1
|
Zhang J, Qiu X, Feng J, Liu Y. MGMT promoter methylation is a strong prognostic factor for survival after progression in high-grade gliomas. Chin Neurosurg J 2024; 10:24. [PMID: 39049072 PMCID: PMC11267829 DOI: 10.1186/s41016-024-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND High-grade gliomas (HGGs) have a rapid relapse and short survival. Studies have identified many clinical characteristics and biomarkers associated with progression-free survival (PFS) and over-survival (OS). However, there has not yet a comprehensive study on survival after the first progression (SAP). METHODS From CGGA and TCGA, 319 and 308 HGGs were confirmed as the first progression. The data on clinical characteristics and biomarkers were analyzed in accordance with OS, PFS, and SAP. RESULTS Analysis of 319 patients from CGGA, significant predictors of improved OS/PFS/SAP were WHO grade, MGMT promoter methylation, and Ki-67 expression in univariate analysis. Further multivariate analysis showed MGMT promoter methylation and Ki-67 expression were independent predictors. However, an analysis of 308 patients from TCGA found MGMT promoter methylation is the only prognostic marker. A longer SAP was observed in patients with methylated MGMT promoter after standard chemoradiotherapy. In our data, HGGs could be divided into low, intermediate, and high-risk groups for SAP by MGMT methylation and Ki-67 expression. CONCLUSIONS Patients with MGMT promoter methylation have a prolonger SAP after standard chemoradiotherapy. HGGs could be divided into low, intermediate, and high-risk groups for SAP according to MGMT status and Ki-67 expression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jin Feng
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanwei Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
2
|
Feng Y, Wang Y, Li X, Sun Z, Qiang S, Wang H, Liu Y. Novel 9-Methylanthracene Derivatives as p53 Activators for the Treatment of Glioblastoma Multiforme. Molecules 2024; 29:2396. [PMID: 38792257 PMCID: PMC11123991 DOI: 10.3390/molecules29102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme, a highly aggressive and lethal brain tumor, is a substantial clinical challenge and a focus of increasing concern globally. Hematological toxicity and drug resistance of first-line drugs underscore the necessity for new anti-glioma drug development. Here, 43 anthracenyl skeleton compounds as p53 activator XI-011 analogs were designed, synthesized, and evaluated for their cytotoxic effects. Five compounds (13d, 13e, 14a, 14b, and 14n) exhibited good anti-glioma activity against U87 cells, with IC50 values lower than 2 μM. Notably, 13e showed the best anti-glioma activity, with an IC50 value up to 0.53 μM, providing a promising lead compound for new anti-glioma drug development. Mechanistic analyses showed that 13e suppressed the MDM4 protein expression, upregulated the p53 protein level, and induced cell cycle arrest at G2/M phase and apoptosis based on Western blot and flow cytometry assays.
Collapse
Affiliation(s)
- Yuxin Feng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Yingjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Xiaoxue Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Ziqiang Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Sihan Qiang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China; (Y.F.); (Y.W.)
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (X.L.); (Z.S.); (S.Q.)
