1
|
Meira OM, Beutel RG, Pohl H, van de Kamp T, Almeida EAB, Boudinot BE. Bee morphology: A skeletomuscular anatomy of Thyreus (Hymenoptera: Apidae). J Morphol 2024; 285:e21751. [PMID: 39041670 DOI: 10.1002/jmor.21751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Although the knowledge of the skeletal morphology of bees has progressed enormously, a corresponding advance has not happened for the muscular system. Most of the knowledge about bee musculature was generated over 50 years ago, well before the digital revolution for anatomical imaging, including the application of microcomputed tomography. This technique, in particular, has made it possible to dissect small insects digitally, document anatomy efficiently and in detail, and visualize these data three dimensionally. In this study, we document the skeletomuscular system of a cuckoo bee, Thyreus albomaculatus and, with that, we provide a 3D atlas of bee skeletomuscular anatomy. The results obtained for Thyreus are compared with representatives of two other bee families (Andrenidae and Halictidae), to evaluate the generality of our morphological conclusions. Besides documenting 199 specific muscles in terms of origin, insertion, and structure, we update the interpretation of complex homologies in the maxillolabial complex of bee mouthparts. We also clarify the complicated 3D structure of the cephalic endoskeleton, identifying the tentorial, hypostomal, and postgenal structures and their connecting regions. We describe the anatomy of the medial elevator muscles of the head, precisely identifying their origins and insertions as well as their homologs in other groups of Hymenoptera. We reject the hypothesis that the synapomorphic propodeal triangle of Apoidea is homologous with the metapostnotum, and instead recognize that this is a modification of the third phragma. We recognize two previously undocumented metasomal muscle groups in bees, clarifying the serial skeletomusculature of the metasoma and revealing shortcomings of Snodgrass' "internal-external" terminological system for the abdomen. Finally, we elucidate the muscular structure of the sting apparatus, resolving previously unclear interpretations. The work conducted herein not only provides new insights into bee morphology but also represents a source for future phenomic research on Hymenoptera.
Collapse
Affiliation(s)
- Odair M Meira
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Brendon E Boudinot
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
- National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
- Naturmuseum Frankfurt, Senckenberg Research Institute, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
2
|
Richter A, Economo EP. The feeding apparatus of ants: an overview of structure and function. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220556. [PMID: 37839452 PMCID: PMC10577024 DOI: 10.1098/rstb.2022.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023] Open
Abstract
Ants are a dominant family of eusocial terrestrial insects with a diversity of ecologies, lifestyles and morphologies. Ant diet preferences range from strict carnivory through omnivory to almost complete herbivory in species feeding on seeds or exudates of plant-sucking insects. While several studies have investigated ant feeding performance on different substrates, comparatively little is known about the functional morphology of the structures involved in food uptake or their diversification across the ants. To take stock of our current knowledge, we give an overview of how adult ants ingest food, followed by a morphological description of the mouthparts, preoral space and cephalic sucking pump. The mandibles are the most prominent mouthparts and have received considerable attention in the literature, so we focus on the maxillae and labium here. We present current hypotheses for the movement patterns of these parts and discuss morphological differences among ants that may be related to their ecological diversity. Finally, we give short comparisons of the ant condition with some other insects and vertebrates, as well as an outlook summarizing gaps in our knowledge. This sets the stage for future studies elucidating the connections between ant feeding mechanisms and mouthpart evolution. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Adrian Richter
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Li D, Jandausch K, Pohl H, Yavorskaya MI, Liu X, Beutel RG. Cephalic anatomy highlights morphological adaptation to underground habitats in a minute lacewing larva of Dilar (Dilaridae) and conflicting phylogenetic signal in Neuroptera. INSECT SCIENCE 2023; 30:1445-1463. [PMID: 36692245 DOI: 10.1111/1744-7917.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Dilaridae are a distinctive and phylogenetically ambiguous neuropteran family. So far, the anatomy of the immature stages remains largely unknown. We examined the 1st instar larvae of Dilar montanus in detail and present results of live observations for the first time. The minute, cryptic larvae display features correlated with their underground lifestyle: for instance, a strongly flattened head, stout antennae, eyelessness, and burrowing forelegs. In contrast to molecular data, several characters suggest a 'dilarid clade' combining Dilaridae with Mantispoidea, for instance a very thin and curved or reduced tentorial bridge, and an elongated postmentum. We found intrinsic antennal muscles and Johnston's organ, the first record of these structures in holometabolous larvae. This proves that the first 2 larval antennomeres are homologous with the scapus and pedicellus. The described characters are discussed and analyzed with an updated matrix of neuropteran larval characters. Alternative scenarios of character evolution are presented. Additionally, we show how the 1st-instar larvae move and feed in the substrate, and also provide a high-resolution video recording of the function of the elongate tubular ovipositor and the egg-laying behavior in an adult female under natural conditions.
