1
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2025; 68:271-298. [PMID: 38417574 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Nguyen LTP, Kim Y, Hur SS, Byeon HK, Ban MJ, Shim JW, Park JH, Hwang Y. PIEZO1 activation may serve as an early tissue biomarker for the prediction of irradiation-induced salivary gland dysfunction. Biochem Biophys Res Commun 2024; 727:150291. [PMID: 38959734 DOI: 10.1016/j.bbrc.2024.150291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Irradiation (IR)-induced xerostomia is the most common side effect of radiation therapy in patients with head and neck cancer (HNC). Xerostomia diagnosis is mainly based on the patient's medical history and symptoms. Currently, no direct biomarkers are available for the early prediction of IR-induced xerostomia. Here, we identified PIEZO1 as a novel predictive tissue biomarker for xerostomia. Our data demonstrate that PIEZO1 is significantly upregulated at the gene and protein levels during IR-induced salivary gland (SG) hypofunction. Notably, PIEZO1 upregulation coincided with that of inflammatory (F4/80) and fibrotic markers (fibronectin and collagen fibers accumulation). These findings suggest that PIEZO1 upregulation in SG tissue may serve as a novel predictive marker for IR-induced xerostomia.
Collapse
Affiliation(s)
- Lan Thi Phuong Nguyen
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si, 31151, Republic of Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
3
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Ouyang C, Xu G, Xie J, Xie Y, Zhou Y. Silencing of KIAA1429, a N6-methyladenine methyltransferase, inhibits the progression of colon adenocarcinoma via blocking the hypoxia-inducible factor 1 signalling pathway. J Biochem Mol Toxicol 2024; 38:e23829. [PMID: 39215765 DOI: 10.1002/jbt.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
KIAA1429 is an important 'writer' of the N6-methyladenine (m6A) modification, which is involved in tumour progression. This study was conducted to explore the mechanism of action of KIAA1429 in colon adenocarcinoma (COAD). KIAA1429-silenced COAD cell and xenograft tumour models were constructed, and the function of KIAA1429 was explored through a series of in vivo and in vitro assays. The downstream mechanisms of KIAA1429 were explored using transcriptome sequencing. Dimethyloxalylglycine (DMOG), an activator of HIF-1α, was used for feedback verification. The expression of KIAA1429 in COAD tumour tissues and cells was elevated, and KIAA1429 exhibited differential expression at different stages of the tumour. Silencing of KIAA1429 inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells. The expression levels of NLRP3, GSDMD and Caspase-1 were decreased in KIAA1429-silenced HT29 cells, indicating the pyroptotic activity was inhibited. Additionally, KIAA1429 silencing inhibited the growth of tumour xenograft. Transcriptome sequencing and reverse transcription quantitative polymerase chain reaction revealed that after KIAA1429 silencing, the expression of AKR1C1, AKR1C2, AKR1C3 and RDH8 was elevated, and the expression of VIRMA, GINS1, VBP1 and ARF3 was decreased. In HT29 cells, KIAA1429 silencing blocked the HIF-1 signalling pathway, accompanied by the decrease in AKT1 and HIF-1α protein levels. The activation of HIF-1 signalling pathway, mediated by DMOG, reversed the antitumour role of KIAA1429 silencing. KIAA1429 silencing inhibits COAD development by blocking the HIF-1 signalling pathway.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Zhou
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Liao W, Li Y, Liu T, Deng J, Liang H, Shen F. The activation of Piezo1 channel promotes invasion and migration via the release of extracellular ATP in cervical cancer. Pathol Res Pract 2024; 260:155426. [PMID: 38908334 DOI: 10.1016/j.prp.2024.155426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The mechanosensitive ion channel Piezo1 has emerged as a potential prognostic and therapeutic target in different types of cancers. The aim of this study was to determine the expression levels and underlying mechanisms of Piezo1 in the invasion and migration processes in cervical cancer. METHODS Initially, we employed qRT-PCR, western blot, and immunohistochemical staining techniques to assess the disparity in Piezo1 expression in cervical cancer tissues and cells. Subsequently, we conducted wound healing, transwell assays and phalloidin staining to observe the effects of stable Piezo1 silencing and Piezo1 selective agonist Yoda1 on the invasion and migration capabilities. The release of extracellular ATP was assessed using the enhanced ATP assay kit. Furthermore, we conducted rescue experiments to investigate whether the activation of Piezo1 facilitates cervical cancer invasion and migration through extracellular ATP. Finally, we constructed xenograft tumor models to determine weather the Piezo1 selective agonist Yoda1 influenced the tumor growth in vivo. RESULTS In our study, we found that Piezo1 expression was elevated in both cervical cancer tissues and cells, with the highest levels observed in patients with lymph node metastasis. Knocking down Piezo1 resulted in a significant reduction in the invasion and migration capabilities of cervical cancer cells, whereas the use of the Piezo1 selective agonist Yoda1 enhanced these capabilities. Moreover, the activation of Piezo1 channels was found to regulate the release of extracellular ATP. Mechanistically, the activation of Piezo1 might facilitate cervical cancer invasion, migration, and pseudopodium formation through the release of extracellular ATP. And Piezo1 was an important molecule for the tumor growth of cervical cancer in vivo. CONCLUSION Our findings revealed that Piezo1 facilitated the invasion and migration of cervical cancer by releasing extracellular ATP, which might hold potential as a valuable target for prognostic and therapeutic interventions in cervical cancer.
Collapse
Affiliation(s)
- Wenxin Liao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juexiao Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hua Liang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fujin Shen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
7
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
8
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
9
|
Martín-Sanz R, Rodrigues-Françoso A, García-Mesa Y, García-Alonso FJ, Gómez-Muñoz MA, Malmierca-González S, Salazar-Blázquez R, García-Suárez O, Feito J. Prognostic Evaluation of Piezo2 Channels in Mammary Gland Carcinoma. Cancers (Basel) 2024; 16:2413. [PMID: 39001475 PMCID: PMC11240440 DOI: 10.3390/cancers16132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the last decade, a group of Ca2+ channels called Piezo were discovered, demonstrating a decisive role in the cellular response to mechanical stimuli and being essential in the biological behavior of cells regarding the extracellular compartment. Several investigations have suggested a potential role in carcinogenesis, with a tumor suppressor role in some cases but increased expression in several high-grade neoplasms. Regarding Piezo2 expression in mammary gland neoplasms, a protective role for Piezo2 was initially suggested, but a subsequent study demonstrated a relationship between Piezo2 expression and the highly aggressive triple-negative phenotype of breast carcinoma. A cohort of 125 patients with clinical follow-up was chosen to study Piezo2 expression and clarify its clinical implications using the same immunohistochemical evaluation performed for other breast carcinoma parameters. Fisher's exact test was chosen to identify potential relationships between the different variables. A significant association was found with the Ki67 proliferation index, but not with mitoses. The tendency of most proliferative tumors was to have an increased score for Piezo2. A similar association was found between Piezo2 expression and perineural invasion.
