1
|
He S, Zhao X, Mu R, Pan Z, Mai J. XRCC1 and hOGG1 polymorphisms and endometrial carcinoma: A meta-analysis. Open Med (Wars) 2024; 19:20240913. [PMID: 38463515 PMCID: PMC10921453 DOI: 10.1515/med-2024-0913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Endometrial carcinoma's (EC) etiology is complex and involves DNA repair gene polymorphisms like XRCC1-Arg399Gln and hOGG1-Ser326Cys, but their association with the disease is unclear. Following PRISMA, we conducted a systematic review and meta-analysis, collecting data from four databases. The studies needed to be population-based case-control studies examining the association between the named polymorphisms and EC. Quality was assessed with the Newcastle-Ottawa Scale. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated, and subgroup analyses were conducted based on ethnicity. Seven studies were included. Both polymorphisms were found to significantly increase EC risk, particularly in Caucasians. XRCC1-Arg399Gln showed a dominant model OR of 1.14 (95% CI: 1.01-1.29) and a homozygous model OR of 1.59 (95% CI: 1.12-2.25). The heterozygote model OR for hOGG1-Ser326Cys was 1.29 (95% CI: 1.02-1.63), and the allele OR was 1.31 (95% CI: 1.07-1.60). XRCC1-Arg399Gln and hOGG1-Ser326Cys may increase EC risk, primarily in Caucasian women, emphasizing the role of DNA repair in disease susceptibility. More extensive studies are needed to validate these findings in diverse ethnicities and investigate other DNA repair gene polymorphisms.
Collapse
Affiliation(s)
- Shengke He
- Department of Pathology, Danzhou People’s Hospital, Nada Town, Danzhou, Hainan, 571799, China
| | - Xiujuan Zhao
- Department of Gynaecology and Obstetrics, Danzhou People’s Hospital, Nada Town, Danzhou, Hainan, 571799, China
| | - Ruifang Mu
- Department of Gynaecology and Obstetrics, Danzhou People’s Hospital, Nada Town, Danzhou, Hainan, 571799, China
| | - Zhongjun Pan
- Department of Pathology, Danzhou People’s Hospital, Nada Town, Danzhou, Hainan, 571799, China
| | - Jinglan Mai
- Occupational Physical Examination Outpatient, Haikou Center for Disease Control and Prevention, No. 56 Yehai Avenue, Qiongshan District, Haikou, Hainan, 570203, China
| |
Collapse
|
2
|
Kavec MJ, Urbanova M, Makovicky P, Opattová A, Tomasova K, Kroupa M, Kostovcikova K, Siskova A, Navvabi N, Schneiderova M, Vymetalkova V, Vodickova L, Vodicka P. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases MUTYH and hOGG1 in Colorectal Cancer Patients. Int J Mol Sci 2022; 23:ijms23105704. [PMID: 35628513 PMCID: PMC9145200 DOI: 10.3390/ijms23105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, oxidative DNA damage and resulting mutations play a role in colorectal carcinogenesis. Impaired equilibrium between DNA damage formation, antioxidant status, and DNA repair capacity is responsible for the accumulation of genetic mutations and genomic instability. The lesion-specific DNA glycosylases, e.g., hOGG1 and MUTYH, initiate the repair of oxidative DNA damage. Hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome) with germline mutations causing a loss-of-function in base excision repair glycosylases, serve as straight forward evidence on the role of oxidative DNA damage and its repair. Altered or inhibited function of above glycosylases result in an accumulation of oxidative DNA damage and contribute to the adenoma-adenocarcinoma transition. Oxidative DNA damage, unless repaired, often gives rise G:C > T:A mutations in tumor suppressor genes and proto-oncogenes with subsequent occurrence of chromosomal copy-neutral loss of heterozygosity. For instance, G>T transversions in position c.34 of a KRAS gene serves as a pre-screening tool for MUTYH-associated polyposis diagnosis. Since sporadic colorectal cancer represents more complex and heterogenous disease, the situation is more complicated. In the present study we focused on the roles of base excision repair glycosylases (hOGG1, MUTYH) in colorectal cancer patients by investigating tumor and adjacent mucosa tissues. Although we found downregulation of both glycosylases and significantly lower expression of hOGG1 in tumor tissues, accompanied with G>T mutations in KRAS gene, oxidative DNA damage and its repair cannot solely explain the onset of sporadic colorectal cancer. In this respect, other factors (especially microenvironment) per se or in combination with oxidative DNA damage warrant further attention. Base excision repair characteristics determined in colorectal cancer tissues and their association with disease prognosis have been discussed as well.
