tumor DNA predicts overall survival of patients with hepatocellular carcinoma. Sci Rep 2020; 10:17862. [PMID: 33082400 PMCID: PMC7576198 DOI: 10.1038/s41598-020-74494-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Liquid biopsy can provide a strong basis for precision medicine. We aimed to identify novel single-nucleotide variants (SNVs) in circulating tumor DNA (ctDNA) in patients with hepatocellular carcinoma (HCC). Deep sequencing of plasma-derived ctDNA from 59 patients with HCC was performed using a panel of 2924 SNVs in 69 genes. In 55.9% of the patients, at least one somatic mutation was detected. Among 25 SNVs in 12 genes, four frequently observed SNVs, MLH1 (13%), STK11 (13%), PTEN (9%), and CTNNB1 (4%), were validated using droplet digital polymerase chain reaction with ctDNA from 62 patients with HCC. Three candidate SNVs were detected in 35.5% of the patients, with a frequency of 19% for MLH1 chr3:37025749T>A, 11% for STK11 chr19:1223126C>G, and 8% for PTEN chr10:87864461C>G. The MLH1 and STK11 SNVs were also confirmed in HCC tissues. The presence of the MLH1 SNV, in combination with an increased ctDNA level, predicted poor overall survival among 107 patients. MLH1 chr3:37025749T>A SNV detection in ctDNA is feasible, and thus, ctDNA can be used to detect somatic mutations in HCC. Furthermore, the presence or absence of the MLH1 SNV in ctDNA, combined with the ctDNA level, can predict the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Ri Ahn
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Chul Won Suh
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Zhang Z, Chen P, Xie H, Cao P. Using circulating tumor DNA as a novel biomarker to screen and diagnose hepatocellular carcinoma: A systematic review and meta-analysis. Cancer Med 2019; 9:1349-1364. [PMID: 31876977 PMCID: PMC7013058 DOI: 10.1002/cam4.2799] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE A meta-analysis was formulated to appraise the diagnostic accuracy of circulating tumor DNA (ctDNA) in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We enrolled all relevant studies published until September 2019. Four primary subgroups were investigated: the subgroup of quantitative or qualitative analysis of ctDNA, the subgroup of Ras association domain family 1 isoform A (RASSF1A) methylation in ctDNA and the subgroup of the combined alpha-fetoprotein (AFP) and ctDNA assay. We analyzed the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) as well as the area under the curve (AUC). RESULTS A total of 33 qualified articles with 4113 subjects were incorporated into our meta-analysis. The combined SEN, SPE, and DOR in quantitative studies were 0.722 (95% confidence interval (95% CI): 0.686-0.756), 0.823 (95% CI: 0.789-0.854), 18.532 (95% CI: 8.245-41.657), respectively, yielding an AUC of 0.880. For qualitative studies, the corresponding value was 0.568 (95% CI: 0.548-0.587), 0.882 (95% CI: 0.867-0.897), 10.457 (95% CI: 7.270-15.040) and 0.787, respectively. Detection of RASSF1A methylation yielded an AUC of 0.841, with a SEN of 0.644 (95% CI: 0.608-0.678) and a SPE of 0.875 (95% CI: 0.847-0.900). AFP combined with ctDNA assay achieved an AUC of 0.944, with a SEN of 0.760 (95% CI: 0.728-00.790) and a SPE of 0.920 (95% CI: 0.893-00.942). CONCLUSION Circulating tumor DNA displays a promising diagnostic potential in HCC. However, it is not independently sufficient and can serve as an assistant tool combined with AFP for HCC screening and detection.
Collapse
Affiliation(s)
- Ziying Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Kaseb AO, Sánchez NS, Sen S, Kelley RK, Tan B, Bocobo AG, Lim KH, Abdel-Wahab R, Uemura M, Pestana RC, Qiao W, Xiao L, Morris J, Amin HM, Hassan MM, Rashid A, Banks KC, Lanman RB, Talasaz A, Mills-Shaw KR, George B, Haque A, Raghav KPS, Wolff RA, Yao JC, Meric-Bernstam F, Ikeda S, Kurzrock R. Molecular Profiling of Hepatocellular Carcinoma Using Circulating Cell-Free DNA. Clin Cancer Res 2019; 25:6107-6118. [PMID: 31363003 PMCID: PMC9292132 DOI: 10.1158/1078-0432.ccr-18-3341] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/15/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular profiling has been used to select patients for targeted therapy and determine prognosis. Noninvasive strategies are critical to hepatocellular carcinoma (HCC) given the challenge of obtaining liver tissue biopsies. EXPERIMENTAL DESIGN We analyzed blood samples from 206 patients with HCC using comprehensive genomic testing (Guardant Health) of circulating tumor DNA (ctDNA). RESULTS A total of 153/206 (74.3%) were men; median age, 62 years (range, 18-91 years). A total of 181/206 patients had ≥1 alteration. The total number of alterations was 680 (nonunique); median number of alterations/patient was three (range, 1-13); median mutant allele frequency (% cfDNA), 0.49% (range, 0.06%-55.03%). TP53 was the common altered gene [>120 alterations (non-unique)] followed by EGFR, MET, ARID1A, MYC, NF1, BRAF, and ERBB2 [20-38 alterations (nonunique)/gene]. Of the patients with alterations, 56.9% (103/181) had ≥1 actionable alterations, most commonly in MYC, EGFR, ERBB2, BRAF, CCNE1, MET, PIK3CA, ARID1A, CDK6, and KRAS. In these genes, amplifications occurred more frequently than mutations. Hepatitis B (HBV)-positive patients were more likely to have ERBB2 alterations, 35.7% (5/14) versus 8.8% HBV-negative (P = 0.04). CONCLUSIONS This study represents the first large-scale analysis of blood-derived ctDNA in HCC in United States. The genomic distinction based on HCC risk factors and the high percentage of potentially actionable genomic alterations suggests potential clinical utility for this technology.