Collapse
Affiliation(s)
- Raquel Martín-Sanz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Oftalmología, Complejo Asistencial de Zamora, 49022 Zamora, Spain
| | | | - Yolanda García-Mesa
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - María Asunción Gómez-Muñoz
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Sandra Malmierca-González
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Rocío Salazar-Blázquez
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| | - Olivia García-Suárez
- Grupo SINPOS, Department of Cell Biology and Morphology, University of Oviedo, 33003 Oviedo, Spain; (Y.G.-M.); (O.G.-S.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Feito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (R.M.-S.); (S.M.-G.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain; (M.A.G.-M.); (R.S.-B.)
| |
Collapse
|
10
|
Liu Y, Zhang M, Wang C, Chen H, Su D, Yang C, Tao Y, Lv X, Zhou Z, Li J, Liao Y, You J, Wang Z, Cheng F, Yang R. Human Umbilical Cord Mesenchymal Stromal Cell-Derived Extracellular Vesicles Induce Fetal Wound Healing Features Revealed by Single-Cell RNA Sequencing. ACS NANO 2024; 18:13696-13713. [PMID: 38751164 DOI: 10.1021/acsnano.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Medical School of Chinese People's Liberation Army, 100039 Beijing, China
- Department of Dermatology, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, 400038 Chongqing, China
| | - Chenhui Wang
- Bioinformatics Center of AMMS, Beijing 100063, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, 510275 Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, 510275 Shenzhen, China
| | | | - Yuandong Tao
- Department of Pediatric Urology, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Xuexue Lv
- Department of Pediatric Urology, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Zhe Zhou
- Bioinformatics Center of AMMS, Beijing 100063, China
| | - Jiangbo Li
- Bioinformatics Center of AMMS, Beijing 100063, China
| | - Yong Liao
- Department of Dermatology, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Jia You
- Biomedical Treatment Center, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Zhengxu Wang
- Biomedical Treatment Center, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| | - Fang Cheng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, 510275 Shenzhen, China
| | - Rongya Yang
- Department of Dermatology, the Seventh Medical Center of Chinese PLA General Hospital, 100010 Beijing, China
| |
Collapse
|
11
|
Zhang Y, Zou W, Dou W, Luo H, Ouyang X. Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors. Front Physiol 2024; 15:1377329. [PMID: 38690080 PMCID: PMC11058998 DOI: 10.3389/fphys.2024.1377329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanosensitive ion channel protein 1 (Piezo1) is a large homotrimeric membrane protein. Piezo1 has various effects and plays an important and irreplaceable role in the maintenance of human life activities and homeostasis of the internal environment. In addition, recent studies have shown that Piezo1 plays a vital role in tumorigenesis, progression, malignancy and clinical prognosis. Piezo1 is involved in regulating the malignant behaviors of a variety of tumors, including cellular metabolic reprogramming, unlimited proliferation, inhibition of apoptosis, maintenance of stemness, angiogenesis, invasion and metastasis. Moreover, Piezo1 regulates tumor progression by affecting the recruitment, activation, and differentiation of multiple immune cells. Therefore, Piezo1 has excellent potential as an anti-tumor target. The article reviews the diverse physiological functions of Piezo1 in the human body and its major cellular pathways during disease development, and describes in detail the specific mechanisms by which Piezo1 affects the malignant behavior of tumors and its recent progress as a new target for tumor therapy, providing new perspectives for exploring more potential effects on physiological functions and its application in tumor therapy.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Zou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenlei Dou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Ai LJ, Li GD, Chen G, Sun ZQ, Zhang JN, Liu M. Molecular subtyping and the construction of a predictive model of colorectal cancer based on ion channel genes. Eur J Med Res 2024; 29:219. [PMID: 38576045 PMCID: PMC10993535 DOI: 10.1186/s40001-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE Colorectal cancer (CRC) is a highly heterogeneous malignancy with an unfavorable prognosis. The purpose of this study was to address the heterogeneity of CRC by categorizing it into ion channel subtypes, and to develop a predictive modeling based on ion channel genes to predict the survival and immunological states of patients with CRC. The model will provide guidance for personalized immunotherapy and drug treatment. METHODS A consistent clustering method was used to classify 619 CRC samples based on the expression of 279 ion channel genes. Such a method was allowed to investigate the relationship between molecular subtypes, prognosis, and immune infiltration. Furthermore, a predictive modeling was constructed for ion channels to evaluate the ion channel properties of individual tumors using the least absolute shrinkage and selection operator. The expression patterns of the characteristic genes were validated through molecular biology experiments. The effect of potassium channel tetramerization domain containing 9 (KCTD9) on CRC was verified by cellular functional experiments. RESULTS Four distinct ion channel subtypes were identified in CRC, each characterized by unique prognosis and immune infiltration patterns. Notably, Ion Cluster3 exhibited high levels of immune infiltration and a favorable prognosis, while Ion Cluster4 showed relatively lower levels of immune infiltration and a poorer prognosis. The ion channel score could predict overall survival, with lower scores correlated with longer survival. This score served as an independent prognostic factor and presented an excellent predictive efficacy in the nomogram. In addition, the score was closely related to immune infiltration, immunotherapy response, and chemotherapy sensitivity. Experimental evidence further confirmed that low expression of KCTD9 in tumor tissues was associated with an unfavorable prognosis in patients with CRC. The cellular functional experiments demonstrated that KCTD9 inhibited the proliferation, migration and invasion capabilities of LOVO cells. CONCLUSIONS Ion channel subtyping and scoring can effectively predict the prognosis and evaluate the immune microenvironment, immunotherapy response, and drug sensitivity in patients with CRC.
Collapse
Affiliation(s)
- Lian-Jie Ai
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guo-Dong Li
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Chen
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zi-Quan Sun
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Jin-Ning Zhang
- Colorectal Tumor Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ming Liu
- General Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
13
|
Bo H, Wu Q, Zhu C, Zheng Y, Cheng G, Cui L. PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis. Thorac Cancer 2024; 15:1007-1016. [PMID: 38494915 PMCID: PMC11045336 DOI: 10.1111/1759-7714.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND PIEZO1 works differently in different cancers and at different stages of development. The objective of the current study was to explore the function and underlying mechanism of PIEZO1 in lung adenocarcinoma (LUAD) cells. METHODS Different LUAD cell lines were treated with PIEZO1 inhibitor (GsMTx4) and agonist (Yoda1), and the expression of PIEZO1 in LUAD cells was detected using real-time quantitative PCR (RT-qPCR) and western blotting. The effects of PIEZO1 on invasion, migration and epithelial-mesenchymal transition (EMT) markers protein expression of LUAD cells were detected using the MTT assay, flow cytometry, transwell assay, wound-healing assay, and western blotting. Reactive oxygen species (ROS) agonists (BAY 87-2243) and inhibitors (NAC) and Wnt/β-catenin pathway inhibitors (iCRT3) were selected to treat A549 cells to investigate the mechanism of PIEZO1 on ROS production and Wnt/β-catenin expression in A549 cells. RESULTS In A549, NCI-H1395, and NCI-H1975 cells, GsMTx4 promoted cell proliferation, invasion, migration, upregulated EMT-related marker protein expression, and inhibited cell apoptosis, while Yoda1 exerted effects opposite to those of GsMTx4. In A549 cells, GsMTx4 can reduce ROS production, it also inhibited ROS production, apoptosis, and downregulated proapoptotic markers induced by BAY 87-2243. Importantly, BAY 87-2243 blocked the effect of GSMTX4-induced Wnt/β-catenin overexpression. Similarly, Yoda1 can reduce the effect of NAC. In addition, iCRT3 can block the upregulation of EMT-related marker proteins by GsMTx4, and increase apoptosis and decrease cell invasion and migration. CONCLUSION In summary, PIEZO1 acts as a cancer suppressor by regulating the ROS/Wnt/β-catenin axis, providing a new perspective on the role of mechanosensitive channel proteins in cancer.