Collapse
Affiliation(s)
- Miriam J. Kavec
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, 140 59 Prague, Czech Republic
| | - Marketa Urbanova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
| | - Pavol Makovicky
- Department of Biology, Faculty of Education, J Selye University, Bratislavska 3322, 945 01 Komarno, Slovakia;
| | - Alena Opattová
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
| | - Nazila Navvabi
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, First Medical Faculty, Charles University, Katerinska 1660, 128 00 Prague, Czech Republic;
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; (M.J.K.); (A.O.); (K.T.); (M.K.); (A.S.); (N.N.); (V.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic;
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-241062694
| |
Collapse
|
3
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
4
|
Tan SC. Low penetrance genetic polymorphisms as potential biomarkers for colorectal cancer predisposition. J Gene Med 2018; 20:e3010. [PMID: 29424105 DOI: 10.1002/jgm.3010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Mucha B, Pytel D, Markiewicz L, Cuchra M, Szymczak I, Przybylowska-Sygut K, Dziki A, Majsterek I, Dziki L. Nucleotide Excision Repair Capacity and XPC and XPD Gene Polymorphism Modulate Colorectal Cancer Risk. Clin Colorectal Cancer 2017; 17:e435-e441. [PMID: 29793654 DOI: 10.1016/j.clcc.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is leading malignant tumors to occur mainly in industrialized countries, where it exhibits one of the highest mortality rates. Up to 80% of all CRCs characterize a chromosomal instability (CIN) phenotype. The main challenge faced by scientist is to reveal the mechanism of CIN development. An often proposed model is defects in DNA repair in terms of efficiency and genetic variations that modulate the response to stimuli from the environment. The objectives of this research were to determine whether nucleotide excision repair (NER) might affect CRC risk. MATERIALS AND METHODS The first part of the study concerns NER efficiency. In the second part we selected 2 common single nucleotide polymorphisms within genes involved in NER (Xeroderma pigmentosum group C (XPC) Lys939Gln, Xeroderma pigmentosum group D (XPD) Lys751Gln) to determine the relation between them and CRC risk. The restriction fragment length polymorphism-polymerase chain reaction method was used for genotyping of 221 CRC patients vs. 270 cancer-free individuals. The isotopic labeling in vitro assay was used to evaluate NER capacity in lymphocytes and tissue protein extracts. RESULTS We observed a significantly decreased level of NER capacity (P = .025) in lymphocytes delivered from CRC patients compared with healthy ones. Polymorphism screening points to higher CRC risk for the Gln939Gln genotype (P = .02) and Gln allele (P = .002) of the XPC gene. CONCLUSION Taken together, our findings suggest a potential role for NER in CRC.
Collapse
Affiliation(s)
- Bartosz Mucha
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lukasz Markiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Magda Cuchra
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Izabela Szymczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | | | - Adam Dziki
- Department of General and Colorectal Surgery, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland.