Collapse
Affiliation(s)
- Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Nora S Sánchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiraj Sen
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robin K Kelley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Benjamin Tan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea G Bocobo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Kian H Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Arizona Clinical Oncology Department, Assiut University Hospital, Assiut, Egypt
| | - Marc Uemura
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Kenna R Mills-Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kanwal P S Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sadakatsu Ikeda
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, Moores Cancer Center, La Jolla, California.
| |
Collapse
|
20
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is associated with high mortality. The currently used methods for diagnosing HCC, including imaging modalities and liver biopsy, detect tumors at a relatively advanced stage or are invasive. Non-invasive biomarkers are urgently needed to facilitate screening and early diagnosis of HCC, as well as treatment monitoring and detection of tumor recurrence. Liquid biopsy, the analysis of blood or other body fluids to obtain genetic and epigenetic information, has historically been applied to other types of cancer including breast and prostate cancer. Over the past few decades, liquid biopsy analysis has shed significant insights on genetic and epigenetic aberrations in HCC detectable in peripheral blood. Aberrations in nucleic acids found circulating freely in body fluids or contained within extracellular vesicles such as exosomes or microvesicles show potential clinical utility as non-invasive biomarkers. In this review, we present available literature on cell-free nucleic acids in the diagnosis of HCC.
Collapse
Affiliation(s)
- Bubu A Banini
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 2019; 25:4199-4212. [PMID: 31435173 PMCID: PMC6700689 DOI: 10.3748/wjg.v25.i30.4199] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
The huge prognostic difference between early and late stage hepatocellular carcinoma (HCC) is a challenging diagnostic problem. Alpha-fetoprotein is the mostly widely used biomarker for HCC used in the clinic, however it’s sensitivity and specificity of is not optimal. The development and application of multiple biotechnologies, including next generation sequencing, multiple “omics” data, that include genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics has been used for HCC diagnostic biomarker screening. Effective biomarkers/panels/models have been identified and validated at different clinical levels. A large proportion of these have a good diagnostic performance for HCC, especially for early HCC. In this article, we reviewed the various HCC biomarkers derived from “omics” data and discussed the advantages and disadvantages for diagnosis HCC.
Collapse
Affiliation(s)
- Xiao-Na Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan-Ni Cui
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yu-Fang Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yun-He Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Gang Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple “Omics” data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i29.4199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer 2019; 18:114. [PMID: 31269959 PMCID: PMC6607541 DOI: 10.1186/s12943-019-1043-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of death worldwide. Due to latent liver disease, late diagnosis, and nonresponse to systemic treatments, surgical resection and/or biopsy specimens are still generally considered as the gold standard by clinicians for clinical decision-making until now. Since the conventional tissue biopsy is invasive and contains small tissue samples, it is unable to represent tumor heterogeneity or monitor dynamic tumor progression. Therefore, it is imperative to find a new less invasive or noninvasive diagnostic strategy to detect HCC at an early stage and to monitor HCC recurrence. Over the past years, a new diagnostic concept known as “liquid biopsy” has emerged with substantial attention. Liquid biopsy is noninvasive and allows repeated analyses to monitor tumor recurrence, metastasis or treatment responses in real time. With the advanced development of new molecular techniques, HCC circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) detection have achieved interesting and encouraging results. In this review, we focus on the clinical applications of CTCs and ctDNA as key components of liquid biopsy in HCC patients.
Collapse
|
24
|
Xiong Y, Xie CR, Zhang S, Chen J, Yin ZY. Detection of a novel panel of somatic mutations in plasma cell-free DNA and its diagnostic value in hepatocellular carcinoma. Cancer Manag Res 2019; 11:5745-5756. [PMID: 31303788 PMCID: PMC6605764 DOI: 10.2147/cmar.s197455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Background/aims: Circulating cell-free DNA (cfDNA) contains tumor-specific alterations and could potentially serve as "liquid biopsy". The study was to identify a novel panel of hepatocellular carcinoma (HCC)-specific mutations in plasma cfDNA and to assess its value in the diagnosis of HCC. Materials and methods: 33 HCC tissue, 37 blood, and 37 swab specimens were collected from HCC patients and control individuals. Genomic DNA was subjected to next-generation sequencing. The selected mutations in the plasma cfDNA in the HCC versus control groups were compared, and the diagnostic performance of cfDNA mutations was evaluated. Results: A majority of selected mutations in the HCC tissue DNA, ranging from 52% to 84%, was detected in the matched plasma cfDNA. For the selected mutations, receiver operating characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.92, sensitivity of 65%, and specificity of 100% for the diagnosis of HCC regardless of alpha-fetoprotein (AFP) status. Detection of the selected mutations in cfDNA in combination with AFP exhibited better diagnosis performance, with AUC of 0.96, sensitivity of 73%, and specificity of 100% for AFP-negative patients, whereas the AUC was 0.86 with sensitivity of 53% and specificity of 100% for AFP-positive patients. Furthermore, the rates of the selected mutations were significantly greater in recurrent HCC than in non-recurrent HCC (P<0.05). Conclusions: This study has identified a novel panel of somatic mutations, and detection of the mutations in plasma cfDNA shows good diagnostic performance. Therefore, this approach holds promise as a novel tool for diagnosing HCC.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Jin Chen
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen361004, Fujian, People’s Republic of China
| |
Collapse
|
25
|
Liu X, Ren J, Luo N, Guo H, Zheng Y, Li J, Tang F, Wen L, Peng J. Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq). Clin Epigenetics 2019; 11:93. [PMID: 31234922 PMCID: PMC6591962 DOI: 10.1186/s13148-019-0689-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Comprehensive analysis of the tissue of origin of plasma cell-free DNA (cfDNA) remains insufficient. A genome-scale DNA methylation method for this analysis is of both biological and clinical interest. METHODS We used the methylated CpG tandem amplification and sequencing (MCTA-Seq), which is a genome-scale DNA methylation method, for analyzing cfDNA. We performed MCTA-Seq to pair plasma cfDNA and white blood cell genomic DNA from 14 healthy individuals for comparative analysis, with eight tissues being analyzed for identifying tissue-specific markers. The relative contributions of multiple tissues to cfDNA were calculated for plasma cfDNA obtained from healthy adults (n = 25), cholelithiasis patients (n = 13), liver cirrhosis patients (n = 17), hepatocellular carcinoma patients (n = 30), and acute pancreatitis patients (n = 8). RESULTS We identified a total of 146 tissue-specific hypermethylation markers. Simulation analysis showed that MCTA-Seq can accurately measure DNA fractions contributed by multiple tissues to cfDNA. We demonstrated that the liver is the major non-hematopoietic tissue contributing to plasma cfDNA in healthy adults. The method also detected increases in the liver-derived DNA in the blood from patients with liver diseases, which correlate with an increase in the liver enzyme level. Furthermore, the results indicated that blood cells make a major contribution to the elevation of cfDNA levels in acute pancreatitis, liver cirrhosis, and hepatocellular carcinoma patients. Finally, we characterized a novel set of tissue-specific hypermethylation markers for cfDNA detection, which are located within the intragenic regions of tissue-specific highly expressed genes. CONCLUSIONS We have used MCTA-Seq for simultaneously measuring cfDNA fractions contributed by multiple tissues. Applying this approach to healthy adults and liver and pancreas disease patients revealed the tissue of origin of cfDNA. The approach and the identified markers should facilitate assessing the cfDNA dynamics in a variety of human diseases.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Huahu Guo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jingyi Li
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, 100871, China.
- Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Department of Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.
| |
Collapse
|
26
|
Li J, Han X, Yu X, Xu Z, Yang G, Liu B, Xiu P. Clinical applications of liquid biopsy as prognostic and predictive biomarkers in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:213. [PMID: 30176913 PMCID: PMC6122633 DOI: 10.1186/s13046-018-0893-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant disease with a poor prognosis and high mortality due to a low early diagnosis rate, resistance to systemic treatments and progression to late-stage liver disease. Owing to limitations in the detection of HCC and the lack of awareness of healthcare systems, fewer than 40% of HCC patients are eligible for surgery due to advanced stages of the disease at the time of diagnosis and the occurrence of multiple lesions in the cirrhotic or fibrotic liver. At present, the updated American Association for the Study of Liver Disease (AASLD) guidelines no longer recommend alpha-fetoprotein (AFP) testing as a part of diagnostic evaluation. Thus, it is imperative to establish a novel diagnostic strategy with high sensitivity and reliability to monitor risk factors to detect HCC at an early stage. In recent years, “liquid biopsy,” (including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)), has emerged as a technique for the characterization of circulating cells, providing a strong basis for the individualized treatment of patients. As a noninvasive detection method, liquid biopsy is expected to play an important role in the early diagnosis, dynamic monitoring of cancer patients and drug screening. In this review, we will focus on the clinical applications, recent studies and future prospects of liquid biopsy, particularly focusing on HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Xu Han
- Department of Hepatobiliary Surgery, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Xiaona Yu
- Department of General Medicine, Weifang Rongfu Military Hospital, Weifang, 261000, Shandong, China
| | - Zongzhen Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Guangsheng Yang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Bingqi Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China
| | - Peng Xiu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, Shandong, China.
| |
Collapse
|
27
|
Canale M, Ulivi P, Foschi FG, Scarpi E, De Matteis S, Donati G, Ercolani G, Scartozzi M, Faloppi L, Passardi A, Tamburini E, Valgiusti M, Marisi G, Frassineti GL, Casadei Gardini A. Clinical and circulating biomarkers of survival and recurrence after radiofrequency ablation in patients with hepatocellular carcinoma. Crit Rev Oncol Hematol 2018; 129:44-53. [PMID: 30097237 DOI: 10.1016/j.critrevonc.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
|
28
|
Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, Spoto G, Gambari R. Liquid biopsy and PCR-free ultrasensitive detection systems in oncology (Review). Int J Oncol 2018; 53:1395-1434. [PMID: 30085333 PMCID: PMC6086621 DOI: 10.3892/ijo.2018.4516] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
In oncology, liquid biopsy is used in the detection of next-generation analytes, such as tumor cells, cell-free nucleic acids and exosomes in peripheral blood and other body fluids from cancer patients. It is considered one of the most advanced non-invasive diagnostic systems to enable clinically relevant actions and implement precision medicine. Medical actions include, but are not limited to, early diagnosis, staging, prognosis, anticipation (lead time) and the prediction of therapy responses, as well as follow-up. Historically, the applications of liquid biopsy in cancer have focused on circulating tumor cells (CTCs). More recently, this analysis has been extended to circulating free DNA (cfDNA) and microRNAs (miRNAs or miRs) associated with cancer, with potential applications for development into multi-marker diagnostic, prognostic and therapeutic signatures. Liquid biopsies avoid some key limitations of conventional tumor tissue biopsies, including invasive tumor sampling, under-representation of tumor heterogeneity and poor description of clonal evolution during metastatic dissemination, strongly reducing the need for multiple sampling. On the other hand, this approach suffers from important drawbacks, i.e., the fragmentation of cfDNA, the instability of RNA, the low concentrations of certain analytes in body fluids and the confounding presence of normal, as well as aberrant DNAs and RNAs. For these reasons, the analysis of cfDNA has been mostly focused on mutations arising in, and pathognomonicity of, tumor DNA, while the analysis of cfRNA has been mostly focused on miRNA patterns strongly associated with neoplastic transformation/progression. This review lists some major applicative areas, briefly addresses how technology is bypassing liquid biopsy limitations, and places a particular emphasis on novel, PCR-free platforms. The ongoing collaborative efforts of major international consortia are reviewed. In addition to basic and applied research, we will consider technological transfer, including patents, patent applications and available information on clinical trials aimed at verifying the potential of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Matteo Allegretti
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| | - Patrizio Giacomini
- Oncogenomics and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Giuseppe Spoto
- Department of Chemistry, Catania University, 95125 Catania, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
29
|
Wei L, Wu W, Han L, Yu W, Du Y. A quantitative analysis of the potential biomarkers of non-small cell lung cancer by circulating cell-free DNA. Oncol Lett 2018; 16:4353-4360. [PMID: 30250538 PMCID: PMC6144435 DOI: 10.3892/ol.2018.9198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/10/2018] [Indexed: 01/02/2023] Open
Abstract
The study was conducted to ascertain whether the quantification of circulating cell-free DNA (cfDNA) in serum has value as a diagnostic or for monitoring the progression of non-small cell lung cancer (NSCLC). The serum/plasma cfDNA concentration was quantified by absolute qPCR of long interspersed nuclear element-1 (LINE1) in 60 NSCLC patients and 68 controls in good health. Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic utility and cut-off levels of cfDNA, CEA, and CYFRA21-1 in NSCLC patients. Correlations between cfDNA and age, sex, tumour stage and progression-free survival (PFS) were analysed. A follow-up study was conducted on 4 NSCLC patients, and serum cfDNA, CEA, and CYFRA21-1 were quantified throughout disease progression. Serum cfDNA levels were significantly higher in NSCLC patients than those in normal controls. Elevated serum cfDNA concentration was also significantly associated with advanced tumour stage. Serum cfDNA had a ROC area under the curve comparable to that of CEA and CYFRA21-1 for the diagnosis of NSCLC, and the combined cfDNA/CEA/CYFRA21-1 indicator had the highest diagnostic efficiency. Moreover, increased serum cfDNA levels were strongly correlated with tumour progression and poor PFS. This study preliminarily confirmed that cfDNA can monitor disease progression in NSCLC patients, and the lead time was 1–7 months compared with clinical medical imaging. Serum cfDNA may be useful in monitoring NSCLC progression, suggesting that the non-invasive quantification of serum cfDNA by LINE1 qPCR is a viable option for predicting progression and disease severity when repeated invasive tissue biopsy is not possible.