Collapse
Affiliation(s)
- Haimei Bo
- Tianjin Medical University General HospitalTianjinChina
- North China University of Science and TechnologyTangshanChina
| | - Qi Wu
- Tianjin Medical University General HospitalTianjinChina
| | - Chaonan Zhu
- North China University of Science and TechnologyTangshanChina
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Yang Zheng
- Graduate SchoolTianjin Medical UniversityTianjinChina
| | - Guang Cheng
- North China University of Science and TechnologyTangshanChina
| | - Lihua Cui
- North China University of Science and TechnologyTangshanChina
| |
Collapse
|
14
|
Wang SK, Zhang XT, Jiang XY, Geng BJ, Qing TL, Li L, Chen Y, Li JF, Zhang XF, Xu SG, Zhu JB, Zhu YP, Wang MT, Chen JK. Activation of Piezo1 increases the sensitivity of breast cancer to hyperthermia therapy. Open Med (Wars) 2024; 19:20240898. [PMID: 38463518 PMCID: PMC10921451 DOI: 10.1515/med-2024-0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 03/12/2024] Open
Abstract
Photothermal therapy (PTT) of nanomaterials is an emerging novel therapeutic strategy for breast cancer. However, there exists an urgent need for appropriate strategies to enhance the antitumor efficacy of PTT and minimize damage to surrounding normal tissues. Piezo1 might be a promising novel photothermal therapeutic target for breast cancer. This study aims to explore the potential role of Piezo1 activation in the hyperthermia therapy of breast cancer cells and investigate the underlying mechanisms. Results showed that the specific agonist of Piezo1 ion channel (Yoda1) aggravated the cell death of breast cancer cells triggered by heat stress in vitro. Reactive oxygen species (ROS) production was significantly increased following heat stress, and Yoda1 exacerbated the rise in ROS release. GSK2795039, an inhibitor of NADPH oxidase 2 (NOX2), reversed the Yoda1-mediated aggravation of cellular injury and ROS generation after heat stress. The in vivo experiments demonstrate the well photothermal conversion efficiency of TiCN under the 1,064 nm laser irradiation, and Yoda1 increases the sensitivity of breast tumors to PTT in the presence of TiCN. Our study reveals that Piezo1 activation might serve as a photothermal sensitizer for PTT, which may develop as a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Shao-Kang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Ting Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xuan-Yao Jiang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bi-Jiang Geng
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Emergency, The Second Naval Hospital of Southern Theater Command of PLA, Hainan, China
- Heatstroke Treatment and Research Center of PLA, Hainan, China
| | - Yun Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Shuo-Gui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yu-Ping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, No 800, Xiangyin Road, Shanghai, 200433, China
| | - Mei-Tang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
15
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
16
|
Xie Y, Hang L. Mechanical gated ion channel Piezo1: Function, and role in macrophage inflammatory response. Innate Immun 2024; 30:32-39. [PMID: 38710209 PMCID: PMC11165660 DOI: 10.1177/17534259241249287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 05/08/2024] Open
Abstract
Macrophages are present in many mechanically active tissues and are often subjected to varying degrees of mechanical stimulation. Macrophages play a crucial role in resisting pathogen invasion and maintaining tissue homeostasis. Piezo-type mechanosensitive channel component 1 (Piezo1) is the main cation channel involved in the rapid response to mechanical stimuli in mammals. This channel plays a crucial role in controlling blood pressure and motor performance and regulates urinary osmotic pressure and epithelial cell proliferation and division. In recent years, numerous studies have shown that in macrophages, Piezo1 not only plays a role in regulating the aforementioned physiological processes but also participates in multiple pathological processes such as inflammation and cancer. In this review, we summarize the research progress on Piezo1-mediated regulation of macrophage-mediated inflammatory responses through downstream signalling pathways and the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, PR China
| | - Lihua Hang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, PR China
| |
Collapse
|
17
|
Xiao H, Ma L, Ding J, Wang H, Bi X, Tan F, Piao W. Mitochondrial Calcium Uniporter (MCU) that Modulates Mitochondrial Calcium Uptake and Facilitates Endometrial Cancer Progression through Interaction with VDAC1. Curr Cancer Drug Targets 2024; 24:354-367. [PMID: 37702230 DOI: 10.2174/1568009624666230912095526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Although endometrial cancer represents a frequently diagnosed malignancy of the female reproductive tract, we know very little about the factors that control endometrial cancer. OBJECTIVE Our study was presented to investigate the function of MCU in endometrial tumorigenesis and the molecular mechanisms involved. MATERIALS AND METHODS A total of 94 endometrial cancer patients were recruited into our cohort. MCU and VDAC1 expression was examined in tumor and normal tissues via immunohistochemistry and immunofluorescence. Associations of MCU and VDAC1 expression with clinicopathological characteristics were evaluated. After transfection with shRNA targeting MCU or full-length MCU plasmids, clone formation, wound healing, transwell and MitoTracker Red staining were separately presented in Ishikawa and RL95-2 cells. Moreover, Western blotting or immunofluorescence was utilized to examine the expression of MCU, VDAC1, Na+/Ca2+/Li+ exchanger (NCLX), and β-catenin under VDAC1 knockdown and/or MCU overexpression or knockdown. RESULTS MCU and VDAC1 expression were prominently up-regulated in endometrial cancer tissues and were significantly associated with histological grade, depth of myometrial invasion and lymph node status. MCU up-regulation enhanced clone formation, migration, and mitochondrial activity of endometrial cancer cells. The opposite results were investigated when MCU was silenced. MCU or VDAC1 silencing reduced the expression of MCU, VDAC1, NCLX, and β-catenin. Moreover, VDAC1 knockdown alleviated the promoting effect of MCU overexpression on the above proteins. CONCLUSION This investigation demonstrated that MCU-induced mitochondrial calcium uptake plays a critical role in endometrial tumorigenesis through interaction with VDAC1.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Lijun Ma
- School of Electrical and Information Engineering, Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia Hui Autonomous Region, China
| | - Jie Ding
- Medical Imaging Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Honghong Wang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Xiaofang Bi
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Fengmei Tan
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Wenhua Piao
- Clinical Medical Laboratory Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
18
|
Lebon D, Collet L, Djordjevic S, Gomila C, Ouled‐Haddou H, Platon J, Demont Y, Marolleau J, Caulier A, Garçon L. PIEZO1 is essential for the survival and proliferation of acute myeloid leukemia cells. Cancer Med 2024; 13:e6984. [PMID: 38334477 PMCID: PMC10854442 DOI: 10.1002/cam4.6984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Leukemogenesis is a complex process that interconnects tumoral cells with their microenvironment, but the effect of mechanosensing in acute myeloid leukemia (AML) blasts is poorly known. PIEZO1 perceives and transmits the constraints of the environment to human cells by acting as a non-selective calcium channel, but very little is known about its role in leukemogenesis. RESULTS For the first time, we show that PIEZO1 is preferentially expressed in healthy hematopoietic stem and progenitor cells in human hematopoiesis, and globally overexpressed in AML cells. In AML subtypes, PIEZO1 expression associates with favorable outcomes as better overall (OS) and disease-free survival (DFS). If PIEZO1 is expressed and functional in THP1 leukemic myeloid cell line, its chemical activation doesn't impact the proliferation, differentiation, nor survival of cells. However, the downregulation of PIEZO1 expression dramatically reduces the proliferation and the survival of THP1 cells. We show that PIEZO1 knock-down blocks the cell cycle in G0/G1 phases of AML cells, impairs the DNA damage response pathways, and critically increases cell death by triggering extrinsic apoptosis pathways. CONCLUSIONS Altogether, our results reveal a new role for PIEZO1 mechanosensing in the survival and proliferation of leukemic blasts, which could pave the way for new therapeutic strategies to target AML cells.