| | - Lukasz Dziki
- Department of General and Colorectal Surgery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Kamali M, Kargar S, Heiranizadeh N, Zare M, Kargar S, Zare Shehneh M, Neamatzadeh H. Lack of any Association between the Hogg1 Ser326Cys Polymorphism and Breast Cancer Risk: a Systematic Review And Meta-Analysis Of 18 Studies. Asian Pac J Cancer Prev 2017; 18:245-251. [PMID: 28240527 PMCID: PMC5563108 DOI: 10.22034/apjcp.2017.18.1.245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The human 8-oxoguanine DNA glycosylase (hOGG1) gene may be linked with cancer susceptibility. The aim of this study was to quantitatively summarize any association between the hOGG1 Ser326Cys polymorphism and breast cancer (BC) risk. Materials and Methods: A comprehensive search of the PubMed, Embase, and ISI web of knowledge databases for papers published before 1 October 2016 was conducted. Summary odds ratios (ORs) with corresponding 95 % confidence intervals (95 %CIs) were estimated, with fixed-effects or random-effects models when appropriate, to assess any association. Results: A total of 9,434 cases and 10,497 controls from 18 studies were included in this meta-analysis. When the eligible studies were pooled, there was no evidence found for a significant association between the hOGG1 Ser326Cys polymorphism and BC in in all genetic contrast models G vs. C (OR=1.19, 95% CI 0.92– 1.53), CG vs. CC (OR = 0.97, 95% CI 0.91-1.04, p = 0.46), GG vs. CC (OR = 1.11, 95% CI 0.91-1.35, p = 0.30), GG + CG vs. CC (OR = 0.98, 95% CI 0.92-1.05, p = 0.67), and GG vs. CG + CC (OR = 1.22, 95% CI 0.98-1.52, p = 0.07). According to subgroup analysis, we also did not find a significant association between the hOGG1 Ser326Cys polymorphism and BC risk in Asians and Caucasians considered separately. Conclusions: The current meta-analysis suggests that the hOGG1 Ser326Cys polymorphism is not significantly associated with BC risk.
Collapse
Affiliation(s)
- Mahdieh Kamali
- Department of Perinatology, School of Medicine, Tehran University Medical of Sciences, Tehran.
| | | | | | | | | | | | | |
Collapse
|
7
|
Lai CY, Hsieh LL, Tang R, Santella RM, Chang-Chieh CR, Yeh CC. Association between polymorphisms of APE1 and OGG1 and risk of colorectal cancer in Taiwan. World J Gastroenterol 2016; 22:3372-3380. [PMID: 27022219 PMCID: PMC4806195 DOI: 10.3748/wjg.v22.i12.3372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/08/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of OGG1 (Ser326Cys, 11657A/G, and Arg154His) and APE1 (Asp148Glu, and T-656G) polymorphisms on colorectal cancer (CRC) risk.
METHODS: We enrolled 727 cases newly diagnosed with colorectal adenocarcinoma and 736 age- and sex-matched healthy controls from a medical center in Taiwan. Genomic DNA isolated from the buffy coat was used for genotyping through polymerase chain reaction. Unconditional logistic regressions were used for calculating ORs and 95%CIs to determine the association between the genetic polymorphisms and CRC risk. Haplotype frequencies were estimated using PHASE software. Moreover, stratification analyses on the basis of sex, age at diagnosis, and tumor subsite and stage were performed.
RESULTS: The CRC risk was higher in patients with the OGG1 326Ser/Cys + Cys/Cys genotype (OR = 1.38, 95%CI: 1.03-1.85, P = 0.030), particularly high in patients with stage III + IV cancer (OR = 1.48, 95%CI: 1.03-2.13) compared with patients with the Ser/Ser genotype. In addition, OGG1 11657G allele carriers had a 41% reduced CRC risk among stage 0-II patients (OR = 0.59, 95%CI: 0.35-0.98). The CRC risk was significantly higher among females with the APE1 Glu allele (OR = 1.41, 95%CI: 1.02-1.96). The APE1 148Glu/-656G haplotype was also associated with a significant CRC risk in females (OR = 1.36, 95%CI: 1.03-1.78).
CONCLUSION: OGG1 and APE1 polymorphisms are associated with stage- and sex-specific risk of CRC in the Taiwanese population.
Collapse
|
8
|
Ali K, Mahjabeen I, Sabir M, Mehmood H, Kayani MA. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data. DISEASE MARKERS 2015; 2015:690878. [PMID: 26089588 PMCID: PMC4452349 DOI: 10.1155/2015/690878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023]
Abstract
In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3'UTR mutations, three missense mutations, and a nonsense mutation. Significantly (p < 0.001) increased (~29 fold) breast cancer risk was associated with a splice site variant g.9800972T>G and 3'UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold) increase in breast cancer risk was associated with g.9793680G>A (p < 0.009). Similarly ~14-fold increased risk was associated with Val159Gly (p < 0.01), ~17-fold with Gly221Arg (p < 0.005), and ~18-fold with Ser326Cys (p < 0.004) in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p < 0.01) increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer.
