1
|
Zhang S, Xing N, Jiao Y, Li J, Wang T, Zhang Q, Hu X, Li C, Kuang W. An arabinan from Citrus grandis fruits alleviates ischemia/reperfusion-induced myocardial cell apoptosis via the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Carbohydr Polym 2025; 347:122728. [PMID: 39486958 DOI: 10.1016/j.carbpol.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Citrus grandis fruit is a famous traditional Chinese medicine with various bioactivities, including cardioprotective effects. Polysaccharides are one of the key active ingredients responsible for its cardioprotective effects. This study aimed to investigate the structure and cardioprotective effect of a homogeneous polysaccharide from C. grandis fruit (CGP80-1) and explore its mechanism against myocardial ischemia-reperfusion (MI/R) injury. Structure analysis showed that CGP80-1 (11,917 Da) is an arabinan with compact coil chain conformation, containing →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, and →2,3,5)-α-L-Araf-(1→ as the backbone, as well as →5)-α-L-Araf-(1→ and t-α-L-Araf as side-chains substituted at the C2 and C3 positions. Pharmacological experiments showed that pre-treatment with CGP80-1 could effectively alleviate MI/R injury by improving endogenous antioxidant enzymes and cardiac enzymes, reducing reactive oxygen species levels, and regulating apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. The protective effects were correlated with the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Further analysis of structure-activity relationships revealed that the myocardial protection effects of CGP80-1 might be attributed to its appropriate molecular weight, high arabinose content, and unique compact coil chain conformation. Overall, our results provide insight into the chemical structure of CGP80-1 and its mechanism of action, suggesting that CGP80-1 could be a candidate drug for myocardial protection.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yukun Jiao
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, Jiangxi Health Industry Institute of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Junhao Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Zhu L, Du Y. A promising new approach to cancer therapy: Manipulate ferroptosis by hijacking endogenous iron. Int J Pharm 2024; 662:124517. [PMID: 39084581 DOI: 10.1016/j.ijpharm.2024.124517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Ferroptosis, a form of regulated cell death characterized by iron-dependent phospholipid peroxidation, has emerged as a focal point in the field of cancer therapy. Compared with other cell death modes such as apoptosis and necrosis, ferroptosis exhibits many distinct characteristics in the molecular mechanisms and cell morphology, offering a promising avenue for combating cancers that are resistant to conventional therapeutic modalities. In light of the serious side effects associated with current Fenton-modulating ferroptosis therapies utilizing exogenous iron-based inorganic nanomaterials, hijacking endogenous iron could serve as an effective alternative strategy to trigger ferroptosis through targeting cellular iron regulatory mechanisms. A better understanding of the underlying iron regulatory mechanism in the process of ferroptosis has shed light on the current findings of endogenous ferroptosis-based nanomedicine strategies for cancer therapy. Here in this review article, we provide a comprehensive discussion on the regulatory network of iron metabolism and its pivotal role in ferroptosis, and present recent updates on the application of nanoparticles endowed with the ability to hijack endogenous iron for ferroptosis. We envision that the insights in the study may expedite the development and translation of endogenous ferroptosis-based nanomedicines for effective cancer treatment.
Collapse
Affiliation(s)
- Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
3
|
Liu W, Zhou H, Lai W, Hu C, Wang Q, Yuan C, Luo C, Yang M, Hu M, Zhang R, Li G. Artesunate induces melanoma cell ferroptosis and augments antitumor immunity through targeting Ido1. Cell Commun Signal 2024; 22:378. [PMID: 39061097 PMCID: PMC11282746 DOI: 10.1186/s12964-024-01759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Artesunate (ART), a natural product isolated from traditional Chinese plant Artemisia annua, has not been extensively explored for its anti-melanoma properties. In our study, we found that ART inhibited melanoma cell proliferation and induced melanoma cell ferroptosis. Mechanistic study revealed that ART directly targets Ido1, thereby suppressing Hic1-mediated transcription suppression of Hmox1, resulting in melanoma cell ferroptosis. In CD8+ T cells, ART does not cause cell ferroptosis due to the low expression of Hmox1. It also targets Ido1, elevating tryptophan levels, which inhibits NFATc1-mediated PD1 transcription, consequently activating CD8+ T cells. Our study uncovered a potent and synergistic anti-melanoma efficacy arising from ART-induced melanoma cell ferroptosis and concurrently enhancing CD8+ T cell-mediated immune response both in vivo and in vitro through directly targeting Ido1. Our study provides a novel mechanistic basis for the utilization of ART as an Ido1 inhibitor and application in clinical melanoma treatment.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Qiaoling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Chengsha Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Chunmei Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Mengmeng Yang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Min Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Wang Y, Qiu J, Yan H, Zhang N, Gao S, Xu N, Wang C, Lou H. The Bach1/HO-1 pathway regulates oxidative stress and contributes to ferroptosis in doxorubicin-induced cardiomyopathy in H9c2 cells and mice. Arch Toxicol 2024; 98:1781-1794. [PMID: 38573338 DOI: 10.1007/s00204-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 μM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanwei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Jingru Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Hua Yan
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Nan Zhang
- Research Center of Translational Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shixuan Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ning Xu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital, No. 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Xu X, Xu XD, Ma MQ, Liang Y, Cai YB, Zhu ZX, Xu T, Zhu L, Ren K. The mechanisms of ferroptosis and its role in atherosclerosis. Biomed Pharmacother 2024; 171:116112. [PMID: 38171246 DOI: 10.1016/j.biopha.2023.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Ferroptosis is a newly identified form of non-apoptotic programmed cell death, characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species (ROS) and peroxidation of membrane polyunsaturated fatty acid phospholipids (PUFA-PLs). Ferroptosis is unique among other cell death modalities in many aspects. It is initiated by excessive oxidative damage due to iron overload and lipid peroxidation and compromised antioxidant defense systems, including the system Xc-/ glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and the GPX4-independent pathways. In the past ten years, ferroptosis was reported to play a critical role in the pathogenesis of various cardiovascular diseases, e.g., atherosclerosis (AS), arrhythmia, heart failure, diabetic cardiomyopathy, and myocardial ischemia-reperfusion injury. Studies have identified dysfunctional iron metabolism and abnormal expression profiles of ferroptosis-related factors, including iron, GSH, GPX4, ferroportin (FPN), and SLC7A11 (xCT), as critical indicators for atherogenesis. Moreover, ferroptosis in plaque cells, i.e., vascular endothelial cell (VEC), macrophage, and vascular smooth muscle cell (VSMC), positively correlate with atherosclerotic plaque development. Many macromolecules, drugs, Chinese herbs, and food extracts can inhibit the atherogenic process by suppressing the ferroptosis of plaque cells. In contrast, some ferroptosis inducers have significant pro-atherogenic effects. However, the mechanisms through which ferroptosis affects the progression of AS still need to be well-known. This review summarizes the molecular mechanisms of ferroptosis and their emerging role in AS, aimed at providing novel, promising druggable targets for anti-AS therapy.