Collapse
Affiliation(s)
- Lirong Wei
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China.,Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Wangxi Wu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Liming Han
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Weimo Yu
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201306, P.R. China.,Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, East Campus, Shanghai 201306, P.R. China
| |
Collapse
|
30
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
31
|
Pezzuto F, Buonaguro L, Buonaguro FM, Tornesello ML. The Role of Circulating Free DNA and MicroRNA in Non-Invasive Diagnosis of HBV- and HCV-Related Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:E1007. [PMID: 29597259 PMCID: PMC5979406 DOI: 10.3390/ijms19041007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third and the fifth leading cause of cancer related death worldwide in men and in women, respectively. HCC generally has a poor prognosis, with a very low 5-year overall survival, due to delayed diagnosis and treatment. Early tumour detection and timely intervention are the best strategies to reduce morbidity and mortality in HCC patients. Histological evaluation of liver biopsies is the gold standard for cancer diagnosis, although it is an invasive, time-consuming and expensive procedure. Recently, the analysis of circulating free DNA (cfDNA) and RNA molecules released by tumour cells in body fluids, such as blood serum, saliva and urine, has attracted great interest for development of diagnostic assays based on circulating liver cancer molecular biomarkers. Such "liquid biopsies" have shown to be useful for the identification of specific molecular signatures in nucleic acids released by cancer cells, such as gene mutations and altered methylation of DNA as well as variations in the levels of circulating microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Body fluids analysis may represent a valuable strategy to monitor liver disease progression in subjects chronically infected with hepatitis viruses or cancer relapse in HCC treated patients. Several studies showed that qualitative and quantitative assays evaluating molecular profiles of circulating cell-free nucleic acids could be successfully employed for early diagnosis and therapeutic management of HCC patients. This review describes the state of art on the use of liquid biopsy for cancer driver gene mutations, deregulated DNA methylation as well as miRNA levels in HCC diagnosis.
Collapse
Affiliation(s)
- Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Napoli, Italy.
| |
Collapse
|
32
|
Ng CKY, Di Costanzo GG, Terracciano LM, Piscuoglio S. Circulating Cell-Free DNA in Hepatocellular Carcinoma: Current Insights and Outlook. Front Med (Lausanne) 2018; 5:78. [PMID: 29632864 PMCID: PMC5880118 DOI: 10.3389/fmed.2018.00078] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/08/2018] [Indexed: 12/25/2022] Open
Abstract
Over the past decade, the advancements in massively parallel sequencing have provided a new paradigm in biomedical research to uncover the genetic basis of human diseases. Integration of ‘omics information has begun transforming clinical management of cancer patients in terms of diagnostics and treatment options, giving rise to the era of precision medicine. Currently, nucleic acids for molecular profiling for patients diagnosed with hepatocellular carcinoma (HCC) are typically obtained from resected tumor materials or transplanted neoplastic liver and occasionally from biopsies. Given the intrinsic risks associated with such invasive procedures, circulating cell-free DNA (cfDNA) has been proposed as an alternative source for tumor DNA. Circulating cfDNA is a type of cell-free nucleic acid that derives from apoptotic, necrotic, as well as living eukaryotic cells. Importantly, the detection of abnormal forms of circulating cfDNA that originate from cancer cells provides a new tool for cancer detection, disease monitoring, and molecular profiling. Currently, cfDNA is beginning to be adopted into clinical practice as a non-invasive tool to monitor disease by tracking the evolution of disease-specific genetic alterations in several major cancer types. Moreover, cfDNA is demonstrating potential clinical value as a surrogate to assess the molecular makeup of tumors and to overcome the sampling biases inherent to intra-tumor genetic heterogeneity, especially in the metastatic setting. With the improvements in ‘omics and molecular biology techniques, coupled with the increasing understanding in the molecular pathogenesis of cancer, it can be anticipated that the detection and analysis of cfDNA will become more specific and sensitive and thus enable cfDNA analysis to be used as a diagnostic aid in patients with early-stage disease and perhaps even in a screening setting. In this review, we provide an overview of the latest findings on the role and potential utility of cfDNA analysis in the diagnosis, management, and screening of HCC.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Yan L, Chen Y, Zhou J, Zhao H, Zhang H, Wang G. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int J Infect Dis 2017; 67:92-97. [PMID: 29229500 DOI: 10.1016/j.ijid.2017.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Circulating cell-free DNA (cfDNA) is a potential biomarker for tumor diagnosis. Hepatocyte damage is a characteristic component of the pathobiology of hepatocellular carcinoma (HCC), which would be expected to result in substantial leakage of cfDNA into the circulation. However, the diagnostic value of cfDNA levels for HCC remains unclear. METHODS Plasma samples were collected from 24 HCC patients and 62 hepatitis B virus-related liver fibrosis patients. Plasma cfDNA levels were quantified by Qubit method. RESULTS Plasma cfDNA levels were associated with the degree of liver inflammation, body mass index, and alpha-fetoprotein (AFP) level, but were not associated with fibrosis stages. Plasma cfDNA levels were significantly higher in HCC patients than in non-HCC patients. Multivariate analysis revealed that age and cfDNA, rather than AFP, were independent predictors of HCC. The HCC index, a combination model including age, cfDNA, and AFP, had an area of 0.98 (95% confidence interval 0.92-1.00) under the receiver operating characteristics curve for the diagnosis of HCC at the cut-off value of 0.61, with 87.0% sensitivity and 100% specificity. The diagnostic power of the HCC index was superior to that of cfDNA alone and AFP alone. CONCLUSIONS These results suggest that the combination of cfDNA with age and AFP could improve the diagnostic performance for HCC.
