1
|
Lazaridis A, Katifelis H, Kalampokas E, Lambropoulou D, Aravantinos G, Gazouli M, Vlahos NF. Utilization of miRNAs as Biomarkers for the Diagnosis, Prognosis, and Metastasis in Gynecological Malignancies. Int J Mol Sci 2024; 25:11703. [PMID: 39519256 PMCID: PMC11546551 DOI: 10.3390/ijms252111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gynecological cancer is a term referring to malignancies that typically involve ovarian, cervical, uterine, vaginal, and vulvar cancer. Combined, these cancers represent major causes of morbidity and mortality in women with a heavy socioeconomic impact. MiRNAs are small non-coding RNAs that are intensively studied in the field of cancer and changes in them have been linked to a variety of processes involved in cancer that range from tumorigenesis to prognosis and metastatic potential. This review aims to summarize the existing literature that has linked miRNAs with each of the female malignancies as potential biomarkers in diagnosis (circulating miRNAs), in tumor histology and prognosis (as tissue biomarkers), and for local (lymph node) and distant metastatic disease.
Collapse
Affiliation(s)
- Alexandros Lazaridis
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Emmanouil Kalampokas
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| | | | | | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece;
| | - Nikos F. Vlahos
- 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 11528 Athens, Greece; (A.L.); (E.K.); (N.F.V.)
| |
Collapse
|
2
|
Wang H, Liu F, Zhao W, Guo Y, Mai P, Zhao S, Wen Z, Su J, Li X, Wang Y, Zhang Y. High glucose promotes atherosclerosis by regulating miRNA let7d-5p level. J Diabetes Investig 2024; 15:711-724. [PMID: 38483136 PMCID: PMC11143425 DOI: 10.1111/jdi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND MiRNA let7d-5p has been recently reported to be abnormally expressed in diabetes-associated atherosclerosis (AS). However, it still remains unknown how let7d-5p contributes to the process of atherosclerosis. METHODS Twenty fresh tissues and a total of 28 wax block specimens from carotid endarterectomy procedures were obtained from the Luoyang Central Hospital affiliated to Zhengzhou University. The expression of let7d-5p was assessed using quantitative RT-PCR (qRT-PCR). A series of in vitro experiments was used to determine the roles of let7d-5p knockdown and overexpression in vascular smooth muscle cells (VSMCs). RESULTS We discovered that the carotid plaques from diabetic patients had lower expression levels of miR let7d-5p. In VSMCs, the expression of miRNA let7d-5p was significantly lower in high glucose conditions compared with low glucose situations. The proliferation and migration of VSMCs were also inhibited by the overexpression of let7d-5p, whereas the opposite was true when let7d-5p was inhibited, according to gain and loss of function studies. Mechanically, let7d-5p might activate the GSK3β/β-catenin signaling pathway via binding to the high mobility group AT-Hook 2 (HMGA2) mRNA in VSMCs. Additionally, GLP-1RA liraglutide may prevent the migration and proliferation of VSMCs by raising let7d-5p levels. CONCLUSIONS High glucose stimulated the proliferation and migration of VSMCs by regulating the let7d-5p/HMGA2/GSK3β/β-catenin pathway, and liraglutide may slow atherosclerosis by increasing the levels of miR let7d-5p.
Collapse
Affiliation(s)
- Hua Wang
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Fentao Liu
- ABclonal Technology Company, Wuhan, Hubei Province, China
| | - Wenyu Zhao
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Yiting Guo
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Peipei Mai
- Department of Ultrasonography, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Songfeng Zhao
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Jie Su
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Xuan Li
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou City, Henan Province, China
- Zhongyuan Scholars Workstation of Henan, Luoyang City, Henan Province, China
| | - Yanfang Zhang
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang City, Henan Province, China
- Zhongyuan Scholars Workstation of Henan, Luoyang City, Henan Province, China
| |
Collapse
|
3
|
Oflas D, Canaz F, Özer İ, Demir L, Çolak E. Significance of High-Mobility Group A Protein 2 Expression in Pancreatic Ductal Adenocarcinoma and Ampullary Adenocarcinoma. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1014-1024. [PMID: 37787719 PMCID: PMC10645280 DOI: 10.5152/tjg.2023.22881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND/AIMS Pancreatic and ampullary adenocarcinoma (AAC) are quite resistant to chemotherapy with high metastasis potential. Our study aimed to interpret high-mobility group A protein 2 (HMGA2) expression in benign and precursor pancreatic lesions and pancreatic and ampullary carcinoma and to evaluate its relationship with epithelial-mesenchymal transition (EMT) and clinicopathological parameters. MATERIALS AND METHODS In this study, normal-appearing pancreas, chronic pancreatitis (CP), low- (L) and high (H)-grade pancreatic intraepithelial neoplasia (PanIN), pancreatic ductal adenocarcinoma (PDAC), and AAC were evaluated with the immunohistochemical marker of HMGA2. Vimentin and E-cadherin immunohistochemical stains were applied in PDAC and AAC. RESULTS The HMGA2 expression was not detected in normal-appearing pancreas, CP, and L-PanIN. A statistically significant expression was observed in PDAC and H-PanIN (P < .001). A statistically significant correlation was found between loss of membranous E-cadherin expression and vimentin positivity and HMGA2 expression (P > .05). The HMGA2 expression was observed to increase the risk of diseaserelated death and decrease overall survival (OS) in AAC and the neoplasia group (P = .002 and P = .016, respectively). There was no significant difference in OS and risk of death in PDAC (P > .05) with respect to HMGA2 positivity. CONCLUSION High-mobility group A protein 2 is a helpful immunohistochemical marker in differentiating CP from PDAC. It also plays a role in EMT and may serve as a potential new prognostic agent and therapeutic target in tumors of the periampullary region, especially AAC.