Collapse
Affiliation(s)
- Di Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Kenny Jandausch
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
- Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Xingyue Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
4
|
Aibekova L, Keller RA, Katzke J, Allman DM, Hita-Garcia F, Labonte D, Narendra A, Economo EP. Parallel And Divergent Morphological Adaptations Underlying The Evolution of Jumping Ability in Ants. Integr Org Biol 2023; 5:obad026. [PMID: 37545740 PMCID: PMC10401624 DOI: 10.1093/iob/obad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: Gigantiops, Harpegnathos, Myrmecia, and Odontomachus. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (scm6) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (scm2) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of Odontomachus rixosus and Myrmecia nigrocincta; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of O. rixosus and M. nigrocincta. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for O. rixosus, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).
Collapse
Affiliation(s)
| | - R A Keller
- Museu Nacional de Historia Natural e da Ciência & Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisbon, Portugal
| | - J Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D M Allman
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - F Hita-Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - D Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - A Narendra
- Ecological Neuroscience Group, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - E P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
5
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
6
|
Correlative microscopy and block-face imaging (CoMBI): a 3D imaging method with wide applicability in the field of biological science. Anat Sci Int 2023:10.1007/s12565-023-00705-x. [PMID: 36853492 DOI: 10.1007/s12565-023-00705-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Correlative microscopy and block-face imaging (CoMBI) is an imaging method, which is characterized by the ability to obtain both serial block-face images as a 3-dimentional (3D) dataset and sections for 2-dimentional (2D) light microscopic analysis. These 3D and 2D morphological data can be correlated with each other to facilitate data interpretation. CoMBI is an easy-to-install and low-cost 3D imaging method since its system can be assembled by the researcher using a regular microtome, consumer digital camera, and some self-made devices, and its installation and instruction manuals are open-source. After the first release of CoMBI method from our laboratory, CoMBI systems have been installed in more than a dozen laboratories and are used for 3D analysis of various biological specimens. Typical application of CoMBI is 3D anatomical analysis using the natural color and contrast of the specimen. We have been using CoMBI for analyzing human brain to obtain the fine 3D anatomy as a reference to determine the causes of neurological diseases and to improve the effectiveness of surgery. Recently, we have been using CoMBI for detecting the colors of chromogens, which are used for labeling specific molecules. Mouse embryos colored with X-gal, a conventional chromogen for detecting LacZ products, were imaged using CoMBI, and the 3D distribution of X-gal was successfully visualized. Thus, CoMBI can now be used for many purposes, including 3D anatomical analysis, 2D microscopy using sections, and 3D distribution of specific molecules. These suggest that CoMBI should be more widely used in the field of biological research.
Collapse
|
7
|
Boudinot BE, Richter AK, Hammel JU, Szwedo J, Bojarski B, Perrichot V. Genomic-Phenomic Reciprocal Illumination: Desyopone hereon gen. et sp. nov., an Exceptional Aneuretine-like Fossil Ant from Ethiopian Amber (Hymenoptera: Formicidae: Ponerinae). INSECTS 2022; 13:796. [PMID: 36135497 PMCID: PMC9502205 DOI: 10.3390/insects13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Fossils are critical for understanding the evolutionary diversification, turnover, and morphological disparification of extant lineages. While fossils cannot be sequenced, phenome-scale data may be generated using micro-computed tomography (µ-CT), thus revealing hidden structures and internal anatomy, when preserved. Here, we adduce the male caste of a new fossil ant species from Miocene Ethiopian amber that resembles members of the Aneuretinae, matching the operational definition of the subfamily. Through the use of synchrotron radiation for µ-CT, we critically test the aneuretine-identity hypothesis. Our results indicate that the new fossils do not belong to the Aneuretinae, but rather the Ponerini (Ponerinae). Informed by recent phylogenomic studies, we were able to place the fossils close to the extant genus Cryptopone based on logical character analysis, with the two uniquely sharing absence of the subpetiolar process among all ponerine genera. Consequently, we: (1) revise the male-based key to the global ant subfamilies; (2) revise the definitions of Aneuretinae, Ponerinae, Platythyreini, and Ponerini; (3) discuss the evolution of ant mandibles; and (4) describe the fossils as †Desyopone hereon gen. et sp. nov. Our study highlights the value of males for ant systematics and the tremendous potential of phenomic imaging technologies for the study of ant evolution.