Collapse
Affiliation(s)
- Delphine Lebon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | - Louison Collet
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | | | - Cathy Gomila
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | - Jessica Platon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Biologie, CHU Amiens‐PicardieAmiensFrance
| | - Jean‐Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Hématologie Clinique et Thérapie Cellulaire, CHU Amiens‐PicardieAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Division of Hematology/Oncology Boston Children's HospitalBostonMassachusettsUSA
- Department of Medical and Population GeneticsThe Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
- Service d'Hématologie Biologie, CHU Amiens‐PicardieAmiensFrance
| |
Collapse
|
19
|
Budinská E, Hrivňáková M, Ivkovic TC, Madrzyk M, Nenutil R, Bencsiková B, Al Tukmachi D, Ručková M, Zdražilová Dubská L, Slabý O, Feit J, Dragomir MP, Borilova Linhartova P, Tejpar S, Popovici V. Molecular portraits of colorectal cancer morphological regions. eLife 2023; 12:RP86655. [PMID: 37956043 PMCID: PMC10642970 DOI: 10.7554/elife.86655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Heterogeneity of colorectal carcinoma (CRC) represents a major hurdle towards personalized medicine. Efforts based on whole tumor profiling demonstrated that the CRC molecular subtypes were associated with specific tumor morphological patterns representing tumor subregions. We hypothesize that whole-tumor molecular descriptors depend on the morphological heterogeneity with significant impact on current molecular predictors. We investigated intra-tumor heterogeneity by morphology-guided transcriptomics to better understand the links between gene expression and tumor morphology represented by six morphological patterns (morphotypes): complex tubular, desmoplastic, mucinous, papillary, serrated, and solid/trabecular. Whole-transcriptome profiling by microarrays of 202 tumor regions (morphotypes, tumor-adjacent normal tissue, supportive stroma, and matched whole tumors) from 111 stage II-IV CRCs identified morphotype-specific gene expression profiles and molecular programs and differences in their cellular buildup. The proportion of cell types (fibroblasts, epithelial and immune cells) and differentiation of epithelial cells were the main drivers of the observed disparities with activation of EMT and TNF-α signaling in contrast to MYC and E2F targets signaling, defining major gradients of changes at molecular level. Several gene expression-based (including single-cell) classifiers, prognostic and predictive signatures were examined to study their behavior across morphotypes. Most exhibited important morphotype-dependent variability within same tumor sections, with regional predictions often contradicting the whole-tumor classification. The results show that morphotype-based tumor sampling allows the detection of molecular features that would otherwise be distilled in whole tumor profile, while maintaining histopathology context for their interpretation. This represents a practical approach at improving the reproducibility of expression profiling and, by consequence, of gene-based classifiers.
Collapse
Affiliation(s)
- Eva Budinská
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| | | | - Tina Catela Ivkovic
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Marie Madrzyk
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | | | - Dagmar Al Tukmachi
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | - Michaela Ručková
- Central European Institute of Technology, Masarykova UniverzitaBrnoCzech Republic
| | | | - Ondřej Slabý
- Central European Institute of Technology, Department of Biology, Faculty of Medicine, Masarykova UniverzitaBrnoCzech Republic
| | - Josef Feit
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masarykova UniverzitaBrnoCzech Republic
| | - Mihnea-Paul Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Berlin Institute of HealthBerlinGermany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)HeidelbergGermany
| | | | - Sabine Tejpar
- Faculty of Medicine, Digestive Oncology Unit, Katholieke Universiteit LeuvenLeuvenBelgium
| | - Vlad Popovici
- RECETOX, Faculty of Science, Masarykova UniverzitaBrnoCzech Republic
| |
Collapse
|
20
|
Cheng D, Wang J, Yao M, Cox CD. Joining forces: crosstalk between mechanosensitive PIEZO1 ion channels and integrin-mediated focal adhesions. Biochem Soc Trans 2023; 51:1897-1906. [PMID: 37772664 DOI: 10.1042/bst20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Both integrin-mediated focal adhesions (FAs) and mechanosensitive ion channels such as PIEZO1 are critical in mechanotransduction processes that influence cell differentiation, development, and cancer. Ample evidence now exists for regulatory crosstalk between FAs and PIEZO1 channels with the molecular mechanisms underlying this process remaining unclear. However, an emerging picture is developing based on spatial crosstalk between FAs and PIEZO1 revealing a synergistic model involving the cytoskeleton, extracellular matrix (ECM) and calcium-dependent signaling. Already cell type, cell contractility, integrin subtypes and ECM composition have been shown to regulate this crosstalk, implying a highly fine-tuned relationship between these two major mechanosensing systems. In this review, we summarize the latest advances in this area, highlight the physiological implications of this crosstalk and identify gaps in our knowledge that will improve our understanding of cellular mechanosensing.
Collapse
Affiliation(s)
- Delfine Cheng
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Junfan Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Charles D Cox
- The Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
21
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
22
|
Otero-Sobrino Á, Blanco-Carlón P, Navarro-Aguadero MÁ, Gallardo M, Martínez-López J, Velasco-Estévez M. Mechanosensitive Ion Channels: Their Physiological Importance and Potential Key Role in Cancer. Int J Mol Sci 2023; 24:13710. [PMID: 37762011 PMCID: PMC10530364 DOI: 10.3390/ijms241813710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Collapse
Affiliation(s)
- Álvaro Otero-Sobrino
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pablo Blanco-Carlón
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - María Velasco-Estévez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
23
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1's cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
24
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
25
|
Li R, Wang D, Li H, Lei X, Liao W, Liu XY. Identification of Piezo1 as a potential target for therapy of colon cancer stem-like cells. Discov Oncol 2023; 14:95. [PMID: 37306789 DOI: 10.1007/s12672-023-00712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Colon cancer is a common malignancy of the digestive tract. Colon cancer stem-like cells (CCSCs) are theoretically one of the key drivers of the initiation, relapse, metastasis, and chemo-resistance of colon tumors. Piezo1 is a mechanosensitive cationic channel protein involved in cancer progression. However, little is known regarding the possible role of Piezo1 in maintaining the stemness of CCSCs. In this study, we found that Piezo1 was highly expressed in CD133+/CD44+ colon cancer tissues, and the Piezo1high/CD133+CD44+ population was associated with the clinical stage. Furthermore, CCSCs isolated from colon cell lines expressed higher Piezo1 levels compared to the non-CCSCs, and Piezo1 knockdown inhibited their tumorigenicity and self-renewal capacity. Mechanistically, Piezo1 maintained the stemness of CCSCs through Ca2+/NFAT1 signaling, and knocking down Piezo1 promoted degradation of NFAT1. Taken together, Piezo1 is involved in the stage of colon cancer and is a promising therapeutic target.