Collapse
Affiliation(s)
- Damla Oflas
- Department of Pathology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Funda Canaz
- Department of Pathology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - İlter Özer
- Department of General Surgery, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Lütfiye Demir
- Department of Medical Oncology, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Ertuğrul Çolak
- Department of Biostatistics, Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
4
|
Li Z, Wu X, Li J, Yu S, Ke X, Yan T, Zhu Y, Cheng J, Yang J. HMGA2-Snai2 axis regulates tumorigenicity and stemness of head and neck squamous cell carcinoma. Exp Cell Res 2022; 418:113271. [PMID: 35764101 DOI: 10.1016/j.yexcr.2022.113271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Cancer stem cells (CSCs) are a tumorigenic cell subpopulation, which contributes to treatment resistance, tumor recurrence, and metastasis. This study aimed to investigate the role and underlying molecular targets of high mobility group AT-hook 2 (HMGA2) in the progression and CSCs regulation of head and neck squamous cell carcinoma (HNSCC). HMGA2 mRNA and protein expression levels were examined in HNSCC specimens and cells by qRT-PCR, Western blot, and immunohistochemistry. The roles of HMGA2 were validated via loss-of-function and exogenous overexpression experiments in vitro and in vivo, and CSCs properties were assessed by tumorsphere formation assay. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays provided further insight into the molecular mechanisms by which HMGA2 regulates stemness. HMGA2 was abnormally overexpressed in HNSCC, and it promoted the expression of the CSCs markers including SOX2, CD133, CD44, ALDH1A1, and Bmi1. HMGA2 was correlated with stemness, malignant progression, and reduced survival in HNSCC. Luciferase reporter assay indicated that Snai2 was a direct downstream target gene of HMGA2. Mechanistically, ChIP-qPCR assay showed that HMGA2 was recruited to three binding sites on the Snai2 promoter, directly facilitating the transcription of Snai2 in HNSCC. Snai2 overexpression reversed the inhibitory effect of HMGA2 interference on the proliferation, invasion, and metastasis of HNSCC and CSC marker expression in vitro and in vivo. HMGA2 promoted the malignant progression of HNSCC and acquired CSCs properties through direct regulation of Snai2, thereby suggesting that targeting the HMGA2-Snai2 axis might be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Zhongwu Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Shijin Yu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xueping Ke
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Tingyuan Yan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yumin Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Du J, Qiu X, Lu C, Zhu Y, Kong W, Xu M, Zhang X, Tang M, Chen J, Li Q, Li A, He J, Gu Q, Wang L, Qiu Y, Liu B. Molecular Landscape and Prognostic Biomarker Analysis of Advanced Pancreatic Cancer and Predictors of Treatment Efficacy of AG Chemotherapy. Front Oncol 2022; 12:844527. [PMID: 35664782 PMCID: PMC9157486 DOI: 10.3389/fonc.2022.844527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Although mutational analysis of pancreatic cancer has provided valuable clinical information, it has not significantly changed treatment prospects. The purpose of this study is to further investigate molecular alterations in locally advanced pancreatic cancer and identify predictors of the efficacy of nab-paclitaxel plus gemcitabine (AG) chemotherapy. Experimental design Tumor samples from 118 pancreatic cancer patients who received AG chemotherapy as first-line treatment were sequenced and genomic profile was generated. Molecular alterations and the involved signaling pathways were analyzed. Genes with a significant difference in mutation frequency between primary and metastatic tumors were identified, and prognostic-related mutant genes were screened using SPSS version 22.0. Results The most common altered genes in the patients were KRAS (94.9%), TP53 (81.4%), CDKN2A (36.4%), and SMAD4 (22.9%). The mutational frequencies of CDKN2B (14.8% vs. 0%, p = 0.001), FAT3 (7.4% vs. 0%, p = 0.041), MTAP (13% vs. 1.6%, p = 0.023), and SMAD4 (31.4% vs. 15.6%, p = 0.049) in metastatic tumors were significantly higher than that in primary tumors. TP35 and KRAS mutations were significantly correlated with objective response rate, while EPHA7, RNF43, and HMGA2 mutations were significantly correlated with disease control rate. Additionally, patients with TGFR2B, FGF23, EPHA7, SMARCA4, CARD11, ADGRA2, CCNE1, and ACVR2A alterations had a worse overall survival. Further, EPHA7, CARD11, NOTCH1, GATA6, ACVR2A, and HMGA2 mutations indicated undesirable progression-free survival. Conclusions CDKN2B, FAT3, MTAP, and SMAD4 may be biomarkers that distinguish primary tumors from metastases. EPHA7 mutation may serve as a prognostic biomarker to predict the treatment efficacy of AG chemotherapy in locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yahui Zhu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Mian Xu