Collapse
Affiliation(s)
- Brendon E. Boudinot
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Vor dem Neutor 1, 07743 Jena, Germany
| | - Adrian K. Richter
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Vor dem Neutor 1, 07743 Jena, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Street, 80-309 Gdańsk, Poland
| | - Błażej Bojarski
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Street, 80-309 Gdańsk, Poland
| | - Vincent Perrichot
- CNRS, Géosciences Rennes, University Rennes, UMR 6118, 35000 Rennes, France
| |
Collapse
|
8
|
Ishii N, Tajika Y, Murakami T, Galipon J, Shirahata H, Mukai R, Uehara D, Kaneko R, Yamazaki Y, Yoshimoto Y, Iwasaki H. Correlative microscopy and block-face imaging (CoMBI) method for both paraffin-embedded and frozen specimens. Sci Rep 2021; 11:13108. [PMID: 34162961 PMCID: PMC8222340 DOI: 10.1038/s41598-021-92485-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Correlative microscopy and block-face imaging (CoMBI), a method that we previously developed, is characterized by the ability to correlate between serial block-face images as 3-dimensional (3D) datasets and sections as 2-dimensional (2D) microscopic images. CoMBI has been performed for the morphological analyses of various biological specimens, and its use is expanding. However, the conventional CoMBI system utilizes a cryostat, which limits its compatibility to only frozen blocks and the resolution of the block-face image. We developed a new CoMBI system that can be applied to not only frozen blocks but also paraffin blocks, and it has an improved magnification for block-face imaging. The new system, called CoMBI-S, comprises sliding-type sectioning devices and imaging devices, and it conducts block slicing and block-face imaging automatically. Sections can also be collected and processed for microscopy as required. We also developed sample preparation methods for improving the qualities of the block-face images and 3D rendered volumes. We successfully obtained correlative 3D datasets and 2D microscopic images of zebrafish, mice, and fruit flies, which were paraffin-embedded or frozen. In addition, the 3D datasets at the highest magnification could depict a single neuron and bile canaliculus.
Collapse
Affiliation(s)
- Nobukazu Ishii
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuki Tajika
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Tohru Murakami
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Josephine Galipon
- Keio University Institute for Advanced Biosciences, Tsuruoka, Yamagata, Japan.,Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan
| | - Hiroyoshi Shirahata
- Keio University Institute for Advanced Biosciences, Tsuruoka, Yamagata, Japan.,Tsuruoka Chuo High School, Tsuruoka, Yamagata, Japan
| | - Ryo Mukai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Daisuke Uehara
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuichi Yamazaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
9
|
Richter A, Schoeters E, Billen J. Morphology and closing mechanism of the mandibular gland orifice in ants (Hymenoptera: Formicidae). J Morphol 2021; 282:1127-1140. [PMID: 33835596 DOI: 10.1002/jmor.21358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022]
Abstract
The mandibular gland of ants releases chemical compounds with functions ranging from nestmate alarm and recognition to antimicrobial defense. While the morphology of this ethologically important gland is well investigated in several species, the mechanism of secretion release in ants was not explicitly addressed so far. To clarify this question, we examined the anatomy of the gland orifice in ant species from 14 different subfamilies employing different techniques. The orifice close to the mandibular base is located on an area called mandalus. Our investigations revealed variation in mandalar shape, with clear trends in different subfamilies. By contrast, the internal organization is remarkably congruent across all investigated species. The thin external mandalar cuticle is always connected to the mandibular gland duct by a cuticular lamella, visible as a characteristic anchor-shaped structure in cross section. The slit-like gland orifice at the distal end of the mandalus is usually crescent-shaped. In some ant species with specialized mandibles such as trap-jaws, the organization of the orifice area is adapted to the mandibular shape, but always retains the general internal organization. No muscles were found in association with the orifice, nor with any other part of the mandibular gland. However, the base of the mandalus is connected to the prepharyngeal sucking pump by a cuticular ligament. Additionally, it is continuous with the conjunctiva connecting the mandible to the head capsule. We propose that retraction of the sucking pump by the muscle M. tentoriobuccalis, potentially in concert with opening of the mandible, stretches out the ligament and thus pulls on the mandalus and mandalar lamella to open the gland orifice and allow for secretion release. This hypothesis is congruent with findings on other aculeate Hymenoptera and expands our knowledge on the function of an important gland of ants.
