1
|
ErbB3-Targeting Oncolytic Adenovirus Causes Potent Tumor Suppression by Induction of Apoptosis in Cancer Cells. Int J Mol Sci 2022; 23:ijms23137127. [PMID: 35806132 PMCID: PMC9266575 DOI: 10.3390/ijms23137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.
Collapse
|
2
|
Kaniowski D, Ebenryter-Olbińska K, Kulik K, Suwara J, Cypryk W, Jakóbik-Kolon A, Leśnikowski Z, Nawrot B. Composites of Nucleic Acids and Boron Clusters (C 2B 10H 12) as Functional Nanoparticles for Downregulation of EGFR Oncogene in Cancer Cells. Int J Mol Sci 2021; 22:ijms22094863. [PMID: 34064412 PMCID: PMC8125477 DOI: 10.3390/ijms22094863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Agata Jakóbik-Kolon
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Zbigniew Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Lodz, Poland;
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
- Correspondence: ; Tel.: +48-42-6803248
| |
Collapse
|
3
|
Watson GA, Doi J, Hansen AR, Spreafico A. Novel strategies in immune checkpoint inhibitor drug development: How far are we from the paradigm shift? Br J Clin Pharmacol 2020; 86:1753-1768. [PMID: 32394468 PMCID: PMC7444803 DOI: 10.1111/bcp.14355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICI) represents a major milestone in immune-oncology. Over the years these agents have demonstrated efficacy in an increasing array of malignancies. Despite this success however, significant challenges remain. Novel approaches to both drug development and trial design are required to incorporate the unique pharmacokinetic and pharmacodynamic properties of ICIs. Further, it has also been established that the benefit of ICIs is limited to only a subset of patients. The molecular interactions between native immune cells and tumorigenesis and progression represent an active area of biomarker research, and elucidating the mechanisms of response and resistance is crucial to develop rational trial designs for the next wave of immune-oncology (IO) clinical trials, particularly in patients with primary and/or acquired resistance. Efforts are now being made to integrate both biological and clinical information using novel multi-omic approaches which are now being developed to further elucidate the molecular signatures associated with IO treatment response and resistance and enable rational drug development and trial design processes. As such, precision IO and the ability to deliver patient-specific choices for ICI monotherapies or combination therapies has become an increasingly tangible goal. We herein describe the current landscape in ICI drug development and discuss the challenges and future directions in this exciting and evolving era in immune-oncology.
Collapse
Affiliation(s)
- Geoffrey Alan Watson
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Jeffrey Doi
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Aaron Richard Hansen
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| | - Anna Spreafico
- Bras Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer CenterUniversity Health NetworkTorontoONCanada
| |
Collapse
|
4
|
Li N, Guha U, Kim C, Ye L, Cheng J, Li F, Chia D, Wei F, Wong DTW. Longitudinal Monitoring of EGFR and PIK3CA Mutations by Saliva-Based EFIRM in Advanced NSCLC Patients With Local Ablative Therapy and Osimertinib Treatment: Two Case Reports. Front Oncol 2020; 10:1240. [PMID: 32793495 PMCID: PMC7393232 DOI: 10.3389/fonc.2020.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The longitudinal monitoring of actionable oncogenes in circulating tumor DNA (ctDNA) of non-small cell lung cancer (NSCLC) is crucial for clinicians to evaluate current therapeutic response and adjust therapeutic strategies. Saliva-based electric field-induced release and measurement (EFIRM) is liquid biopsy platform to that can directly detect mutation genes with a small volume of samples. Herein, we compared the effectiveness of longitudinal monitoring for the combination of epidermal growth factor receptor (EGFR) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations between saliva-based EFIRM and plasma-based platforms (ddPCR and NGS) in two advanced NSCLC patients undergoing the treatment with osimertinib before and after local ablative therapy (LAT). Patients and Methods: Two patients with unresectable advanced NSCLC were enrolled into the National Institutes of Health Clinical Center (NIHCC) Study (ClinicalTrials.gov: 16-C-0092; local ablative therapy for the treatment of oligoprogressive, EGFR-mutated, non-small cell lung cancer after treatment with osimertinib). Serial collections of saliva, plasma, and metastatic tumor volume measurement by computed tomography (CT) were performed. Longitudinal paired saliva and plasma samples were analyzed for p.L858R EGFR, exon19 del EGFR, and p.E545K PIK3CA ctDNA using EFIRM (saliva) and