Collapse
Affiliation(s)
- Linlin Yan
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yanhui Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China
| | - Jiyuan Zhou
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Jingshundongjie 8, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China; Genecast Precision Medicine Technology Institute, Huayuanbeilu 35, Beijing 100089, China.
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing 100034, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Okajima W, Komatsu S, Ichikawa D, Miyamae M, Ohashi T, Imamura T, Kiuchi J, Nishibeppu K, Arita T, Konishi H, Shiozaki A, Morimura R, Ikoma H, Okamoto K, Otsuji E. Liquid biopsy in patients with hepatocellular carcinoma: Circulating tumor cells and cell-free nucleic acids. World J Gastroenterol 2017; 23:5650-5668. [PMID: 28883691 PMCID: PMC5569280 DOI: 10.3748/wjg.v23.i31.5650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/09/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called “liquid biopsy” is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wataru Okajima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mahito Miyamae
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
35
|
Howell JA, Khan SA, Knapp S, Thursz MR, Sharma R. The clinical role of circulating free tumor DNA in gastrointestinal malignancy. Transl Res 2017; 183:137-154. [PMID: 28056336 DOI: 10.1016/j.trsl.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
Abstract
Circulating cell-free DNA (cfDNA) is DNA released from necrotic or apoptotic cells into the bloodstream. While both healthy cells and cancer cells release cfDNA, tumors are associated with higher levels of tumor-derived circulating cell-free DNA (ctDNA) detectable in blood. Absolute levels of ctDNA and its genetic mutations and epigenetic changes show promise as potentially useful biomarkers of tumor biology, progression, and response to therapy. Moreover, studies have demonstrated the discriminative accuracy of ctDNA levels for diagnosis of gastrointestinal cancer compared with benign inflammatory diseases. Therefore, ctDNA detected in blood offers a minimally invasive and easily repeated "liquid biopsy" of cancer, facilitating real-time dynamic analysis of tumor behavior that could revolutionize both clinical and research practices in oncology. In this review, we provide a critical summary of the evidence for the utility of ctDNA as a diagnostic and prognostic biomarker in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK; Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia; Department of Medicine, The University of Melbourne, Melbourne, Australia.
| | - Shahid A Khan
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Susanne Knapp
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Mark R Thursz
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
36
|
Zhou J, Huang A, Yang XR. Liquid Biopsy and its Potential for Management of Hepatocellular Carcinoma. J Gastrointest Cancer 2017; 47:157-67. [PMID: 26969471 DOI: 10.1007/s12029-016-9801-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We summarized the recent findings of liquid biopsy in cancer field and discussed its potential utility in hepatocellular carcinoma. METHODS Literature published in MEDLINE, EMBASE, and Science Direct electronic databases was searched and reviewed. RESULTS Liquid biopsy specially referred to the detection of nucleic acids (circulating cell-free DNA, cfDNA) and circulating tumor cells (CTCs) in the blood of cancer patients. Compared to conventional single-site sampling or biopsy method, liquid biopsy had the advantages such as non-invasiveness, dynamic monitoring, and the most important of all, overcoming the limit of spatial and temporal heterogeneity. The genomic information of cancer could be profiled by genotyping cfDNA/CTC and subsequently applied to make molecular classification, targeted therapy guidance, and unveil drug resistance mechanisms. The serial sampling feature of liquid biopsy made it possible to monitor treatment response in a real-time manner and predict tumor metastasis/recurrence in advance. CONCLUSIONS Liquid biopsy is a non-invasive, dynamic, and informative sampling method with important clinical translational significance in cancer research and practice. Much work needs to be done before it is used in the management of HCC.
Collapse
Affiliation(s)
- Jian Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Ao Huang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xin-Rong Yang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| |
Collapse
|
37
|
Tang JC, Feng YL, Guo T, Xie AY, Cai XJ. Circulating tumor DNA in hepatocellular carcinoma: trends and challenges. Cell Biosci 2016; 6:32. [PMID: 27182434 PMCID: PMC4866298 DOI: 10.1186/s13578-016-0100-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Molecular characterization of individual patients’ tumor cells is becoming increasingly important in offering effective treatment for patients in clinical practice. Recent advances in the field have indicated that circulating tumor DNA (ctDNA) has huge potential to serve as a biomarker for early detection and precision treatment as well as prognosis of hepatocellular carcinoma (HCC). As ctDNA in HCC patients harbors the molecular characteristics of HCC tumor cells, ctDNA analysis in the blood may be sufficient for convenient, non-invasive and accurate detection, providing information for HCC diagnosis, treatment and prognosis. In this review, we will summarize and discuss current trends and challenges of ctDNA application in HCC.