| |
Collapse
|
3
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Nabian N, Ghalehtaki R, Zeinalizadeh M, Balaña C, Jablonska PA. State of the neoadjuvant therapy for glioblastoma multiforme-Where do we stand? Neurooncol Adv 2024; 6:vdae028. [PMID: 38560349 PMCID: PMC10981465 DOI: 10.1093/noajnl/vdae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite several investigations in this field, maximal safe resection followed by chemoradiotherapy and adjuvant temozolomide with or without tumor-treating fields remains the standard of care with poor survival outcomes. Many endeavors have failed to make a dramatic change in the outcomes of GBM patients. This study aimed to review the available strategies for newly diagnosed GBM in the neoadjuvant setting, which have been mainly neglected in contrast to other solid tumors.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zeinalizadeh
- Department of Neurosurgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Carmen Balaña
- B.ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, Badalona, Spain
| | | |
Collapse
|
5
|
Fu M, Zhou Z, Huang X, Chen Z, Zhang L, Zhang J, Hua W, Mao Y. Use of Bevacizumab in recurrent glioblastoma: a scoping review and evidence map. BMC Cancer 2023; 23:544. [PMID: 37316802 DOI: 10.1186/s12885-023-11043-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant primary tumor in the brain, with poor prognosis and limited effective therapies. Although Bevacizumab (BEV) has shown promise in extending progression-free survival (PFS) treating GBM, there is no evidence for its ability to prolong overall survival (OS). Given the uncertainty surrounding BEV treatment strategies, we aimed to provide an evidence map associated with BEV therapy for recurrent GBM (rGBM). METHODS PubMed, Embase, and the Cochrane Library were searched for the period from January 1, 1970, to March 1, 2022, for studies reporting the prognoses of patients with rGBM receiving BEV. The primary endpoints were overall survival (OS) and quality of life (QoL). The secondary endpoints were PFS, steroid use reduction, and risk of adverse effects. A scoping review and an evidence map were conducted to explore the optimal BEV treatment (including combination regimen, dosage, and window of opportunity). RESULTS Patients with rGBM could gain benefits in PFS, palliative, and cognitive advantages from BEV treatment, although the OS benefits could not be verified with high-quality evidence. Furthermore, BEV combined therapy (especially with lomustine and radiotherapy) showed higher efficacy than BEV monotherapy in the survival of patients with rGBM. Specific molecular alterations (IDH mutation status) and clinical features (large tumor burden and double-positive sign) could predict better responses to BEV administration. A low dosage of BEV showed equal efficacy to the recommended dose, but the optimal opportunity window for BEV administration remains unclear. CONCLUSIONS Although OS benefits from BEV-containing regimens could not be verified in this scoping review, the PFS benefits and side effects control supported BEV application in rGBM. Combining BEV with novel treatments like tumor-treating field (TTF) and administration at first recurrence may optimize the therapeutic efficacy. rGBM with a low apparent diffusion coefficient (ADCL), large tumor burden, or IDH mutation is more likely to benefit from BEV treatment. High-quality studies are warranted to explore the combination modality and identify BEV-response subpopulations to maximize benefits.
Collapse
Affiliation(s)
- Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Huang
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, #12 Middle Urumqi Road, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| |
Collapse
|
6
|
Clavreul A, Autier L, Lemée JM, Augereau P, Soulard G, Bauchet L, Figarella-Branger D, Menei P, Network FGB. Management of Recurrent Glioblastomas: What Can We Learn from the French Glioblastoma Biobank? Cancers (Basel) 2022; 14:cancers14225510. [PMID: 36428604 PMCID: PMC9688811 DOI: 10.3390/cancers14225510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Safe maximal resection followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) is universally accepted as the first-line treatment for glioblastoma (GB), but no standard of care has yet been defined for managing recurrent GB (rGB). We used the French GB biobank (FGB) to evaluate the second-line options currently used, with a view to defining the optimal approach and future directions in GB research. We retrospectively analyzed data for 338 patients with de novo isocitrate dehydrogenase (IDH)-wildtype GB recurring after TMZ chemoradiotherapy. Cox proportional hazards models and Kaplan-Meier analyses were used to investigate survival outcomes. Median overall survival after first surgery (OS1) was 19.8 months (95% CI: 18.5-22.0) and median OS after first progression (OS2) was 9.9 months (95% CI: 8.8-10.8). Two second-line options were noted for rGB patients in the FGB: supportive care and treatments, with systemic treatment being the treatment most frequently used. The supportive care option was independently associated with a shorter OS2 (p < 0.001). None of the systemic treatment regimens was unequivocally better than the others for rGB patients. An analysis of survival outcomes based on time to first recurrence (TFR) after chemoradiotherapy indicated that survival was best for patients with a long TFR (≥18 months; median OS1: 44.3 months (95% CI: 41.7-56.4) and median OS2: 13.0 months (95% CI: 11.2-17.7), but that such patients constituted only a small proportion of the total patient population (13.0%). This better survival appeared to be more strongly associated with response to first-line treatment than with response to second-line treatment, indicating that the recurring tumors were more aggressive and/or resistant than the initial tumors in these patients. In the face of high rates of treatment failure for GB, the establishment of well-designed large cohorts of primary and rGB samples, with the help of biobanks, such as the FGB, taking into account the TFR and survival outcomes of GB patients, is urgently required for solid comparative biological analyses to drive the discovery of novel prognostic and/or therapeutic clinical markers for GB.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-241-354822; Fax: +33-241-354508
| | - Lila Autier
- Département de Neurologie, CHU, 49933 Angers, France
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | - Jean-Michel Lemée
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | - Paule Augereau
- Département d’Oncologie Médicale, Institut de Cancérologie de l’Ouest, Site Paul Papin, 49055 Angers, France
| | | | - Luc Bauchet
- Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU Montpellier, Université de Montpellier, 34295 Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, INSERM, 34295 Montpellier, France
| | - Dominique Figarella-Branger
- APHM, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, 13385 Marseille, France
- Aix-Marseille University, CNRS, INP, Inst. Neurophysiopathol, 13005 Marseille, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France
- Université d’Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCINA, F-49000 Angers, France
| | | |
Collapse
|
7
|
Ferreira WAS, Vitiello GAF, da Silva Medina T, de Oliveira EHC. Comprehensive analysis of epigenetics regulation, prognostic and the correlation with immune infiltrates of GPX7 in adult gliomas. Sci Rep 2022; 12:6442. [PMID: 35440701 PMCID: PMC9018725 DOI: 10.1038/s41598-022-10114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most commonly occurring malignant brain tumor characterized by an immunosuppressive microenvironment accompanied by profound epigenetic changes, thus influencing the prognosis. Glutathione peroxidase 7 (GPX7) is essential for regulating reactive oxygen species homeostasis under oxidative stress. However, little is known about the function of GPX7 in gliomas. In this study, we hypothesized that GPX7 methylation status could influence biological functions and local immune responses that ultimately impact prognosis in adult gliomas. We conducted an integrated bioinformatics analysis mining GPX7 DNA methylation status, transcriptional and survival data of glioma patients. We discovered that GPX7 was remarkably increased in glioma tissues and cell lines, and was associated with poor prognosis. This upregulation was significantly linked to clinicopathological and molecular features, besides being expressed in a cell cycle-dependent manner. Our results consistently demonstrated that upregulation of GPX7 is tightly modulated by epigenetic processes, which also impacted the overall survival of patients with low-grade gliomas (LGG). Based on the analysis of biological functions, we found that GPX7 might be involved in immune mechanisms involving both innate and adaptive immunity, type I interferon production and regulation of synaptic transmission in LGG, whereas in GBM, it is mainly related to metabolic regulation of mitochondrial dynamics. We also found that GPX7 strongly correlates with immune cell infiltration and diverse immune cell markers, suggesting its role in tumor-specific immune response and in regulating the migration of immune cell types to the tumor microenvironment. Combining these multiple data, we provided the first evidence regarding the epigenetic-mediated regulatory mechanisms underlying GPX7 activation in gliomas. Furthermore, our study brings key insights into the significant effect of GPX7 in modulating both immune molecules and in immune cell infiltration in the microenvironment of gliomas, which might impact the patient outcome, opening up future opportunities to regulate the local immune response.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil.