ddPCR and NGS (plasma). Results: In Case 1, the saliva ctDNA curve of exon19 del EGFR by EFIRM demonstrated a strong similarity to those of tumor volume (R = 0.78, P = 0.00) and exon19 del EGFR in ddPCR (R = 0.53, P = 0.01). Moreover, the curve of p.E545K PIK3CA in EFIRM showed similarity to those of tumor volume (R = 0.70, P = 0.00) and p.E545K PIK3CA in NGS (R = 0.72, P = 0.00). In Case 2, the curve of p.E545K PIK3CA in EFIRM revealed a reverse relationship to that of tumor volume (R = -0.65, P = 0.01). Conclusion: In these two case reports, saliva-based EFIRM platform demonstrates a high level of concordance to plasma-based platforms (ddPCR and NGS) for longitudinally monitoring the combination of EGFR and PIK3CA ctDNA and can be a useful platform to monitor tumor progression and response to targeted therapy in NSCLC patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Chul Kim
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Leah Ye
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S, Brandau S. EGFR-Specific Tyrosine Kinase Inhibitor Modifies NK Cell-Mediated Antitumoral Activity against Ovarian Cancer Cells. Int J Mol Sci 2019; 20:ijms20194693. [PMID: 31546690 PMCID: PMC6801374 DOI: 10.3390/ijms20194693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adverse prognosis of most patients with ovarian cancer is related to recurrent disease caused by resistance to chemotherapeutic and targeted therapeutics. Besides their direct activity against tumor cells, monoclonal antibodies and tyrosine kinase inhibitors (TKIs) also influence the antitumoral activity of immune cells, which has important implications for the design of immunotherapies. In this preclinical study, we treated different ovarian cancer cell lines with anti-epidermal growth factor receptor (EGFR) TKIs and co-incubated them with natural killer (NK) cells. We studied treatment-related structural and functional changes on tumor and immune cells in the presence of the anti-EGFR antibody cetuximab and investigated NK-mediated antitumoral activity. We show that long-term exposure of ovarian cancer cells to TKIs leads to reduced responsiveness of intrinsically sensitive cancer cells over time. Inversely, neither long-term treatment with TKIs nor cetuximab could overcome the intrinsic resistance of certain ovarian cancer cells to anti-EGFR agents. Remarkably, tumor cells pretreated with anti-EGFR TKIs showed increased sensitivity towards NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In contrast, the cytokine secretion of NK cells was reduced by TKI sensitization. Our data suggest that sensitization of tumor cells by anti-EGFR TKIs differentially modulates interactions with NK cells. These data have important implications for the design of chemo-immuno combination therapies in this tumor entity.
Collapse
Affiliation(s)
- Nina Mallmann-Gottschalk
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Yvonne Sax
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Sven Brandau
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
6
|
Efficient Epidermal Growth Factor Receptor Targeting Oligonucleotide as a Potential Molecule for Targeted Cancer Therapy. Int J Mol Sci 2019; 20:ijms20194700. [PMID: 31546749 PMCID: PMC6801465 DOI: 10.3390/ijms20194700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is associated with the progression of a wide range of cancers including breast, glioma, lung, and liver cancer. The observation that EGFR inhibition can limit the growth of EGFR positive cancers has led to the development of various EGFR inhibitors including monoclonal antibodies and small-molecule inhibitors. However, the reported toxicity and drug resistance greatly compromised the clinical outcome of such inhibitors. As a type of chemical antibodies, nucleic acid aptamer provides an opportunity to overcome the obstacles faced by current EGFR inhibitors. In this study, we have developed and investigated the therapeutic potential of a 27mer aptamer CL-4RNV616 containing 2′-O-Methyl RNA and DNA nucleotides. Our results showed that CL-4RNV616 not only displayed enhanced stability in human serum, but also effectively recognized and inhibited the proliferation of EGFR positive Huh-7 liver cancer, MDA-MB-231 breast cancer, and U87MG glioblastoma cells, with an IC50 value of 258.9 nM, 413.7 nM, and 567.9 nM, respectively. Furthermore, TUNEL apoptosis assay revealed that CL-4RNV616 efficiently induced apoptosis of cancer cells. In addition, clinical breast cancer biopsy-based immunostaining assay demonstrated that CL-4RNV616 had a comparable detection efficacy for EGFR positive breast cancer with commonly used commercial antibodies. Based on the results, we firmly believe that CL-4RNV616 could be useful in the development of targeted cancer therapeutics and diagnostics.