Collapse
Affiliation(s)
- Jia-Cheng Tang
- Zhejiang Province Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Li Feng
- Zhejiang Province Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China ; Institute of Translational Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tao Guo
- Zhejiang Province Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China ; Institute of Translational Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - An-Yong Xie
- Zhejiang Province Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China ; Institute of Translational Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiu-Jun Cai
- Zhejiang Province Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Hepatic carcinosarcoma: evidence of polyclonal origin based on microsatellite analysis. Pathol Res Pract 2015; 211:905-10. [DOI: 10.1016/j.prp.2015.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 01/26/2023]
|
39
|
Howell JA, Sharma R. The clinical role of 'liquid biopsy' in hepatocellular carcinoma. Hepat Oncol 2015; 3:45-55. [PMID: 30191026 DOI: 10.2217/hep.15.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022] Open
Abstract
Circulating free tumor DNA (ctDNA) is DNA released from necrotic or apoptotic tumor cells into the bloodstream. Absolute levels of ctDNA, as well as genetic mutations and epigenetic changes detected in ctDNA are useful biomarkers of tumor biology, progression and response to therapy in many tumor types and recent evidence suggests they may be useful in hepatocellular carcinoma (HCC). ctDNA detected in blood, therefore, offers a minimally invasive, easily repeated 'liquid biopsy' of cancer, providing real-time dynamic analysis of tumor behavior and treatment response that could revolutionize both clinical and research practice in HCC. In this review, we provide a critical summary of the evidence for the utility of ctDNA as a diagnostic and prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, St Mary's Hospital, Imperial College, London, UK.,Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia.,Department of Hepatology, St Mary's Hospital, Imperial College, London, UK.,Centre for Population Health, MacFarlane-Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Rohini Sharma
- Department of Oncology, Hammersmith Hospital, Imperial College, London, UK.,Department of Oncology, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
40
|
Reis IM, Ramachandran K, Speer C, Gordian E, Singal R. Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease. Br J Cancer 2015; 113:460-8. [PMID: 26171936 PMCID: PMC4522641 DOI: 10.1038/bjc.2015.240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prostate-specific antigen (PSA) screening for prostate cancer results in a large number of unnecessary prostate biopsies. There is a need for specific molecular markers that can be used in combination with PSA to improve the specificity of PSA screening. We examined GADD45a methylation in blood DNA as a molecular marker for prostate cancer diagnosis. METHODS The study included 82 men, with PSA levels >4 ng ml(-1) and/or abnormal digital rectal exam, who underwent prostate biopsy. We compared GADD45a methylation in DNA from serum and buffy coat in 44 patients (22 prostate cancer and 22 benign). GADD45a methylation in serum DNA was examined in 82 patients (34 cancer and 48 benign). RESULTS There was no significant difference in buffy coat GADD45a methylation between cancer and benign patients. Serum GADD45a methylation was significantly higher in cancer than in benign patients. Classification and regression tree predictive model for prostate cancer including risk groups defined by PSA, free circulating DNA (fcDNA) level and GADD45a methylation yielded specificity of 87.5%, sensitivity of 94.1% and receiver operator characteristic curve area of 0.937. CONCLUSIONS Serum GADD45a methylation in combination with PSA and fcDNA level was useful in distinguishing benign from prostate cancer patients.
Collapse
Affiliation(s)
- I M Reis
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - K Ramachandran
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C Speer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - E Gordian
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - R Singal
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Medical Center, Miami, FL, USA
- E-mail:
| |
Collapse
|
41
|
Feng Y, Qin XC, Luo Y, Li YZ, Zhou X. Efficacy of contrast-enhanced ultrasound washout rate in predicting hepatocellular carcinoma differentiation. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1553-1560. [PMID: 25747937 DOI: 10.1016/j.ultrasmedbio.2015.01.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
The aim of this retrospective study was to evaluate the efficacy of contrast-enhanced ultrasound (CEUS) washout rate in predicting hepatocellular carcinoma (HCC) differentiation. Two hundred seventy-one patients underwent liver resection for HCC between April 2008 and December 2012 after being examined by CEUS using the contrast agent SonoVue with a low mechanical index (<0.1) in a routine procedure. Contrast agent washout rates obtained from video images were divided into four categories from slow to fast: WR1 = no washout in all phases (slowest); WR2 = washout after 120 s from contrast injection (late-phase washout); WR3 = washout between 41 and 120 s from contrast injection (portal venous washout); WR4 = washout before 40 s from contrast injection (fastest washout rate). HCC nodules were graded as well, moderately and poorly differentiated. Spearman rank correlation and χ(2)-tests were used to assess group relationships and differences. Receiver operating characteristic curve analysis was used to determine the diagnostic predictive value of CEUS. Among the 271 patients, 18 (6.6%) had well differentiated, 150 (55.4%) had moderately differentiated and 103 (38.0%) had poorly differentiated HCC. Statistical tests indicated that washout rate was significantly correlated with tumor differentiation (p < 0.05), and the poorly differentiated HCCs had earlier washout. At the cutoff point of WR4, CEUS based on washout rate performed poorly in distinguishing poorly differentiated from moderately and well-differentiated HCCs, with a sensitivity, specificity and accuracy (area under the curve) of 24%, 97% and 0.68, respectively. However, at the cutoff point of WR2, the sensitivity, specificity and accuracy of CEUS in differentiating well-differentiated HCC from other HCCs were significantly better: 98%, 78% and 0.96, respectively. Thus, CEUS washout rate may have a role in identifying patients with well-differentiated HCC.
Collapse
Affiliation(s)
- Yan Feng
- Ultrasound Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Medical Imaging Pharmaceutical Lab, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xia-Chuan Qin
- Ultrasound Department, Nanchong Central Hospital, Nanchong, Sichuan Province, China
| | - Yan Luo
- Ultrasound Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yong-Zhong Li
- Ultrasound Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiang Zhou
- Ultrasound Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Medical Imaging Pharmaceutical Lab, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
42
|
Liao W, Mao Y, Ge P, Yang H, Xu H, Lu X, Sang X, Zhong S. Value of quantitative and qualitative analyses of circulating cell-free DNA as diagnostic tools for hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 2015; 94:e722. [PMID: 25860220 PMCID: PMC4554041 DOI: 10.1097/md.0000000000000722] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
Qualitative and quantitative analyses of circulating cell-free DNA (cfDNA) are potential methods for the detection of hepatocellular carcinoma (HCC). Many studies have evaluated these approaches, but the results have been variable. This meta-analysis is the first to synthesize these published results and evaluate the use of circulating cfDNA values for HCC diagnosis. All articles that met our inclusion criteria were assessed using QUADAS guidelines after the literature research. We also investigated 3 subgroups in this meta-analysis: qualitative analysis of abnormal concentrations of circulating cfDNA; qualitative analysis of single-gene methylation alterations; and multiple analyses combined with alpha-fetoprotein (AFP). Statistical analyses were performed using the software Stata 12.0. We synthesized these published results and calculated accuracy measures (pooled sensitivity and specificity, positive/negative likelihood ratios [PLRs/NLRs], diagnostic odds ratios [DORs], and corresponding 95% confidence intervals [95% CIs]). Data were pooled using bivariate generalized linear mixed model. Furthermore, summary receiver operating characteristic curves and area under the curve (AUC) were used to summarize overall test performance. Heterogeneity and publication bias were also examined. A total of 2424 subjects included 1280 HCC patients in 22 studies were recruited in this meta-analysis. Pooled sensitivity and specificity, PLR, NLR, DOR, AUC, and CIs of quantitative analysis were 0.741 (95% CI: 0.610-0.840), 0.851 (95% CI: 0.718-0.927), 4.970 (95% CI: 2.694-9.169), 0.304 (95% CI: 0.205-0.451), 16.347 (95% CI: 8.250-32.388), and 0.86 (95% CI: 0.83-0.89), respectively. For qualitative analysis, the values were 0.538 (95% CI: 0.401-0.669), 0.944 (95% CI: 0.889-0.972), 9.545 (95% CI: 5.298-17.196), 0.490 (95% CI: 0.372-0.646), 19.491 (95% CI: 10.458-36.329), and 0.87 (95% CI: 0.84-0.90), respectively. After combining with AFP assay, the values were 0.818 (95% CI: 0.676-0.906), 0.960 (95% CI: 0.873-0.988), 20.195 (95% CI: 5.973-68.282), 0.190 (95% CI: 0.100-0.359), 106.270 (95% CI: 22.317-506.055), and 0.96 (95% CI: 0.94-0.97), respectively. The results in this meta-analysis suggest that circulating cfDNA have potential value for HCC diagnosis. However, it would not be recommended for using independently, which is based on the nonrobust results. After combining with AFP, the diagnostic performance will be improved. Further investigation with more data is needed.