Collapse
Affiliation(s)
- Rong Li
- Department of Pathology, Ganzhou Cancer Hospital, No. 19, HuaYuan Qian Road, Ganzhou, Jiangxi, China.
| | - Dongmei Wang
- Department of Pathology, Ganzhou Cancer Hospital, No. 19, HuaYuan Qian Road, Ganzhou, Jiangxi, China
| | - Huijuan Li
- Department of Pathology, Ganzhou Cancer Hospital, No. 19, HuaYuan Qian Road, Ganzhou, Jiangxi, China
| | - Xianhua Lei
- Department of Pathology, Ganzhou Cancer Hospital, No. 19, HuaYuan Qian Road, Ganzhou, Jiangxi, China
| | - Weilian Liao
- Department of Pathology, Ganzhou Cancer Hospital, No. 19, HuaYuan Qian Road, Ganzhou, Jiangxi, China
| | - Xiao-Yu Liu
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Kumar V, Packirisamy G. 3D porous sodium alginate-silk fibroin composite bead based in vitro tumor model for screening of anti-cancer drug and induction of magneto-apoptosis. Int J Biol Macromol 2023:124827. [PMID: 37207758 DOI: 10.1016/j.ijbiomac.2023.124827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
The development of 3D scaffold-based in vitro tumor models can help to address the limitations of cell culture and animal models for designing and screening anticancer drugs. In this study, in vitro 3D tumor models using sodium alginate (SA) and sodium alginate/silk fibroin (SA/SF) porous beads were developed. The beads were non-toxic and A549 cells had a high tendency to adhere, proliferate, and form tumor-like aggregates within SA/SF beads. The 3D tumor model based on these beads had better efficacy for anti-cancer drug screening than the 2D cell culture model. Additionally, the SA/SF porous beads loaded with superparamagnetic iron oxide nanoparticles were used to explore their magneto-apoptosis ability. The cells exposed to a high magnetic field were more likely to undergo apoptosis than those exposed to a low magnetic field. These findings suggest that the SA/SF porous beads and SPIONs loaded SA/SF porous beads-based tumor models could be useful for drug screening, tissue engineering, and mechanobiology studies.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
27
|
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X, Wei J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep 2023; 13:5935. [PMID: 37045834 PMCID: PMC10097650 DOI: 10.1038/s41598-022-21447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/27/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs play a critical regulatory role in different cancers, but their functions in renal cell carcinoma (RCC) have not been elucidated. Reportedly, miR-142-3p is involved in the tumorigenesis and the development of RCC in vitro and is clinically correlated with the poor prognosis of RCC patients. However, the molecular target of miR-142-3p and the underlying mechanism are unclear. In this study, we found that miR-142-3p was upregulated in RCC tumor tissues and downregulated in exosomes compared to normal tissues. The expression of miR-142-3p was inversely associated with the survival of patients with kidney renal clear cell carcinoma (KIRC). RhoBTB3 was reduced in RCC, and miR-142-3p plays an inverse function with RhoBTB3 in KIRC. The direct interaction between RhoBTB3 and miR-142-3p was demonstrated by a dual luciferase reporter assay. miR-142-3p promoted metastasis in the xenograft model, and the suppression of miR-142-3p upregulated RhoBTB3 protein expression and inhibited the mRNAs and proteins of HIF1A, VEGFA, and GGT1. Also, the miR-142-3p overexpression upregulated the mRNA of HIF1A, VEGFA, and GGT1. In conclusion, miR-142-3p functions as an oncogene in RCC, especially in KIRC, by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways, which needs further exploration.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Sha Ma
- Department of Hematopathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, China
| | - Lu Lou
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wanqi Liu
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Chao Gao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Long Miao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Fanghao Sun
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wei Chen
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Xiliang Cao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| | - Jin Wei
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| |
Collapse
|
28
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
29
|
Karska J, Kowalski S, Saczko J, Moisescu MG, Kulbacka J. Mechanosensitive Ion Channels and Their Role in Cancer Cells. MEMBRANES 2023; 13:167. [PMID: 36837670 PMCID: PMC9965697 DOI: 10.3390/membranes13020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Mechanical forces are an inherent element in the world around us. The effects of their action can be observed both on the macro and molecular levels. They can also play a prominent role in the tissues and cells of animals due to the presence of mechanosensitive ion channels (MIChs) such as the Piezo and TRP families. They are essential in many physiological processes in the human body. However, their role in pathology has also been observed. Recent discoveries have highlighted the relationship between these channels and the development of malignant tumors. Multiple studies have shown that MIChs mediate the proliferation, migration, and invasion of various cancer cells via various mechanisms. This could show MIChs as new potential biomarkers in cancer detection and prognosis and interesting therapeutic targets in modern oncology. Our paper is a review of the latest literature on the role of the Piezo1 and TRP families in the molecular mechanisms of carcinogenesis in different types of cancer.
Collapse
Affiliation(s)
- Julia Karska
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mihaela G. Moisescu
- Department of Biophysics and Cellular Biotechnology, Research Center of Excellence in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| |
Collapse
|
30
|
Yuan L, Lin Q, Shen F, Li Y, Li J, Xu B. Mitochondrial calcium uniporter activates TFEB-driven autophagy to promote migration of breast cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1342-1349. [PMID: 37885995 PMCID: PMC10598821 DOI: 10.22038/ijbms.2023.71522.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/02/2023] [Indexed: 10/28/2023]
Abstract
Objectives Tumor metastasis is the leading cause of death in breast cancer (BC) patients and is a complicated process. Mitochondrial calcium uniporter (MCU), a selective channel responsible for mitochondrial Ca2+ uptake, has been reported to be associated with tumorigenesis and metastasis. The molecular mechanisms of MCU contributing to the migration of BC cells are partially understood. This study investigated the role of MCU in BC cell metastasis and explored the underlying mechanism of MCU-mediated autophagy in BC cell migration. Materials and Methods The Kaplan-Meier plotter database was used to analyze the prognostic value of MCU mRNA expression. Western blotting was used to examine the expression level of MCU in 4 paired BC and adjacent normal tissues. The cellular migration capability of BC was measured by transwell migration assay and wound healing assay. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression levels of autophagy-related markers. The effects of MCU activation or inhibition on TFEB nuclear translocation in BC cells were detected by laser scanning confocal microscopy. Results Expression of MCU was found to be negatively correlated with BC patient prognosis in the Kaplan-Meier plotter database. Compared with the adjacent normal tissues, MCU was markedly up-regulated in the BC tissues. MCU overexpression promoted cellular migration, activated autophagy, and increased TFEB nuclear translocation in BC cells, whereas its knockdown produced the opposite effects. Conclusion MCU activates TFEB-driven autophagy to promote BC cell metastasis and provides a potential novel therapeutic target for BC clinical intervention.
Collapse
Affiliation(s)
- Lin Yuan
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, CN 510630, China
- Department of Breast, Jiangmen Central Hospital, Jiangmen, CN 529030, China
| | - Qimou Lin
- Department of Breast, Jiangmen Central Hospital, Jiangmen, CN 529030, China
| | - Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, CN 510630, China
- Departments of General Surgery and Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, CN 510180, China
| | - Yong Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, CN 529030, China
| | - Junda Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, CN 529030, China
| | - Bo Xu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, CN 510630, China
- Departments of General Surgery and Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, CN 510180, China
| |
Collapse
|
31
|
Immunoregulatory Role of the Mechanosensitive Ion Channel Piezo1 in Inflammation and Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010213. [PMID: 36615408 PMCID: PMC9822220 DOI: 10.3390/molecules28010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Piezo1 was originally identified as a mechanically activated, nonselective cation ion channel, with significant permeability to calcium ions, is evolutionally conserved, and is involved in the proliferation and development of various types of cells, in the context of various types of mechanical or innate stimuli. Recently, our study and work by others have reported that Piezo1 from all kinds of immune cells is involved in regulating many diseases, including infectious inflammation and cancer. This review summarizes the recent progress made in understanding the immunoregulatory role and mechanisms of the mechanical receptor Piezo1 in inflammation and cancer and provides new insight into the biological significance of Piezo1 in regulating immunity and tumors.