Collapse
|
7
|
Strategies to overcome acquired resistance to EGFR TKI in the treatment of non-small cell lung cancer. Clin Transl Oncol 2019; 21:1287-1301. [PMID: 30864018 DOI: 10.1007/s12094-019-02075-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) represents a paradigm shift in the treatment of non-small cell lung cancer (NSCLC) patients and has been the first-line therapy in clinical practice. While erlotinib, gefitinib and afatinib have achieved superior efficacy in terms of progression-free survival and overall survival compared with conventional chemotherapy in NSCLC patients, most people inevitably develop acquired resistance to them, which presents another challenge in the treatment of NSCLC. The mechanisms of acquired resistance can be classified as three types: target gene mutation, bypass signaling pathway activation and histological transformation. And the most common mechanism is T790M which accounts for approximately 50% of all subtypes. Many strategies have been explored to overcome the acquired resistance to EGFR TKI. Continuation of EGFR TKI beyond progressive disease is confined to patients in asymptomatic stage when the EGFR addiction is still preserved in some subclones. While the combination of EGFR TKI and chemotherapy or other targeted agents has improved the survival benefit in EGFR TKI resistant patients, there are controversies within them. The next-generation EGFR TKI and immunotherapy represent two novel directions for overcoming acquired resistance and have achieved promising efficacy. Liquid biopsy provides surveillance of the EGFR mutation by disclosing the entire genetic landscape but tissue biopsy is still indispensable because of the considerable rate of false-negative plasma.
Collapse
|
8
|
Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM, Kim DH. Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med 2019; 23:2872-2889. [PMID: 30710424 PMCID: PMC6433689 DOI: 10.1111/jcmm.14194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 1 (SIRT1) is known to play a role in a variety of tumorigenesis processes by deacetylating histone and non‐histone proteins; however, antitumour effects by suppressing SIRT1 activity in non‐small cell lung cancer (NSCLC) remain unclear. This study was designed to scrutinize clinicopathological significance of SIRT1 in NSCLC and investigate effects of metformin on SIRT1 inhibition. This study also evaluated new possibilities of drug combination using a SIRT1 inhibitor, tenovin‐6, in NSCLC cell lines. It was found that SIRT1 was overexpressed in 300 (62%) of 485 formalin‐fixed paraffin‐embedded NSCLC tissues. Its overexpression was significantly associated with reduced overall survival and poor recurrence‐free survival after adjusted for histology and pathologic stage. Thus, suppression of SIRT1 expression may be a reasonable therapeutic strategy for NSCLC. Metformin in combination with tenovin‐6 was found to be more effective in inhibiting cell growth than either agent alone in NSCLC cell lines with different liver kinase B1 (LKB1) status. In addition, metformin and tenovin‐6 synergistically suppressed SIRT1 expression in NSCLC cells regardless of LKB1 status. The marked reduction in SIRT1 expression by combination of metformin and tenovin‐6 increased acetylation of p53 at lysine 382 and enhanced p53 stability in LKB1‐deficient A549 cells. The combination suppressed SIRT1 promoter activity more effectively than either agent alone by up‐regulating hypermethylation in cancer 1 (HIC1) binding at SIRT1 promoter. Also, suppressed SIRT1 expression by the combination synergistically induced caspase‐3‐dependent apoptosis. The study concluded that metformin with tenovin‐6 may enhance antitumour effects through LKB1‐independent SIRT1 down‐regulation in NSCLC cells.
Collapse
Affiliation(s)
- Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Dongho Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
9
|
Attili I, Karachaliou N, Conte P, Bonanno L, Rosell R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2018; 18:1021-1030. [PMID: 30079781 DOI: 10.1080/14737140.2018.1508347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) mutation positive non-small cell lung cancer (NSCLC) is a subset of lung cancer with demonstrated response to targeted therapies. However, resistance to the first targeted approach usually occurs within the first year, and it is associated in 50-60% of cases to the T790M resistance mutation. Areas covered: The review provides an overview on the significance of the presence of the T790M mutation, its detection, treatment options and subsequent mechanisms of resistance. Expert commentary: Osimertinib is the current treatment option for T790M mutation positive NSCLC after progression to first or second-generation EGFR TKIs, with activity also on brain metastasis. However, the scenario is in continuous evolution and results from clinical trials are awaited in first-line setting and in combination strategies.