Collapse
Affiliation(s)
- Wenjun Liao
- From the Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gall TMH, Frampton AE, Krell J, Habib NA, Castellano L, Stebbing J, Jiao LR. Cell-free DNA for the detection of pancreatic, liver and upper gastrointestinal cancers: has progress been made? Future Oncol 2014; 9:1861-9. [PMID: 24295416 DOI: 10.2217/fon.13.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detecting alterations in blood cell-free DNA (cfDNA) is hoped to be a novel, noninvasive method for diagnosing, prognosing and monitoring cancer patients. Several studies have assessed the usefulness of measuring tumor-specific genetic and epigenetic changes of cfDNA, such as loss of heterozygosity, frequency of mutations, alterations of microsatellites and the methylation of genes in patient blood samples. However, few well-designed trials have been carried out to translate these findings effectively. In this review, we have assessed the clinical utility of cfDNA in pancreatic, liver and upper gastrointestinal malignancies.
Collapse
Affiliation(s)
- Tamara M H Gall
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Wu JC, Jia HL, Li ZR, Zhou KL, Qin LX, Dong QZ, Ren N. Genomic aberrations in the HTPAP promoter affect tumor metastasis and clinical prognosis of hepatocellular carcinoma. PLoS One 2014; 9:e90528. [PMID: 24603412 PMCID: PMC3946185 DOI: 10.1371/journal.pone.0090528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/03/2014] [Indexed: 02/07/2023] Open
Abstract
We previously reported that the intronic tagSNP +357G/C in the metastasis suppressor HTPAP is associated with metastasis and prognosis of hepatocellular carcinoma (HCC). The aim of this study was to investigate whether SNPs in the HTPAP promoter modulate HTPAP expression and prognosis of HCC. Genomic DNA from 572 microdissected HCCs were genotyped by pyrosequencing and verified by direct sequencing. Haplotype blocks were analyzed. Reporter plasmids were constructed and transfected into HCC cell lines. Transcriptional activities of plasmids were analyzed by dual-luciferase reporter systems. HTPAP expression was measured by real-time quantitative PCR, western blots, and tissue microarrays. Invasion was assessed by Matrigel assays. The prognostic values of HTPAP promoter SNPs in HCC were evaluated by Kaplan-Meier and Cox regression analyses. We identified six SNPs, including -1053A/G and +64G/C, in the HTPAP promoter. The SNPs were in complete linkage disequilibrium, resulting in three promoter haplotypes (promoter I:-1053AA/+64GG, promoter II: -1053AG/+64GC, and promoter III: -1053GG/+64CC). Promoter I manifested the highest luciferase index (p<0.005). However, no significant difference was observed between promoters II and III. We consistently found that HTPAP mRNA and protein levels were significantly higher in promoter I than that of promoter II+III (p<0.001). Invasion was increased in HCC cells transfected with promoters II+III compared to those transfected with promoter I (p<0.05). The HTPAP promoter II+III haplotype was associated with significantly increased metastasis compared to that of promoter I (p = 0.023). The postoperative five-year overall survival of patients with promoters II+III was lower than that of patients with promoter I (p = 0.006). Multivariate analysis showed that the promoter II+III haplotype was an adverse prognostic marker in HCC. The genetic variants at loci –1053 and +64 of the HTPAP promoter affect the expression of HTPAP, which might be a novel determinant and target for HCC prognosis.
Collapse
Affiliation(s)
- Jin-Cai Wu
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Nanhua University, Haikou, People's Republic of China
| | - Hu-Liang Jia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
- Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhuo-Ri Li
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Nanhua University, Haikou, People's Republic of China
| | - Kai-Lun Zhou
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Nanhua University, Haikou, People's Republic of China
| | - Lun-Xiu Qin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
- Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qiong-Zhu Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
- Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
- * E-mail: (Q-ZD); (NR)
| | - Ning Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
- Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
- * E-mail: (Q-ZD); (NR)
| |
Collapse
|
45
|
Chen K, Zhang H, Zhang LN, Ju SQ, Qi J, Huang DF, Li F, Wei Q, Zhang J. Value of circulating cell-free DNA in diagnosis of hepatocelluar carcinoma. World J Gastroenterol 2013; 19:3143-3149. [PMID: 23716996 PMCID: PMC3662956 DOI: 10.3748/wjg.v19.i20.3143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/18/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the value of combined detection of circulating cell-free DNA (cfDNA), α-fetal protein (AFP) and α L-fucosidase (AFU) for diagnosis of hepatocellular carcinoma (HCC).
METHODS: Serum samples from 39 HCC patients and 45 normal controls were collected. Branched DNA (bDNA) was used to detect the level of cfDNA, and a receiver operating characteristic curve was employed to evaluate the diagnostic sensitivity, specificity, accuracy, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio and Youden index, and to assess the diagnostic efficiency and their correlations with the clinicopathological features. AFP and AFU were detected by chemiluminescence and colorimetry, respectively. The significance of combined detection of the three biomarkers was discussed.