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Institute of Exact and Natural Sciences, Faculty of Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
8
|
de Groot JF, Kim AH, Prabhu S, Rao G, Laxton AW, Fecci PE, O’Brien BJ, Sloan A, Chiang V, Tatter SB, Mohammadi AM, Placantonakis DG, Strowd RE, Chen C, Hadjipanayis C, Khasraw M, Sun D, Piccioni D, Sinicrope KD, Campian JL, Kurz SC, Williams B, Smith K, Tovar-Spinoza Z, Leuthardt EC. Efficacy of Laser Interstitial Thermal Therapy (LITT) for Newly Diagnosed and Recurrent IDH Wild-type Glioblastoma. Neurooncol Adv 2022; 4:vdac040. [PMID: 35611270 PMCID: PMC9122789 DOI: 10.1093/noajnl/vdac040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Treatment options for unresectable new and recurrent glioblastoma remain limited. Laser ablation has demonstrated safety as a surgical approach to treat primary brain tumors. The LAANTERN prospective multicenter registry (NCT02392078) data was analyzed to determine clinical outcomes for patients with new and recurrent IDH wild-type glioblastoma.
Methods
Demographics, intraprocedural data, adverse events, KPS, health-economics, and survival data were prospectively collected then analyzed on IDH wild-type newly diagnosed and recurrent glioblastoma patients who were treated with laser ablation at 14 US centers between January 2016 and May 2019. Data was monitored for accuracy. Statistical analysis included individual variable summaries, multivariable differences in survival, and median survival numbers.
Results
A total of 29 new and 60 recurrent IDH wild-type WHO grade 4 glioblastoma patients were treated. Positive MGMT promoter methylation status was present in 5/29 of new and 23/60 of recurrent patients. Median physician-estimated extent of ablation was 91-99%. Median overall-survival was 9.73 months (95% confidence interval: 5.16, 15.91) for newly diagnosed patients and median post-procedure survival was 8.97 (6.94, 12.36) months for recurrent patients. Median overall-survival for newly diagnosed patients receiving post-LITT chemo/radiation was 16.14 months (6.11, not reached). Factors associated with improved survival were MGMT promoter methylation, adjuvant chemotherapy within 12 weeks, and tumor volume <3cc.
Conclusions
Laser ablation is a viable option for patients with new and recurrent glioblastoma. Median overall survival for IDH wild type newly diagnosed glioblastoma is comparable to outcomes observed in other tumor resection studies when those patients undergo radiation and chemotherapy following LITT.
Collapse
Affiliation(s)
- John F de Groot
- Department of Neuro-Oncology
- UCSF Weill Institute for Neurosciences, San Francisco, CA
| | - Albert H Kim
- Department of Neurosurgery
- Washington University School of Medicine, St. Louis, MO
| | - Sujit Prabhu
- Department of Neurosurgery
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery
- Baylor College of Medicine, Houston, TX
| | - Adrian W Laxton
- Department of Neurosurgery
- Wake Forest Baptist Health, Winston-Salem, NC
| | - Peter E Fecci
- Department of Neurosurgery
- Duke University Medical Center, Durham, NC
| | - Barbara J O’Brien
- Department of Neuro-Oncology
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Sloan
- Department of Neurosurgery
- University Hospitals – Cleveland Medical Center & Seidman Cancer Center, Cleveland, OH
| | - Veronica Chiang
- Department of Neurosurgery
- Yale School of Medicine, New Haven, CT
| | - Stephen B Tatter
- Department of Neurosurgery
- Wake Forest Baptist Health, Winston-Salem, NC
| | - Alireza M Mohammadi
- Department of Neurosurgery
- Cleveland Clinic Lerner College of Medicine at CWRU, Cleveland, OH
| | | | - Roy E Strowd
- Department of Neuro-Oncology
- Wake Forest Baptist Health, Winston-Salem, NC
| | - Clark Chen
- Department of Neurosurgery
- University of Minnesota Medical Center, Minneapolis, MN
| | | | - Mustafa Khasraw
- Department of Neuro-Oncology
- Duke University Medical Center, Durham, NC
| | - David Sun
- Department of Neurosurgery
- Norton Neuroscience Institute, Louisville, KY
| | - David Piccioni
- Department of Neuro-Oncology