Collapse
Affiliation(s)
- Ilaria Attili
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Niki Karachaliou
- b Instituto Oncológico Dr Rosell (IOR) , University Hospital Sagrat Cor , Barcelona , Spain.,c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain
| | - PierFranco Conte
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Laura Bonanno
- d Medical Oncology 2 , Istituto Oncologico Veneto, IRCCS , Padova , Italy
| | - Rafael Rosell
- c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain.,e Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain.,f Instituto Oncológico Dr Rosell (IOR) , Quirón-Dexeus University Institute , Barcelona , Spain.,g Institut Català d'Oncologia , Hospital Germans Trias i Pujol , Badalona , Spain
| |
Collapse
|
10
|
Adjusted Indirect Comparison Using Propensity Score Matching of Osimertinib to Platinum-Based Doublet Chemotherapy in Patients with EGFRm T790M NSCLC Who Have Progressed after EGFR-TKI. Clin Drug Investig 2018; 38:319-331. [PMID: 29247383 PMCID: PMC5856890 DOI: 10.1007/s40261-017-0611-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE An adjusted indirect comparison was conducted to assess efficacy outcomes, particularly overall survival (OS), of osimertinib versus platinum-based doublet chemotherapy in patients with epidermal growth factor receptor-mutated (EGFRm) T790M mutation-positive non-small-cell lung cancer (NSCLC) who had progressed following an EGFR tyrosine kinase inhibitor (TKI). Analysis of treatment effect from two separate trials had the potential to more accurately estimate the magnitude of OS benefit due to absence of confounding due to treatment switching from the control arm to the osimertinib arm of the ongoing randomized control trial, AURA3. METHODS Two non-randomized individual datasets were compared: pooled patients from the AURA extension and AURA2 trials (osimertinib 80 mg, n = 405, with a confirmed T790M mutation using tissue samples), and patients from the control arm of the IMPRESS study (platinum-based doublet chemotherapy, n = 61, with a confirmed T790M mutation using plasma circulating tumour DNA [ctDNA]). A propensity score-based approach was used to account for differences in baseline demographics and disease characteristics. RESULTS After adjustment for baseline differences between the two groups, osimertinib demonstrated a statistically significant improvement in progression-free survival (PFS) versus platinum-based doublet chemotherapy (hazard ratio [HR] = 0.278, 95% confidence interval [CI] 0.188-0.409, p < 0.0001; median PFS 10.9 vs. 5.3 months). Improvements were also observed for objective response rate (ORR) and disease control rate (DCR) (ORR: 64.3 vs. 33.3%; odds ratio [OR] = 5.31, 95% CI 2.47-11.40, p < 0.001; DCR: 92.1 vs. 75.0%; OR = 4.72, 95% CI 1.92-11.58, p < 0.001). Similar results were obtained for patients who received osimertinib as second-line treatment only. A statistically significant improvement in OS was observed for the osimertinib group (HR = 0.412, 95% CI 0.273-0.622, p < 0.0001). Median OS for osimertinib was not reached. CONCLUSIONS In this indirect comparison, osimertinib showed a statistically significant improvement in efficacy outcomes versus platinum-based doublet chemotherapy in patients with EGFRm T790M NSCLC who had progressed after EGFR-TKI therapy.
Collapse
|
11
|
Yang Z, Tam KY. Combination Strategies Using EGFR-TKi in NSCLC Therapy: Learning from the Gap between Pre-Clinical Results and Clinical Outcomes. Int J Biol Sci 2018; 14:204-216. [PMID: 29483838 PMCID: PMC5821041 DOI: 10.7150/ijbs.22955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Although epidermal growth factor receptor (EGFR) inhibitors have been used to treat non-small cell lung cancer (NSCLC) for decades with great success in patients with EGFR mutations, acquired resistance inevitably occurs after long-term exposure. More recently, combination therapy has emerged as a promising strategy to overcome this issue. Several experiments have been carried out to evaluate the synergism of combination therapy both in vitro and in vivo. Additionally, many clinical studies have been carried out to investigate the feasibility of treatment with EGFR-tyrosine kinase inhibitors (TKi) combined with other NSCLC treatments, including radiotherapy, cytotoxic chemotherapies, targeted therapies, and emerging immunotherapies. However, a significant gap still exists when applying pre-clinical results to clinical scenarios, which hinders the development and use of these strategies. This article is a literature review analysing the rationalities and controversies in the transition from pre-clinical investigation to clinical practice associated with various combination strategies. It also highlights clues and challenges regarding future combination therapeutic options in NSCLC treatment.