Collapse
Affiliation(s)
- Kashif Ali
- Cancer Genetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Maimoona Sabir
- Cancer Genetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Humera Mehmood
- Nuclear Medicine Oncology & Radiotherapy Institute (NORI), Islamabad 44000, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics Laboratory, Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
9
|
Ramaniuk VP, Nikitchenko NV, Savina NV, Kuzhir TD, Rolevich AI, Krasny SA, Sushinsky VE, Goncharova RI. Polymorphism of DNA repair genes OGG1, XRCC1, XPD and ERCC6 in bladder cancer in Belarus. Biomarkers 2014; 19:509-16. [PMID: 25089939 DOI: 10.3109/1354750x.2014.943291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT The study of DNA base and nucleotide excision repair gene polymorphisms in bladder cancer seems to have a predictive value because of the evident relationship between the DNA damage response induced by environmental mutagens and cancer predisposition. OBJECTIVE The objective was to determine OGG1 Ser326Cys, XRCC1 Arg399Gln, XPD Asp312Asn, and ERCC6 Met1097Val polymorphisms in bladder cancer patients as compared to controls. METHODS Both groups were predominantly represented by Belarusians and Eastern Slavs. DNA samples from 336 patients and 370 controls were genotyped using a PCR-RFLP method. RESULTS The genotype distributions were in agreement with the Hardy-Weinberg equilibrium. The minor allele frequencies in the control population were in the range of those in Caucasians in contrast to Asians. The OGG1 326 Ser/Cys and XPD 312 Asp/Asn heterozygous genotypes were inversely associated with cancer risk (OR [95% CI] = 0.69 [0.50-0.95] and 1.35 [1.0-1.82], respectively). The contrasting effects of these genotypes were potentiated due to their interactions with smoking habit or age. CONCLUSIONS Among four DNA repair gene polymorphisms, the OGG1 326 Ser/Cys and XPD 312 Asp/Asn heterozygous genotypes might be recognized as potential genetic markers modifying susceptibility to bladder cancer in Belarus.
Collapse
Affiliation(s)
- Volha P Ramaniuk
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus , Minsk , Republic of Belarus
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Su Y, Xu A, Zhu J. The effect of oxoguanine glycosylase 1 rs1052133 polymorphism on colorectal cancer risk in Caucasian population. Tumour Biol 2013; 35:513-7. [PMID: 23975367 DOI: 10.1007/s13277-013-1072-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023] Open
Abstract
Human oxoguanine glycosylase 1 (OGG1) is an important part of the base excision repair pathway in the DNA repair. Numerous epidemiological studies have evaluated the association between OGG1 rs1052133 polymorphism and the risk of colorectal cancer, but the results of these studies from the Caucasian population were conflicting. To derive a more precise assessment on the association between OGG1 rs1052133 polymorphism and risk of colorectal cancer in Caucasian population, we performed a meta-analysis. The odds ratios (OR) with 95% confidence intervals (CI) were used to assess the strength of the association. Thirteen case-control studies with a total of 4,103 cases and 5,400 controls were finally included into the meta-analysis. Meta-analysis of all 13 studies showed that OGG1 rs1052133 polymorphism was significantly associated with the risk of colorectal cancer in Caucasian population (Cys versus Ser OR = 1.20, 95% CI = 1.03-1.39, P = 0.02; CysCys versus SerSer OR = 1.44, 95% CI = 1.04-2.00, P = 0.03; CysCys versus SerSer/SerCys OR = 1.39, 95% CI = 1.15-1.67, P = 0.0005). In the sensitivity analysis, omitting each study one at a time had no obvious influence on the pooled OR, which confirmed the stability of meta-analysis. The meta-analysis suggests that OGG1 rs1052133 polymorphism is significantly associated with the risk of colorectal cancer in Caucasian population.
Collapse
Affiliation(s)
- Yuantao Su
- Department of Minimally Invasive Surgery, Shanghai East Hospital, Shanghai, 200120, China
| | | | | |
Collapse
|