- University of California San Diego Health, La Jolla, CA
| | - Kaylyn D Sinicrope
- Department of Neuro-Oncology
- Norton Neuroscience Institute, Louisville, KY
| | | | - Sylvia C Kurz
- Department of Neuro-Oncology
- NYU Langone Perlmutter Cancer Center, New York, NY
| | - Brian Williams
- Department of Neurosurgery
- University of Louisville Health, Louisville, KY
| | - Kris Smith
- Department of Neurosurgery
- Barrow Neurological Institute, Phoenix, AZ
| | | | - Eric C Leuthardt
- Department of Neurosurgery
- Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Ahn S, Kim Y, Shin J, Park JS, Yoo C, Lee Y, Hong YK, Jeun SS, Yang S. Clinical feasibility of modified procarbazine and lomustine chemotherapy without vincristine as a salvage treatment for recurrent adult glioma. Oncol Lett 2022; 23:114. [PMID: 35251345 PMCID: PMC8850950 DOI: 10.3892/ol.2022.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022] Open
Abstract
Procarbazine, lomustine and vincristine (PCV) chemotherapy is considered a salvage option for adult glioma; however, its significant toxicities frequently lead to dose reduction or discontinuation in patients with recurrent glioma. The current study evaluated the safety and efficacy of modified procarbazine and lomustine (PC) chemotherapy that omits vincristine and reduces the lomustine dose compared with those of conventional PCV chemotherapy. Using electronic medical records, all patients with adult recurrent glioma who received PC or PCV chemotherapy between 2009 and 2020 at Seoul St. Mary's Hospital or St. Vincent's Hospital were examined retrospectively. A total of 59 patients met the eligibility criteria. Among them, 15 patients received modified PC chemotherapy (PC group) and 44 patients received PCV chemotherapy (PCV group). The PC group presented a significantly lower hematology toxicity (anemia, 6.7 vs. 45.5%, P=0.02; thrombocytopenia 20.0 vs. 70.4%, P<0.001). Additionally, the clinical impacts of PC chemotherapy, including delay of a cycle, dose reduction, discontinuation of drug(s) or total cessation of chemotherapy, were significantly less frequent compared with the PCV group (26.7 vs. 68.2%, P=0.012). The overall survival of the PC group was also significantly longer than that of PCV group (396 vs. 232 days, P=0.042), while there was no significant difference in progression-free survival between the two groups (284.5 vs. 131 days, P=0.077). The results suggested that modified PC chemotherapy may be an alternative chemotherapeutic regimen with tolerable toxicity and without loss of clinical efficacy in patients with recurrent adult glioma. Further prospective and larger studies are required to validate our findings.
Collapse
Affiliation(s)
- Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Kim
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ja Shin
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Changyoung Yoo
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youn Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Weng SS, Tsai WC, Chen HW, Lin MC, Wu PR, Chang YC. Prostaglandin F2 receptor inhibitor overexpression predicts advanced who grades and adverse prognosis in human glioma tissue. CHINESE J PHYSIOL 2022; 65:93-102. [DOI: 10.4103/cjp.cjp_97_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Ji M, Zhang Z, Lin S, Wang C, Jin J, Xue N, Xu H, Chen X. The PI3K Inhibitor XH30 Enhances Response to Temozolomide in Drug-Resistant Glioblastoma via the Noncanonical Hedgehog Signaling Pathway. Front Pharmacol 2021; 12:749242. [PMID: 34899305 PMCID: PMC8662317 DOI: 10.3389/fphar.2021.749242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)-based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog-triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.
Collapse
Affiliation(s)
- Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyang Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Dymova MA, Kuligina EV, Richter VA. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int J Mol Sci 2021; 22:6385. [PMID: 34203727 PMCID: PMC8232134 DOI: 10.3390/ijms22126385] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB).