Collapse
Affiliation(s)
| | - Kin Yip Tam
- Faculty of Health Science, University of Macau, Taipa, Macau, China
| |
Collapse
|
12
|
Farrell PJ, Matuszkiewicz J, Balakrishna D, Pandya S, Hixon MS, Kamran R, Chu S, Lawson JD, Okada K, Hori A, Mizutani A, Iwata H, de Jong R, Hibner B, Vincent P. MET Tyrosine Kinase Inhibition Enhances the Antitumor Efficacy of an HGF Antibody. Mol Cancer Ther 2017; 16:1269-1278. [PMID: 28341789 DOI: 10.1158/1535-7163.mct-16-0771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
Abstract
Receptor tyrosine kinase therapies have proven to be efficacious in specific cancer patient populations; however, a significant limitation of tyrosine kinase inhibitor (TKI) treatment is the emergence of resistance mechanisms leading to a transient, partial, or complete lack of response. Combination therapies using agents with synergistic activity have potential to improve response and reduce acquired resistance. Chemoreagent or TKI treatment can lead to increased expression of hepatocyte growth factor (HGF) and/or MET, and this effect correlates with increased metastasis and poor prognosis. Despite MET's role in resistance and cancer biology, MET TKI monotherapy has yielded disappointing clinical responses. In this study, we describe the biological activity of a selective, oral MET TKI with slow off-rate and its synergistic antitumor effects when combined with an anti-HGF antibody. We evaluated the combined action of simultaneously neutralizing HGF ligand and inhibiting MET kinase activity in two cancer xenograft models that exhibit autocrine HGF/MET activation. The combination therapy results in additive antitumor activity in KP4 pancreatic tumors and synergistic activity in U-87MG glioblastoma tumors. Pharmacodynamic characterization of biomarkers that correlate with combination synergy reveal that monotherapies induce an increase in the total MET protein, whereas combination therapy significantly reduces total MET protein levels and phosphorylation of 4E-BP1. These results hold promise that dual targeting of HGF and MET by combining extracellular ligand inhibitors with intracellular MET TKIs could be an effective intervention strategy for cancer patients who have acquired resistance that is dependent on total MET protein. Mol Cancer Ther; 16(7); 1269-78. ©2017 AACR.
Collapse
Affiliation(s)
- Pamela J Farrell
- Department of Biological Sciences, Takeda California, San Diego, California.
| | | | | | - Shweta Pandya
- Department of Biological Sciences, Takeda California, San Diego, California
| | - Mark S Hixon
- Department of Biological Sciences, Takeda California, San Diego, California
| | - Ruhi Kamran
- Department of Biological Sciences, Takeda California, San Diego, California
| | - Shaosong Chu
- Department of Chemistry, Takeda California, San Diego, California
| | - J David Lawson
- Department of Computational Sciences and Crystallography, Takeda California, San Diego, California
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Companies Ltd, Shonan, Japan
| | - Akira Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Companies Ltd, Shonan, Japan
| | - Akio Mizutani
- Pharmaceutical Research Division, Takeda Pharmaceutical Companies Ltd, Shonan, Japan
| | - Hidehisa Iwata
- Pharmaceutical Research Division, Takeda Pharmaceutical Companies Ltd, Shonan, Japan
| | - Ron de Jong
- Department of Biological Sciences, Takeda California, San Diego, California
| | - Barbara Hibner
- Oncology Biology, Takeda Boston, Cambridge, Massachusetts
| | - Patrick Vincent
- Department of Biological Sciences, Takeda California, San Diego, California
| |
Collapse
|
13
|
Boobalan R, Liu KK, Chao JI, Chen C. Synthesis and biological assay of erlotinib analogues and BSA-conjugated erlotinib analogue. Bioorg Med Chem Lett 2017; 27:1784-1788. [PMID: 28268137 DOI: 10.1016/j.bmcl.2017.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/14/2017] [Accepted: 02/23/2017] [Indexed: 11/28/2022]
Abstract
A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.
Collapse
Affiliation(s)
- Ramalingam Boobalan
- Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan; Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| | - Kuang-Kai Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan.
| | - Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan; Department of Nursing, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
| |
Collapse
|
14
|
Huang KY, Kao SH, Wang WL, Chen CY, Hsiao TH, Salunke SB, Chen JJW, Su KY, Yang SC, Hong TM, Chen CS, Yang PC. Small Molecule T315 Promotes Casitas B-Lineage Lymphoma–Dependent Degradation of Epidermal Growth Factor Receptor via Y1045 Autophosphorylation. Am J Respir Crit Care Med 2016; 193:753-66. [DOI: 10.1164/rccm.201502-0250oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
15
|
Hu Y, Dong XZ, Liu X, Liu P, Chen YB. Enhanced Antitumor Activity of Cetuximab in Combination with the Jak Inhibitor CYT387 against Non-Small-Cell Lung Cancer with Various Genotypes. Mol Pharm 2015; 13:689-97. [PMID: 26685983 DOI: 10.1021/acs.molpharmaceut.5b00927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Hu
- Department
of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xian-Zhe Dong
- Department
of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Liu
- Department
of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ping Liu
- Department
of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi-Bang Chen
- Department
of Pharmacology and System Therapeutics, Mount Sinai School of Medicine; New York, New York 10029, United States
| |
Collapse
|
16
|
Marquez-Medina D, Popat S. Afatinib: a second-generation EGF receptor and ErbB tyrosine kinase inhibitor for the treatment of advanced non-small-cell lung cancer. Future Oncol 2015; 11:2525-40. [DOI: 10.2217/fon.15.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
First-generation reversible EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) changed our understanding of advanced non-small-cell lung cancer biology and behavior. The presence of sensitizing EGFR mutations in advanced non-small-cell lung cancer defines a subset of patients with a better prognosis and sensitivity to EGFR-TKIs with a better response rate, progression-free survival, quality of life and symptom control than with chemotherapy in the first-line therapy setting. However, current EGFR-TKIs show minimal responses in EGFR wild-type patients or with acquired TKI resistance mediated through the EGFR T790M allele. Afatinib is an irreversible pan-ErbB-TKI, active against wild-type EGFR, sensitizing and T970M-mutant EGFR, ErbB2 and ErbB4 receptors, and represents a step change between reversible first-generation and future irreversible highly specific third-generation EGFR-TKIs. Here, we review the clinical development of afatinib through the LUX-Lung trials portfolio highlighting benefits and toxicities.