Collapse
|
32
|
Liu Z, Tang Y, He L, Geng B, Lu F, He J, Yi Q, Liu X, Zhang K, Wang L, Xia Y, Jiang J. Piezo1-mediated fluid shear stress promotes OPG and inhibits RANKL via NOTCH3 in MLO-Y4 osteocytes. Channels (Austin) 2022; 16:127-136. [PMID: 35754337 DOI: 10.1080/19336950.2022.2085379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Piezo1, a mechanosensitive ion channel, participates in a variety of biological processes in maintaining bone homeostasis. As the most abundant cells in bones of the mammals, osteocytes play an essential role in bone formation, remodeling, and bone mass maintenance. Here, by exposing MLO-Y4 osteocytes to the fluid shear stress (FSS) microenvironment, we explored the effect of Piezo1-mediated FSS on the expression of the molecules critical to the process of bone formation and resorption, Receptor Activator of Nuclear Factor-Kappa-B Ligand (RANKL) and Osteoprotegerin (OPG). It was found that 9 dyne/cm2 loading for 30 minutes showed an upregulation trend on Piezo1 when MLO-Y4 osteocytes were exposed to an FSS microenvironment. FSS promotes the expression of OPG and inhibits the expression of RANKL. The blocker of Piezo1, GsMTx4, downregulates the effect of FSS on the expression of these two molecules. In addition, NOTCH3 was involved in this process. Thus, the results demonstrated that Piezo1-mediated FSS promotes the expression of OPG and inhibits the expression of RANKL via NOTCH3 in MLO-Y4 osteocytes.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuchen Tang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liangzhi He
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fan Lu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jinwen He
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Qiong Yi
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xuening Liu
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kun Zhang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lifu Wang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jin Jiang
- Department of Orthopaedics, Gansu Key Laboratory of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
33
|
Han Y, Shi Y, Chen B, Wang J, Liu Y, Sheng S, Fu Z, Shen C, Wang X, Yin S, Li H. An ion-channel-gene-based prediction model for head and neck squamous cell carcinoma: Prognostic assessment and treatment guidance. Front Immunol 2022; 13:961695. [PMID: 36389709 PMCID: PMC9650652 DOI: 10.3389/fimmu.2022.961695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/12/2022] [Indexed: 09/18/2023] Open
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a very diverse malignancy with a poor prognosis. The purpose of this study was to develop a new signature based on 12 ion channel genes to predict the outcome and immune status of HNSCC patients. METHODS Clinicopathological information and gene sequencing data of HNSCC patients were generated from the Cancer Genome Atlas and Gene Expression Omnibus databases. A set of 323 ion channel genes was obtained from the HUGO Gene Nomenclature Committee database and literature review. Using univariate Cox regression analysis, the ion channel genes related to HNSCC prognosis were identified. A prognostic signature and nomogram were then created using machine learning methods. Kaplan-Meier analysis was used to explore the relevance of the risk scores and overall survival (OS). We also investigated the association between risk scores, tumor immune infiltration, and gene mutational status. Finally, we detected the expression levels of the signature genes by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. RESULTS We separated the patients into high- and low-risk groups according to the risk scores computed based on these 12 ion channel genes, and the OS of the low-risk group was significantly longer (p<0.001). The area under the curve for predicting 3-year survival was 0.729. Univariate and multivariate analyses showed that the 12-ion-channel-gene risk model was an independent prognostic factor. We also developed a nomogram model based on risk scores and clinicopathological variables to forecast outcomes. Furthermore, immune cell infiltration, gene mutation status, immunotherapy response, and chemotherapeutic treatment sensitivity were all linked to risk scores. Moreover, high expression levels of ANO1, AQP9, and BEST2 were detected in HNSCC tissues, whereas AQP5, SCNN1G, and SCN4A expression was low in HNSCC tissues, as determined by experiments. CONCLUSION The 12-ion-channel-gene prognostic signatures have been demonstrated to be highly efficient in predicting the prognosis, immune microenvironment, gene mutation status, immunotherapy response, and chemotherapeutic sensitivity of HNSCC patients.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yangyang Shi
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | | | - Xinyi Wang
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haiwen Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Mechanosensitive Ion Channel PIEZO1 Signaling in the Hall-Marks of Cancer: Structure and Functions. Cancers (Basel) 2022; 14:cancers14194955. [PMID: 36230880 PMCID: PMC9563973 DOI: 10.3390/cancers14194955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumor cells obtain various unique characteristics, which known as hallmarks of cancers, including sustained proliferative signaling, apoptosis resistance, and metastasis. These characteristics are crucial for tumor cells survival and for supporting their rapid growth. Studies have revealed that tumorigenesis is also accompanied by alteration in mechanical properties. Tumor cells could sense various mechanical forces, such as compressive force, shear stress, and portal vein pressure, which in turn could affect tumor progression. Piezo1 is a mechanically sensitive ion channel protein that can be activated mechanically, and is closely related to various diseases. Recent studies showed that Piezo1 is overexpressed in numerous tumors and is associated with poor prognosis. Furthermore, previous studies revealed that Piezo1 mediates these cancer hallmarks, and thus links up mechanical forces with tumor progression. Therefore, the discovery of Piezo1 provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment. Abstract Tumor cells alter their characteristics and behaviors during tumorigenesis. These characteristics, known as hallmarks of cancer, are crucial for supporting their rapid growth, need for energy, and adaptation to tumor microenvironment. Tumorigenesis is also accompanied by alteration in mechanical properties. Cells in tumor tissue sense mechanical signals from the tumor microenvironment, which consequently drive the acquisition of hallmarks of cancer, including sustained proliferative signaling, evading growth suppressors, apoptosis resistance, sustained angiogenesis, metastasis, and immune evasion. Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a mechanically sensitive ion channel protein that can be activated mechanically and is closely related to various diseases. Recent studies showed that Piezo1 mediates tumor development through multiple mechanisms, and its overexpression is associated with poor prognosis. Therefore, the discovery of Piezo1, which links-up physical factors with biological properties, provides a new insight for elucidating the mechanism of tumor progression under a mechanical microenvironment, and suggests its potential application as a tumor marker and therapeutic target. In this review, we summarize current knowledge regarding the role of Piezo1 in regulating cancer hallmarks and the underlying molecular mechanisms. Furthermore, we discuss the potential of Piezo1 as an antitumor therapeutic target and the limitations that need to be overcome.
Collapse
|
35
|
Recent Developments on the Roles of Calcium Signals and Potential Therapy Targets in Cervical Cancer. Cells 2022; 11:cells11193003. [PMID: 36230965 PMCID: PMC9563098 DOI: 10.3390/cells11193003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.