Collapse
Affiliation(s)
- Adrian Richter
- Institute for Zoology und Evolutionary Research, University of Jena, Jena, Germany
| | - Eric Schoeters
- Zoological Institute, University of Leuven, Leuven, Belgium
| | - Johan Billen
- Zoological Institute, University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Engelkes K, Panpeng S, Haas A. Ontogenetic development of the shoulder joint muscles in frogs (Amphibia: Anura) assessed by digital dissection with implications for interspecific muscle homologies and nomenclature. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-020-00510-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractPrevious myological studies show inconsistencies with regard to the identification and naming of the shoulder joint muscles in frogs and toads (Amphibia: Anura). Those inconsistencies were revealed and resolved by assessing the ontogenetic development, innervation, and adult morphology of selected anuran species representing ancient lineages and two major neobatrachian groups. To do so, digital dissections of volumes acquired by histological serial sectioning, episcopic microtomy, and contrast-enhanced micro-computed tomography scanning were performed and three-dimensional reconstructions were derived. Muscle units crossing the shoulder joint were defined, their ontogenetic development was described, their homology across species was established, and a consistent nomenclature was suggested. The mm. anconaeus, dorsalis scapulae, latissimus dorsi, and the group of scapulohumeralis muscles were ontogenetically derived from the dorsal pre-muscle mass present in all tetrapods. The ventral pre-muscle mass gave rise to the mm. cleidohumeralis, episternohumeralis, supracoracoideus, coracoradialis, subcoracoscapularis, coracobrachialis, and pectoralis. The results indicate that the mm. anconaeus, dorsalis scapulae, latissimus dorsi, coracoradialis, and the portionis sternalis and abdominalis of the m. pectoralis have consistently been recognized and denoted in previous studies, whereas the names for the muscle units commonly denoted as m. coraco-brachialis longus and as parts of the m. deltoideus are misleading with regard to the ontogenetic origin of these muscles. The mm. scapulohumeralis profundus anterior and posterior, although present, have been overlooked in some studies. The mm. cleidohumeralis, supracoracoideus, and coracobrachialis are present with two parts or portions in some species, these portions have previously not always been recognized and assigned correctly.