Collapse
Affiliation(s)
- Diego Marquez-Medina
- Medical Oncology Department, University Hospital Arnau de Vilanova, Avenida Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
17
|
Majem M, Remon J. Tumor heterogeneity: evolution through space and time in EGFR mutant non small cell lung cancer patients. Transl Lung Cancer Res 2015; 2:226-37. [PMID: 25806236 DOI: 10.3978/j.issn.2218-6751.2013.03.09] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
NSCLC patients with mutations in epidermal growth factor receptor (EGFR) gene have dramatic responses with the EGFR tyrosine kinase inhibitors (TKI) in the majority of patients. However, all patients will eventually present progression of disease because of both primary and acquired resistance to EGFR TKI. In the recent years several studies have identified mechanisms involved in primary and secondary resistance to EGFR TKI treatment that can also be potential therapeutic strategies, although up to 30% of cases of acquired resistance to EGFR TKI are still unexplained. In this review we describe the mechanisms of resistance to EGFR TKIs in NSCLC patients that have been discovered and potential therapeutic strategies to overcome EGFR TKI resistance. Additionally we highlight the importance of performing additional biopsies not only at time of acquired resistance to EGFR TKI but also immediately after initiation of therapy to discover the remaining unknown mechanisms of acquired resistance to EGFR TKI as well as the underlying molecular basis of the heterogeneity in response to EGFR TKI.
Collapse
|
18
|
Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis 2014; 5:e1162. [PMID: 24722287 PMCID: PMC5424107 DOI: 10.1038/cddis.2014.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.
Collapse
|
19
|
Remon J, Morán T, Majem M, Reguart N, Dalmau E, Márquez-Medina D, Lianes P. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: A new era begins. Cancer Treat Rev 2014; 40:93-101. [DOI: 10.1016/j.ctrv.2013.06.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/17/2022]
|
20
|
Overcoming resistance to first generation EGFR TKIs with cetuximab in combination with chemotherapy in an EGFR mutated advanced stage NSCLC patient. Lung Cancer 2013; 83:408-10. [PMID: 24412619 DOI: 10.1016/j.lungcan.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/20/2022]
Abstract
We report the case of a female never-smoking patient with an epidermal growth factor receptor (EGFR) mutation positive advanced non-small cell lung cancer (NSCLC) who received multiple lines of treatment. When she evolved clinical resistance to first generation EGFR tyrosine kinase inhibitors (TKI), she was treated with a fifth-line combination therapy with cetuximab and vinorelbine. This combination was highly active with a treatment response lasting for 9 months supporting the hypothesis that EGFR monoclonal antibodies in combination with chemotherapy may play a role in reversing EGFR-TKI resistance in EGFR mutation-positive NSCLC.
Collapse
|
21
|
FDG PET/CT metabolic tumor volume and total lesion glycolysis predict prognosis in patients with advanced lung adenocarcinoma. J Cancer Res Clin Oncol 2013; 140:89-98. [DOI: 10.1007/s00432-013-1545-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
22
|
Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials 2013; 34:8690-707. [PMID: 23953842 DOI: 10.1016/j.biomaterials.2013.07.100] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/28/2013] [Indexed: 01/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor belonging to ErbB family of tyrosine kinase and it plays a vital role in the regulation of cell proliferation, survival and differentiation. However; EGFR is aberrantly activated by various mechanisms like receptor overexpression, mutation, ligand-dependent receptor dimerization, ligand-independent activation and is associated with development of variety of tumors. Therefore, specific EGFR inhibition is one of the key targets for cancer therapy. Two major approaches have been developed and demonstrated benefits in clinical trials for targeting EGFR; monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). EGFR inhibitors like, cetuximab, panitumumab, etc. (mAbs) and gefitinib, erlotinib, lapatinib, etc. (TKIs) are now commercially available for treatment of variety of cancers. Recently, many other agents like peptides, nanobodies, affibodies and antisense oligonucleotide have also shown better efficacy in targeting and inhibiting EGFR. Now a days, efforts are being focused to identify molecular markers that can predict patients more likely to respond to anti-EGFR therapy; to find out combinatorial approaches with EGFR inhibitors and to bring new therapeutic agents with clinical efficacy. In this review we have outlined the role of EGFR in cancer, different types of EGFR inhibitors, preclinical and clinical status of EGFR inhibitors as well as summarized the recent efforts made in the field of molecular EGFR targeting.