Collapse
Affiliation(s)
- Xi Xu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Meng-Qing Ma
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Yin Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524000, Guangdong, PR China
| | - Yang-Bo Cai
- Division of Hepatobiliary and Pancreas Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Zi-Xian Zhu
- Emergency and Trauma College, Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Tao Xu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China
| | - Lin Zhu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China.
| | - Kun Ren
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China.
| |
Collapse
|
7
|
Mancuso C. Biliverdin as a disease-modifying agent: An integrated viewpoint. Free Radic Biol Med 2023; 207:133-143. [PMID: 37459935 DOI: 10.1016/j.freeradbiomed.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica Del Sacro Cuore, Largo F. Vito, 1, 00168, Rome, Italy.
| |
Collapse
|
8
|
Cardile A, Passarini C, Zanrè V, Fiore A, Menegazzi M. Hyperforin Enhances Heme Oxygenase-1 Expression Triggering Lipid Peroxidation in BRAF-Mutated Melanoma Cells and Hampers the Expression of Pro-Metastatic Markers. Antioxidants (Basel) 2023; 12:1369. [PMID: 37507910 PMCID: PMC10376533 DOI: 10.3390/antiox12071369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells.
Collapse
Affiliation(s)
- Alessia Cardile
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Carlotta Passarini
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Valentina Zanrè
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Alessandra Fiore
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Menegazzi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, School of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
9
|
Zhao P, Song H, Gao F, Chen L, Qiu J, Jin J, Pan C, Tang Y, Chen M, Pan Y, Li Y, Huang L, Yang J, Hao X. A Novel Derivative of Curcumol, HCL-23, Inhibits the Malignant Phenotype of Triple-Negative Breast Cancer and Induces Apoptosis and HO-1-Dependent Ferroptosis. Molecules 2023; 28:molecules28083389. [PMID: 37110625 PMCID: PMC10142363 DOI: 10.3390/molecules28083389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer. Curcumol, as a natural small molecule compound, has potential anti-breast cancer activity. In this study, we chemically synthesized a derivative of curcumol, named HCL-23, by structural modification and explored its effect on and underlying mechanism regarding TNBC progression. MTT and colony formation assays demonstrated that HCL-23 significantly inhibited TNBC cells proliferation. HCL-23 induced G2/M phase cell cycle arrest and repressed the capability of migration, invasion, and adhesion in MDA-MB-231 cells. RNA-seq results identified 990 differentially expressed genes including 366 upregulated and 624 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that these differentially expressed genes were obviously enriched in adhesion, cell migration, apoptosis, and ferroptosis. Furthermore, HCL-23 induced apoptosis via the loss of mitochondrial membrane potential and the activation of the caspase family in TNBC cells. In addition, HCL-23 was verified to trigger ferroptosis through increasing cellular reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation levels. Mechanistically, HCL-23 markedly upregulated the expression of heme oxygenase 1 (HO-1), and the knockdown of HO-1 could attenuate ferroptosis induced by HCL-23. In animal experiments, we found that HCL-23 inhibited tumor growth and weight. Consistently, the upregulation of Cleaved Caspase-3, Cleaved PARP, and HO-1 expression was also observed in tumor tissues treated with HCL-23. In summary, the above results suggest that HCL-23 can promote cell death through activating caspases-mediated apoptosis and HO-1-dependent ferroptosis in TNBC. Therefore, our findings provide a new potential agent against TNBC.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Futian Gao
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Abstract
Osteosarcoma (OS) is the most common primary solid malignant tumour of bone, with rapid progression and a very poor prognosis. Iron is an essential nutrient that makes it an important player in cellular activities due to its inherent ability to exchange electrons, and its metabolic abnormalities are associated with a variety of diseases. The body tightly regulates iron content at the systemic and cellular levels through various mechanisms to prevent iron deficiency and overload from damaging the body. OS cells regulate various mechanisms to increase the intracellular iron concentration to accelerate proliferation, and some studies have revealed the hidden link between iron metabolism and the occurrence and development of OS. This article briefly describes the process of normal iron metabolism, and focuses on the research progress of abnormal iron metabolism in OS from the systemic and cellular levels.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, People's Republic of China
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Hebei Province, Shijiazhuang, 050011, People's Republic of China
| | - Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Hebei Province, Shijiazhuang, 050011, People's Republic of China
| | - Helin Feng
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|