Collapse
|
36
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
37
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
38
|
The function of Piezo1 in hepatoblastoma metastasis and its potential transduction mechanism. Heliyon 2022; 8:e10301. [PMID: 36097495 PMCID: PMC9463386 DOI: 10.1016/j.heliyon.2022.e10301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hepatoblastoma (HB) is the most common primary malignant liver tumor in children. The prognosis of HB metastasis is poor, despite the increasing diversity of treatment. Piezo, a ubiquitously expressed membrane mechano-transduction protein, is involved in the process of tumor cell migration. Under the gene expression profiling interactive analysis (GEPIA) database, Piezo1 was highly expressed in HB and negatively correlated with the overall survival time. Methods Firstly, the expression of Piezo1 in both paracancerous and HB tissues (n = 7) was detected, and the prognostic value of Piezo1 was assessed in HB (n = 160) patients. Secondly, the inhibition and overexpression of Piezo1were executed in two HB cell lines, HepG2 and Huh 6. Methyl thiazolyl tetrazolium (MTT), wound healing and trans-well assays were performed to identify the effect of Piezo1 on the proliferation and metastasis of HB cells, respectively. In addition, a co-immunoprecipitation assay was performed to determine whether Piezo1 has an interaction with HIF-1α. Finally, the expressions level of Piezo1, HIF-1α, and VEGF by overexpression/inhibition each other were detected by RT-qPCR and western blots to find a possible signaling channel in HB metastasis. Results We found that Piezo1 was highly expressed in HB tissues and associated with poor prognosis of patients. Piezo1 was related to cell proliferation in HepG2 and Huh 6 cells. We also found that Piezo1 stimulated HIF-1α expression. Meanwhile, overexpression of Piezo1 promoted the migration and invasion of HB cells, while the promotion was not detected when HIF-1α was suppressed. Additionally, the silencing of HIF-1α inhibited the expression of VEGF, but showed no effect on Piezo1 expression. Conclusion In this study, we identified that Piezo1 was involved in HB metastasis, and the Piezo1-HIF-1α-VEGF axis could be a possible signaling pathway in HB metastasis.
Collapse
|
39
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
40
|
Liu X, Jia Y, Wang Z, Zhang Z, Fu W. A pan-cancer analysis reveals the genetic alterations and immunotherapy of Piezo2 in human cancer. Front Genet 2022; 13:918977. [PMID: 35991548 PMCID: PMC9386142 DOI: 10.3389/fgene.2022.918977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Piezo2 is a transmembrane-spanning ion channel protein implicated in multiple physiological processes, including cell proliferation and angiogenesis in many cell types. However, Piezo2 was recognized as representing a double-edged sword in terms of tumor growth. The prognostic and immunotherapeutic roles of Piezo2 in pan-cancer have not been reported. Methods: In this study, several databases available including the UCSC Xena database, HPA, TIDE, GSEA, and cBioportal were used to investigate the expression, alterations, associations with immune indicators, and prognostic roles of Piezo2 across pan-cancer. R software and Perl scripts were used to process the raw data acquired from the UCSC Xena database. Results: Based on processed data, our results suggested that Piezo2 expression levels were tissue-dependent in different tumor tissues. Meanwhile, the survival analysis reflected that patients suffering from KIRC, LUAD, and USC with high Piezo2 expression had good OS, while those suffering from KIRP and SARC with high Piezo2 expression had poor OS. In addition, our results showed that Piezo2 expression was associated with the infiltration of CD4+ T memory cells, mast cells, and dendritic cells. These results suggested that Piezo2 may involve tumor progression by influencing immune infiltration or regulating immune cell function. Further analysis indicated that Piezo2 could influence TME by regulating T-cell dysfunction. We also found that gene mutation was the most common genetic alteration of Piezo2. The GSEA analysis revealed that Piezo2 was associated with calcium ion transport, the activation of the immune response, antigen processing and presentation pathways. Conclusion: Our study showed the expression and prognostic features of Piezo2 and highlighted its associations with genetic alterations and immune signatures in pan-cancer. Moreover, we provided several novel insights for further research on the therapeutic potential of Piezo2.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yangpu Jia
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastrointestinal Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Weihua Fu,
| |
Collapse
|
41
|
Lin CY, Song X, Ke Y, Raha A, Wu Y, Wasi M, Wang L, Geng F, You L. Yoda1 Enhanced Low-Magnitude High-Frequency Vibration on Osteocytes in Regulation of MDA-MB-231 Breast Cancer Cell Migration. Cancers (Basel) 2022; 14:3395. [PMID: 35884459 PMCID: PMC9324638 DOI: 10.3390/cancers14143395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Low-magnitude (≤1 g) high-frequency (≥30 Hz) (LMHF) vibration has been shown to enhance bone mineral density. However, its regulation in breast cancer bone metastasis remains controversial for breast cancer patients and elder populations. Yoda1, an activator of the mechanosensitive Piezo1 channel, could potentially intensify the effect of LMHF vibration by enhancing the mechanoresponse of osteocytes, the major mechanosensory bone cells with high expression of Piezo1. In this study, we treated osteocytes with mono- (Yoda1 only or vibration only) or combined treatment (Yoda1 and LMHF vibration) and examined the further regulation of osteoclasts and breast cancer cells through the conditioned medium. Moreover, we studied the effects of combined treatment on breast cancer cells in regulation of osteocytes. Combined treatment on osteocytes showed beneficial effects, including increasing the nuclear translocation of Yes-associated protein (YAP) in osteocytes (488.0%, p < 0.0001), suppressing osteoclastogenesis (34.3%, p = 0.004), and further reducing migration of MDA-MB-231 (15.1%, p = 0.02) but not Py8119 breast cancer cells (4.2%, p = 0.66). Finally, MDA-MB-231 breast cancer cells subjected to the combined treatment decreased the percentage of apoptotic osteocytes (34.5%, p = 0.04) but did not affect the intracellular calcium influx. This study showed the potential of stimulating Piezo1 in enhancing the mechanoresponse of osteocytes to LMHF vibration and further suppressing breast cancer migration via osteoclasts.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Xin Song
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| | - Yaji Ke
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
| | - Arjun Raha
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Murtaza Wasi
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA; (M.W.); (L.W.)
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada; (A.R.); (Y.W.); (F.G.)
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; (C.-Y.L.); (Y.K.)
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada;
| |
Collapse
|
42
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
43
|
A Pancancer Study of PIEZO1 as a Prognosis and Immune Biomarker of Human Tumors. JOURNAL OF ONCOLOGY 2022; 2022:6725570. [PMID: 35747124 PMCID: PMC9213189 DOI: 10.1155/2022/6725570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
PIEZO1, a mechanosensitive ion channel protein, has been identified in the correlation between several cancers. However, the systematic pancancer study of PIEZO1 still lacks. We examined PIEZO1 across thirty-three types of cancers to explore its role in prognosis and immunological function for the first time. Based on the open databases TCGA, GTEx and CPTAC, PIEZO1 has been demonstrated to be differentially expressed in most cancers compared to adjacent normal tissues. The distinct correlation between PIEZO1 and prognosis of tumor patients was explored by GEPIA2. Genetic alteration of PIEZO1 in the TCGA tumors showed that mutation is the alteration which is linked to OS, DSS, DFS and PFS in some tumors. Alterations of protein phosphorylation levels were detected in some cancers based on the CPTAC dataset. PIEZO1 expression was linked with immune cell infiltration, such as endothelial cell and cancer-associated fibroblast. Finally, KEGG and GO enrichment analyses were applied to investigate the molecular mechanism of PIEZO1. Our first pancancer analysis illustrated the roles of PIEZO1 in different types of tumors.