Collapse
Affiliation(s)
- Maya A. Dymova
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.K.); (V.A.R.)
| | | | | |
Collapse
|
13
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
14
|
Predicting Survival in Glioblastoma Patients Using Diffusion MR Imaging Metrics-A Systematic Review. Cancers (Basel) 2020; 12:cancers12102858. [PMID: 33020420 PMCID: PMC7600641 DOI: 10.3390/cancers12102858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary An accurate survival analysis is crucial for disease management in glioblastoma (GBM) patients. Due to the ability of the diffusion MRI techniques of providing a quantitative assessment of GBM tumours, an ever-growing number of studies aimed at investigating the role of diffusion MRI metrics in survival prediction of GBM patients. Since the role of diffusion MRI in prediction and evaluation of survival outcomes has not been fully addressed and results are often controversial or unsatisfactory, we performed this systematic review in order to collect, summarize and evaluate all studies evaluating the role of diffusion MRI metrics in predicting survival in GBM patients. We found that quantitative diffusion MRI metrics provide useful information for predicting survival outcomes in GBM patients, mainly in combination with other clinical and multimodality imaging parameters. Abstract Despite advances in surgical and medical treatment of glioblastoma (GBM), the medium survival is about 15 months and varies significantly, with occasional longer survivors and individuals whose tumours show a significant response to therapy with respect to others. Diffusion MRI can provide a quantitative assessment of the intratumoral heterogeneity of GBM infiltration, which is of clinical significance for targeted surgery and therapy, and aimed at improving GBM patient survival. So, the aim of this systematic review is to assess the role of diffusion MRI metrics in predicting survival of patients with GBM. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, a systematic literature search was performed to identify original articles since 2010 that evaluated the association of diffusion MRI metrics with overall survival (OS) and progression-free survival (PFS). The quality of the included studies was evaluated using the QUIPS tool. A total of 52 articles were selected. The most examined metrics were associated with the standard Diffusion Weighted Imaging (DWI) (34 studies) and Diffusion Tensor Imaging (DTI) models (17 studies). Our findings showed that quantitative diffusion MRI metrics provide useful information for predicting survival outcomes in GBM patients, mainly in combination with other clinical and multimodality imaging parameters.
Collapse
|
15
|
The Role of RNA and DNA Aptamers in Glioblastoma Diagnosis and Therapy: A Systematic Review of the Literature. Cancers (Basel) 2020; 12:cancers12082173. [PMID: 32764266 PMCID: PMC7463716 DOI: 10.3390/cancers12082173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor of the central nervous system in adults. Despite advances in surgical and medical neuro-oncology, the median survival is about 15 months. For this reason, initial diagnosis, prognosis, and targeted therapy of GBM represent very attractive areas of study. Aptamers are short three-dimensional structures of single-stranded nucleic acids (RNA or DNA), identified by an in vitro process, named systematic evolution of ligands by exponential enrichment (SELEX), starting from a partially random oligonucleotide library. They bind to a molecular target with high affinity and specificity and can be easily modified to optimize binding affinity and selectivity. Thanks to their properties (low immunogenicity and toxicity, long stability, and low production variability), a large number of aptamers have been selected against GBM biomarkers and provide specific imaging agents and therapeutics to improve the diagnosis and treatment of GBM. However, the use of aptamers in GBM diagnosis and treatment still represents an underdeveloped topic, mainly due to limited literature in the research world. On these bases, we performed a systematic review aimed at summarizing current knowledge on the new promising DNA and RNA aptamer-based molecules for GBM diagnosis and treatment. Thirty-eight studies from 2000 were included and investigated. Seventeen involved the use of aptamers for GBM diagnosis and 21 for GBM therapy. Our findings showed that a number of DNA and RNA aptamers are promising diagnostic and therapeutic tools for GBM management.
Collapse
|
16
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|