Collapse
Affiliation(s)
- Chetan Yewale
- Pharmacy Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390 001, Gujarat, India
| | | | | | | | | |
Collapse
|
23
|
Sechler M, Cizmic AD, Avasarala S, Van Scoyk M, Brzezinski C, Kelley N, Bikkavilli RK, Winn RA. Non-small-cell lung cancer: molecular targeted therapy and personalized medicine - drug resistance, mechanisms, and strategies. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 6:25-36. [PMID: 23690695 PMCID: PMC3656464 DOI: 10.2147/pgpm.s26058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Targeted therapies for cancer bring the hope of specific treatment, providing high efficacy and in some cases lower toxicity than conventional treatment. Although targeted therapeutics have helped immensely in the treatment of several cancers, like chronic myelogenous leukemia, colon cancer, and breast cancer, the benefit of these agents in the treatment of lung cancer remains limited, in part due to the development of drug resistance. In this review, we discuss the mechanisms of drug resistance and the current strategies used to treat lung cancer. A better understanding of these drug-resistance mechanisms could potentially benefit from the development of a more robust personalized medicine approach for the treatment of lung cancer.
Collapse
Affiliation(s)
- Marybeth Sechler
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, USA ; Program in Cancer Biology, University of Colorado, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Seymour LK, Calvert AH, Lobbezoo MW, Eisenhauer EA, Giaccone G. Design and conduct of early clinical studies of two or more targeted anticancer therapies: recommendations from the task force on Methodology for the Development of Innovative Cancer Therapies. Eur J Cancer 2013; 49:1808-14. [PMID: 23428669 DOI: 10.1016/j.ejca.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
The Methodology for the Development of Innovative Cancer Therapies (MDICT) task force considered aspects of the design and conduct of early (phase I and II) studies of combinations of molecular targeted agents during their 2012 meeting. The task force defined necessary non-clinical data, such as evidence of additive or synergistic effects in multiple molecularly credentialed and validated models, and appropriate pharmacodynamic marker development. A robust hypothesis was considered critical while non-clinical pharmacokinetic studies were also considered valuable. Clinical trials should include clear objectives that will prove or disprove the hypothesis. Predictive biomarkers/classifiers should be explored in phase I studies, rather than used to select patients. Trial design should be efficient and flexible rather than based on a strict progression from phase I to II to III; researchers could consider phase I studies with an expansion cohort, Phase I/II designs or phase II studies with a safety run in. Pharmacokinetics are recommended when interactions or overlapping toxicity is expected. Pharmacodynamic evaluations should be considered especially in a subset of patients closest to the recommended dose; an attempt should be made to validate surrogate tissues to enable inclusion for all patients. Schedule and or dose should be formally explored for e.g. with a randomised or an adaptive design. Data and knowledge sharing was strongly recommended, including the creation of formal or informal consortia of laboratories with individual expertise in pathway or target based models, collaboration between companies to ensure that agents which are 'best in class' are combined, and the development of databases which will be able to inform the development of future recommendations/guidelines.
Collapse
|
25
|
Tang J, Salama R, Gadgeel SM, Sarkar FH, Ahmad A. Erlotinib resistance in lung cancer: current progress and future perspectives. Front Pharmacol 2013; 4:15. [PMID: 23407898 PMCID: PMC3570789 DOI: 10.3389/fphar.2013.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer in the world. Despite modern advancements in surgeries, chemotherapies, and radiotherapies over the past few years, lung cancer still remains a very difficult disease to treat. This has left the death rate from lung cancer victims largely unchanged throughout the past few decades. A key cause for the high mortality rate is the drug resistance that builds up for patients being currently treated with the chemotherapeutic agents. Although certain chemotherapeutic agents may initially effectively treat lung cancer patients, there is a high probability that there will be a reoccurrence of the cancer after the patient develops resistance to the drug. Erlotinib, the epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitor, has been approved for localized as well as metastatic non-small cell lung cancer where it seems to be more effective in patients with EGFR mutations. Resistance to erlotinib is a common observation in clinics and this review details our current knowledge on the subject. We discuss the causes of such resistance as well as innovative research to overcome it. Evidently, new chemotherapy strategies are desperately needed in order to better treat lung cancer patients. Current research is investigating alternative treatment plans to enhance the chemotherapy that is already offered. Better insight into the molecular mechanisms behind combination therapy pathways and even single molecular pathways may help improve the efficacy of the current treatment options.