Collapse
|
44
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:ijms23126667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
- Correspondence: (P.A.); (Y.L.); (J.L.)
| |
Collapse
|
45
|
Chen X, Chen J. miR-10b-5p-mediated upregulation of PIEZO1 predicts poor prognosis and links to purine metabolism in breast cancer. Genomics 2022; 114:110351. [PMID: 35351580 DOI: 10.1016/j.ygeno.2022.110351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Increasing evidence has reported the critical roles of PIEZO1 in organism. However, the knowledge of PIEZO1 in human cancers is still inadequate. METHODS In silico analyses and experimental validation were performed to analyze PIEZO1's expression, prognostic values and potential upstream/downstream mechanism in breast cancer. RESULTS PIEZO1 was significantly overexpressed in human breast cancer cell lines and tissue samples. PIEZO1 expression was statistically positively associated with malignant progression and short survival of breast cancer. miR-10b-5p downregulation was partially responsible for PIEZO1 upregulation in breast cancer. Further exploration revealed that PIEZO1 might exert its function by regulating purine metabolism (especially GUK1, POLD1 and APRT) in breast cancer. CONCLUSIONS Collectively, the current study elucidated an important role of PIEZO1 in breast cancer and providing key clues for identifying PIEZO1 as a therapeutic target and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Xu Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jing Chen
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.
| |
Collapse
|
46
|
Tang H, Zeng R, He E, Zhang I, Ding C, Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators. J Med Chem 2022; 65:6441-6453. [DOI: 10.1021/acs.jmedchem.2c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hairong Tang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruoqing Zeng
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ende He
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Chunyong Ding
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ao Zhang
- Pharm-X Center, Laboratory of Medicinal Chemical Biology & Frontiers on Drug Discovery (RLMCBFDD), School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Lingang National Laboratory, Shanghai 200210,China
| |
Collapse
|
47
|
Li YM, Xu C, Sun B, Zhong FJ, Cao M, Yang LY. Piezo1 promoted hepatocellular carcinoma progression and EMT through activating TGF-β signaling by recruiting Rab5c. Cancer Cell Int 2022; 22:162. [PMID: 35461277 PMCID: PMC9035260 DOI: 10.1186/s12935-022-02574-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Piezo1 has been revealed to play a regulatory role in vascular development and progression of variety tumors. However, whether and how the progression of hepatocellular carcinoma (HCC) regulated by Piezo1 remains elusive. This study aimed to elucidate the effect and mechanisms of Piezo1 in HCC. METHODS The mRNA and protein expression level of Piezo1 in HCC samples and cell lines was determined by qRT-PCR, western blot and immunohistochemistry analyses. Two independent study cohorts containing 280 patients were analyzed to reveal the association between Piezo1 expression and clinicopathological characteristics. Series of in vitro and in vivo experiments were used to validate the function of Piezo1 in HCC. Gene set enrichment analysis (GSEA) was performed to explore the signaling pathway of Piezo1. Immunoprecipitation, immunofluorescence and in vitro and in vivo experiments were used to explore the molecular mechanism of Piezo1 in HCC progression. RESULTS Our results demonstrated the Piezo1 expression was significantly upregulated in HCC tissues and cell lines, and upregulation of Piezo1 closely correlated with aggressive clinicopathological features and poor prognosis. Knockdown of Piezo1 in HCCLM3 and Hep3B cells significantly restrained proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro, and tumor growth, metastasis, EMT in vivo. TGF-β signaling pathway was most significant enriched pathway in GSEA. Finally, tumor promotion effect of Piezo1 was found to exerted through recruiting and combining Rab5c to activating TGF-β signaling pathway. CONCLUSIONS Piezo1 significantly related to poor prognosis and promotes progression of hepatocellular carcinoma via activating TGF-β signaling, which suggesting that Piezo1 may serve as a novel prognostic predictor and the potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Yi-ming Li
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Cong Xu
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Bo Sun
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Fang-jing Zhong
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Momo Cao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| | - Lian-yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 Hunan China
| |
Collapse
|
48
|
Eid ES, Kurban MS. A Piez-O the Jigsaw: Piezo1 Channel in Skin Biology. Clin Exp Dermatol 2022; 47:1036-1047. [PMID: 35181897 DOI: 10.1111/ced.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
The skin is the largest organ covering the entirety of the body. Its role as a physical barrier to the outside world as well as its endocrinologic and immunologic functions subject it to continuous internal and external mechanical forces. Thus, mechanotransduction is of the utmost importance for the skin in order to process and leverage mechanical input for its various functions. Piezo1 is a mechanosensitive ion channel that is a primary mediator of mechanotransduction and is highly expressed in the skin. The Nobel prize winning discovery of Piezo1 has had a profound impact on our understanding of physiology and pathology including paramount contributions in cutaneous biology. This review provides insight into the roles of Piezo1 in the development, physiology, and pathology of the skin with a special emphasis on the molecular pathways through which it instigates these various roles. In epidermal homeostasis, Piezo1 mediates cell extrusion and division in the face of overcrowding and low cellular density conditions, respectively. Piezo1 also aids in orchestrating mechanosensation, DNA protection from mechanical stress, and the various components of wound healing. Conversely, Piezo1 is pathologically implicated in melanoma progression, wound healing delay, cutaneous scarring, and hair loss. By shedding light on these functions, we aim to unravel the potential diagnostic and therapeutic value Piezo1 might hold in the field of Dermatology.
Collapse
Affiliation(s)
- Edward S Eid
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Mazen S Kurban
- Department of Dermatology, American University of Beirut Medical Centre, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics; American University of Beirut.,Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
49
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
50
|
Zhang Y, Xie J, Liu D, Zhu S, Zhang S. The expression of LRRN4 was correlated with the progression and prognosis of colon adenocarcinoma (COAD) patients. Genet Mol Biol 2022; 45:e20210138. [PMID: 34919118 PMCID: PMC8679243 DOI: 10.1590/1678-4685-gmb-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022] Open
Abstract
Our present study aims to investigate the value of LRRN4 in the progression and prognosis of COAD patients. All COAD and adjacent sample data was downloaded from TCGA database. Survival analysis was performed according to Kaplan-Meier method. The real-time quantitative PCR and immunohistochemistry analysis were conducted for validation in cell lines and tissues. The GSEA was conducted to find functional KEGG pathways. Multivariate Cox regression proportional hazard mode was used to determine whether LRRN4 expression was an independent prognostic factor. The LRRN4 expression in COAD samples were significantly higher than that in adjacent samples, which was consistent with our experiments in cell lines and tissues. Along with the increase of TNM Stage, LRRN4 expression had an increasing tendency. The COAD patients with high LRRN4 expression showed undesirable prognoses. Additionally, the TGF-β signaling pathway, WNT signaling pathway and other 25 pathways were significantly activated in the high LRRN4 expression group. In conclusion, high LRRN4 expression was closely related to the onset of COAD and it was a poor prognostic factor for COAD patients.
Collapse
Affiliation(s)
- Yuxian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| | | | | | - Shengtao Zhu
- Capital Medical University, Beijing Friendship Hospital, China
| | - Shutian Zhang
- Capital Medical University, Beijing Friendship Hospital, China
| |
Collapse
|