- Shanghai OrigiMed Co, Ltd, Shanghai, China
| | - Xin Zhang
- Shanghai OrigiMed Co, Ltd, Shanghai, China
| | - Min Tang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Aimei Li
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Gu
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Chen Q, Fu Q, Pu L, Liu X, Liu Y. Effects of HMGA2 gene silencing on cell cycle and apoptosis in the metastatic renal carcinoma cell line ACHN. J Int Med Res 2022; 50:3000605221075511. [PMID: 35118889 PMCID: PMC8819771 DOI: 10.1177/03000605221075511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the role of high mobility group AT-hook 2 (HMGA2) in the
regulation of the cell cycle and apoptosis. Methods The renal carcinoma cell line ACHN was transiently transfected with small
interfering RNA to knock down the expression of the HMGA2
gene. Cell cycle analysis was undertaken using flow cytometry. The mRNA and
protein levels of HMGA2, E2F transcription factor 1 (E2F1), cyclin D1,
cyclin dependent kinase 6 (CDK6), B-cell lymphoma-2 (Bcl-2), caspase-3 and
caspase-9 were analysed using reverse transcription quantitative real-time
polymerase chain reaction and Western blot analysis. Results The mRNA and protein levels of HMGA2 were significantly higher in renal
carcinoma cell lines compared with the human renal proximal tubular
epithelial cell line HKC. After HMGA2 gene-specific
silencing, more cells entered the G0/G1 phase, while
fewer cells entered the G2/M phase; and the cells exhibited early
and late apoptosis. HMGA2 gene-specific silencing
significantly reduced the mRNA and protein levels of E2F1, cyclin D1, CDK6
and Bcl-2; and increased the mRNA and protein levels of caspase-3 and
caspase-9. Conclusion The HMGA2 gene may be involved in the tumorigenesis and
development of renal cancer, thus inhibiting HMGA2 gene
expression might provide a potential therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Ying Liu, Department of Urology Surgery,
The Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street,
Zhongshan District, Dalian, Liaoning 116001, China.
| |
Collapse
|
7
|
MicroRNA-let-7 Targets HMGA2 to Regulate the Proliferation, Migration, and Invasion of Colon Cancer Cell HCT116. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2134942. [PMID: 34567205 PMCID: PMC8457942 DOI: 10.1155/2021/2134942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022]
Abstract
Objective To investigate the effect of microRNA-let-7 (miR-let-7) on the proliferation, migration, and invasion of colon cancer cell HCT116 in vitro and its regulatory mechanism on downstream HMGA2. Methods It was planned to synthesize miR-let-7 overexpression (mimics) and interference expression (inhibitor) and transiently transfect colon cancer cell HCT116, detect the expression levels of miR-let-7 and HMGA2 in the cells after transfection and the targeted regulation effect of miR-let-7 on HMGA2, then detect the effect of upregulation/downregulation of miR-let-7 on HMGA2, and detect the proliferation, migration, and invasion of HCT116 cells. Results The expression of miR-let-7 was downregulated, and the expression of HMGA2 was upregulated in HCT116. The expression of miR-let-7 increased significantly after HCT116 was transfected with miR-let-7 mimics. The expression of miR-let-7 decreased significantly after HCT116 was transfected with miR-let-7 inhibitor. The bioinformatics websites predicted that miR-let-7 has a binding site with HMGA2, and the dual-luciferase reporter gene experiment detected that miR-let-7 has a targeting relationship with HMGA2. The expression of HMGA2 decreased after HCT116 was transfected with miR-let-7 mimics; the expression of HMGA2 increased after HCT116 was transfected with miR-let-7 inhibitor. After upregulating miR-let-7, the proliferation, migration, and invasion ability of HCT116 was weakened. After miR-let-7 was inhibited, the proliferation, migration, and invasion ability of HCT116 was enhanced. Conclusion Abnormal expression of miR-let-7 is an important factor affecting the proliferation, migration, and invasion of HCT116 cells, and it can promote or inhibit the biological behavior of cancer cells by targeting the expression of HMGA2. This study provides ideas for the drug development of new gene targets.
Collapse
|