Collapse
Affiliation(s)
- Joy Tang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Rasha Salama
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Shirish M. Gadgeel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| |
Collapse
|
26
|
Antonicelli A, Cafarotti S, Indini A, Galli A, Russo A, Cesario A, Lococo FM, Russo P, Mainini AF, Bonifati LG, Nosotti M, Santambrogio L, Margaritora S, Granone PM, Dutly AE. EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int J Med Sci 2013; 10:320-30. [PMID: 23423768 PMCID: PMC3575628 DOI: 10.7150/ijms.4609] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/28/2012] [Indexed: 12/14/2022] Open
Abstract
The two essential requirements for pathologic specimens in the era of personalized therapies for non-small cell lung carcinoma (NSCLC) are accurate subtyping as adenocarcinoma (ADC) versus squamous cell carcinoma (SqCC) and suitability for EGFR molecular testing, as well as for testing of other oncogenes such as EML4-ALK and KRAS. Actually, the value of EGFR expressed in patients with NSCLC in predicting a benefit in terms of survival from treatment with an epidermal growth factor receptor targeted therapy is still in debate, while there is a convincing evidence on the predictive role of the EGFR mutational status with regard to the response to tyrosine kinase inhibitors (TKIs).This is a literature overview on the state-of-the-art of EGFR oncogenic mutation in NSCLC. It is designed to highlight the preclinical rationale driving the molecular footprint assessment, the progressive development of a specific pharmacological treatment and the best method to identify those NSCLC who would most likely benefit from treatment with EGFR-targeted therapy. This is supported by the belief that a rationale for the prioritization of specific regimens based on patient-tailored therapy could be closer than commonly expected.
Collapse
Affiliation(s)
- Alberto Antonicelli
- Thoracic Surgery and Lung Transplantation Unit, Foundation IRCCS (Scientific Institute for Research Hospitalization and Health Care) "Ca' Granda" General Hospital, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Al-Nabhani K, Syed R, Haroon A, Almukhailed O, Bomanji J. Flare response versus disease progression in patients with non-small cell lung cancer. J Radiol Case Rep 2012; 6:34-42. [PMID: 23372867 DOI: 10.3941/jrcr.v6i11.1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a case report of a patient with metastatic non-small cell lung cancer (NSCLC) who had a series of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans for assessment of response to treatment. A restaging 18F-FDG PET/CT scan after six cycles showed increased FDG activity in the bone lesions with reduced activity in the lung and liver lesions. The increased bone activity was considered to be due to flare phenomenon rather than metastasis. A short interval follow up scan after 1 month was advised to confirm this interpretation but this repeat scan showed disease relapse. Although the flare phenomenon does exist, caution should be exercised in attributing increased tracer uptake in the lesions in patients with adenocarcinoma of lung and especially those who have received erlotinib during the course of their treatment. Distinguishing the 'flare phenomenon' and 'disease progression' is at times difficult but is important since misdiagnosis may result in an unnecessary delay in patient management.
Collapse
Affiliation(s)
- Khalsa Al-Nabhani
- Institute of Nuclear Medicine, University College London Hospitals, London, UK.
| | | | | | | | | |
Collapse
|
28
|
Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012; 13:10828-10862. [PMID: 23109824 PMCID: PMC3472716 DOI: 10.3390/ijms130910828] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Novel aerosol therapeutic modalities have been investigated for lung cancer. Inhaled gene therapy has presented safety and effectiveness previously in cystic fibrosis. However, safety concerns have been raised regarding the safety of non-viral vectors for inhaled gene therapy in lung cancer, and therefore small steps have been made towards this multifunctional treatment modality. During the last decade, numerous new nanocomplexes have been created and investigated as a safe gene delivery nano-vehicle. These formulations are multifunctional; they can be used as either local therapy or carrier for an effective inhaled gene therapy for lung cancer. Herein, we present current and future perspectives of nanocomplexes for inhaled gene therapy treatment in lung cancer.
Collapse
Affiliation(s)
- Paul Zarogouldis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
- Pulmonary Department-Interventional Unit, “Ruhrland Klinik”, University of Essen, Essen 45239, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-697-727-1974; Fax: +30-231-099-2433
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, University of Patras, Patras 25200, Greece; E-Mail:
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| | - Haidong Huang
- Department of Respiratory diseases, Changhai hospital, Second Military Medical University, Shanghai 200433, China; E-Mail:
| | | | - Eugene P. Goldberg
- Biomaterials Science & Engineering, Department of Materials Science & Engineering, University of Florida, FL 32611, USA; E-Mail:
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece; E-Mails: (K.P.); (K.D.); (K.Z.)
| |
Collapse
|