RESULTS: cfDNA level was increased in 22 of the 39 HCC samples and in 2 of the 45 normal controls. cfDNA level in HCC samples was significantly higher than that in normal controls (P < 0.05). There were significant differences in sex and extra- and intrahepatic metastasis (P < 0.05). There was no significant correlation between cfDNA, AFP and AFU in the detection of HCC. The sensitivity of combined detection of cfDNA with one marker (AFP or AFU) and cfDNA with two markers (AFP and AFU) was 71.8%, 87.2% and 89.7% vs 56.4%, 53.8% and 66.7% for cfDNA, AFP and AFU used alone, respectively, the difference being statistically significant (P < 0.05).
CONCLUSION: Quantitative analysis of cfDNA is sensitive and feasible, and the combined detection of cfDNA with AFP or AFU or both could improve the diagnostic sensitivity for HCC.
Collapse
|
46
|
Wong KF, Xu Z, Chen J, Lee NP, Luk JM. Circulating markers for prognosis of hepatocellular carcinoma. ACTA ACUST UNITED AC 2013; 7:319-29. [DOI: 10.1517/17530059.2013.795146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Abstract
Hepatocellular carcinoma (HCC) is considered to be a fatal disease because of its late diagnosis, underlying liver disease, and refractoriness to systemic treatments. Biomarkers with high sensitivity and specificity that are minimally invasive, reproducible, and easily available have important clinical utility for early diagnosis, prognostication, and pharmacodynamics evaluation. Until now, most of the circulating HCC biomarkers used in clinical practice were protein molecules. However, these biomarkers often had low sensitivity and specificity. In the past decade, circulating cell-free nucleic acids (cfNAs) have been extensively studied. We review the studies that evaluated cfNAs as circulating HCC biomarkers and discuss recent advances with regard to their diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
48
|
Total serum DNA and DNA integrity: diagnostic value in patients with hepatitis B virus-related hepatocellular carcinoma. Pathology 2012; 44:318-324. [PMID: 22531347 DOI: 10.1097/pat.0b013e328353a24c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/13/2011] [Accepted: 11/20/2011] [Indexed: 12/15/2022]
Abstract
AIMS This study aimed to test the diagnostic utility of the total serum cell-free DNA (cfDNA) and DNA integrity index for detection of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). METHODS We initially evaluated the sodium iodide (NaI) method, Triton/Heat/Phenol (THP) protocol and QIAamp Kit for cfDNA extraction. Then cfDNA was isolated from the sera of 80 patients with HBV-related HCC, 80 patients with chronic HBV infection and 50 healthy subjects, and quantified by real-time quantitative polymerase chain reaction (qPCR) amplification of beta-actin genomic DNA fragments using two sets of primers of 100 and 400 bp. DNA integrity was calculated as the ratio of 400 bp to 100 bp β-actin fragments. RESULTS The THP approach was not only superior to the other two methods in terms of DNA quantity, but also was simpler, more rapid, and less costly. Serum DNA integrity in HCC patients was significantly higher than that in HBV patients or healthy controls. As for total cfDNA levels, although a significant difference was found between HCC patients and healthy individuals, no significant difference was found between HBV patients with and without HCC. DNA integrity was associated with tumour size, TNM stage, lymph node and distant metastasis. DNA integrity had a higher sensitivity and specificity in discriminating HCC from HBV patients than total DNA. CONCLUSIONS The THP method is preferred for extraction of cfDNA. DNA integrity is a promising molecular biomarker for detecting HCC in patients with chronic HBV infection; it reflects the progression and metastatic potential of the tumour.
Collapse
|
49
|
A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc Natl Acad Sci U S A 2012; 109:8212-7. [PMID: 22566646 DOI: 10.1073/pnas.1206062109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The large chromosomal deletions frequently observed in cancer genomes are often thought to arise as a "two-hit" mechanism in the process of tumor-suppressor gene (TSG) inactivation. Using a murine model system of hepatocellular carcinoma (HCC) and in vivo RNAi, we test an alternative hypothesis, that such deletions can arise from selective pressure to attenuate the activity of multiple genes. By targeting the mouse orthologs of genes frequently deleted on human 8p22 and adjacent regions, which are lost in approximately half of several other major epithelial cancers, we provide evidence suggesting that multiple genes on chromosome 8p can cooperatively inhibit tumorigenesis in mice, and that their cosuppression can synergistically promote tumor growth. In addition, in human HCC patients, the combined down-regulation of functionally validated 8p TSGs is associated with poor survival, in contrast to the down-regulation of any individual gene. Our data imply that large cancer-associated deletions can produce phenotypes distinct from those arising through loss of a single TSG, and as such should be considered and studied as distinct mutational events.
Collapse
|
50
|
Genetic variations in plasma circulating DNA of HBV-related hepatocellular carcinoma patients predict recurrence after liver transplantation. PLoS One 2011; 6:e26003. [PMID: 21998744 PMCID: PMC3187841 DOI: 10.1371/journal.pone.0026003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/15/2011] [Indexed: 02/06/2023] Open
Abstract
Background Recurrence prediction of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients undergoing liver transplantation (LT) present a great challenge because of a lack of biomarkers. Genetic variations play an important role in tumor development and metastasis. Methods Oligonucleotide microarrays were used to evaluate the genetic characteristics of tumor DNA in 30 HBV-related HCC patients who were underwent LT. Recurrence-related single-nucleotide polymorphism were selected, and their prognostic value was assessed and validated in two independent cohorts of HCC patients (N = 102 and N = 77), using pretransplant plasma circulating DNA. Prognostic significance was assessed by Kaplan-Meier survival estimates and log-rank tests. Multivariate analyses were performed to evaluate prognosis-related factors. Results rs894151 and rs12438080 were significantly associated with recurrence (P = .003 and P = .004, respectively). Multivariate analyses demonstrated that the co-index of the 2 SNPs was an independent prognostic factor for recurrence (P = .040). Similar results were obtained in the third cohort (N = 77). Furthermore, for HCC patients (all the 3 cohorts) exceeding Milan criteria, the co-index was a prognostic factor for recurrence and survival (P<.001 and P = .002, respectively). Conclusions Our study demonstrated first that genetic variations of rs894151 and rs12438080 in pretransplant plasma circulating DNA are promising prognostic markers for tumor recurrence in HCC patients undergoing LT and identify a subgroup of patients who, despite having HCC exceeding Milan criteria, have a low risk of post-transplant recurrence.
Collapse
|