Collapse
|
11
|
Engelkes K. Accuracy of bone segmentation and surface generation strategies analyzed by using synthetic CT volumes. J Anat 2020; 238:1456-1471. [PMID: 33325545 DOI: 10.1111/joa.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Different kinds of bone measurements are commonly derived from computed-tomography (CT) volumes to answer a multitude of questions in biology and related fields. The underlying steps of bone segmentation and, optionally, polygon surface generation are crucial to keep the measurement error small. In this study, the performance of different, easily accessible segmentation techniques (global thresholding, automatic local thresholding, weighted random walk, neural network, and watershed) and surface generation approaches (different algorithms combined with varying degrees of simplification) was analyzed and recommendations for minimizing inaccuracies were derived. The different approaches were applied to synthetic CT volumes for which the correct segmentation and surface geometry were known. The most accurate segmentations of the synthetic volumes were achieved by setting a case-specific window to the gray value histogram and subsequently applying automatic local thresholding with appropriately chosen thresholding method and radius. Surfaces generated by the Amira® module Generate Lego Surface in combination with careful surface simplification were the most accurate. Surfaces with sub-voxel accuracy were obtained even for synthetic CT volumes with low contrast-to-noise ratios. Segmentation trials with real CT volumes supported the findings. Very accurate segmentations and surfaces can be derived from CT volumes by using readily accessible software packages. The presented results and derived recommendations will help to reduce the measurement error in future studies. Furthermore, the demonstrated strategies for assessing segmentation and surface qualities can be adopted to quantify the performance of new segmentation approaches in future studies.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Engelkes K, Kath L, Kleinteich T, Hammel JU, Beerlink A, Haas A. Ecomorphology of the pectoral girdle in anurans (Amphibia, Anura): Shape diversity and biomechanical considerations. Ecol Evol 2020; 10:11467-11487. [PMID: 33144978 PMCID: PMC7593145 DOI: 10.1002/ece3.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Frogs and toads (Lissamphibia: Anura) show a diversity of locomotor modes that allow them to inhabit a wide range of habitats. The different locomotor modes are likely to be linked to anatomical specializations of the skeleton within the typical frog Bauplan. While such anatomical adaptations of the hind limbs and the pelvic girdle are comparably well understood, the pectoral girdle received much less attention in the past. We tested for locomotor-mode-related shape differences in the pectoral girdle bones of 64 anuran species by means of micro-computed-tomography-based geometric morphometrics. The pectoral girdles of selected species were analyzed with regard to the effects of shape differences on muscle moment arms across the shoulder joint and stress dissipation within the coracoid. Phylogenetic relationships, size, and locomotor behavior have an effect on the shape of the pectoral girdle in anurans, but there are differences in the relative impact of these factors between the bones of this skeletal unit. Remarkable shape diversity has been observed within locomotor groups indicating many-to-one mapping of form onto function. Significant shape differences have mainly been related to the overall pectoral girdle geometry and the shape of the coracoid. Most prominent shape differences have been found between burrowing and nonburrowing species with headfirst and backward burrowing species significantly differing from one another and from the other locomotor groups. The pectoral girdle shapes of burrowing species have generally larger moment arms for (simulated) humerus retractor muscles across the shoulder joint, which might be an adaptation to the burrowing behavior. The mechanisms of how the moment arms were enlarged differed between species and were associated with differences in the reaction of the coracoid to simulated loading by physiologically relevant forces.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | - Lena Kath
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | | | - Jörg U. Hammel
- Institute of Materials ResearchHelmholtz‐Zentrum GeesthachtGeesthachtGermany
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Hackel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | | | - Alexander Haas
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| |
Collapse
|
13
|
Beutel RG, Richter A, Keller RA, Hita Garcia F, Matsumura Y, Economo EP, Gorb SN. Distal leg structures of the Aculeata (Hymenoptera): A comparative evolutionary study of Sceliphron (Sphecidae) and Formica (Formicidae). J Morphol 2020; 281:737-753. [PMID: 32364646 DOI: 10.1002/jmor.21133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/08/2022]
Abstract
The distal parts of the legs of Sceliphron caementarium (Sphecidae) and Formica rufa (Formicidae) are documented and discussed with respect to phylogenetic and functional aspects. The prolegs of Hymenoptera offer an array of evolutionary novelties, mainly linked with two functional syndromes, walking efficiently on different substrates and cleaning the body surface. The protibial-probasitarsomeral cleaning device is almost always well-developed. A complex evolutionary innovation is a triple set of tarsal and pretarsal attachment devices, including tarsal plantulae, probasitarsomeral spatulate setae, and an arolium with an internal spring-like arcus, a dorsal manubrium, and a ventral planta. The probasitarsal adhesive sole and a complex arolium are almost always preserved, whereas the plantulae are often missing. Sceliphron has retained most hymenopteran ground plan features of the legs, and also Formica, even though the adhesive apparatus of Formicidae shows some modifications, likely linked to ground-oriented habits of most ants. Plantulae are always absent in extant ants, and the arolium is often reduced in size, and sometimes vestigial. The arolium contains resilin in both examined species. Additionally, resilin enriched regions are also present in the antenna cleaners of both species, although they differ in which of the involved structures is more flexible, the calcar in Sceliphron and the basitarsal comb in Formica. Functionally, the hymenopteran distal leg combines (a) interlocking mechanisms (claws, spine-like setae) and (b) adhesion mechanisms (plantulae, arolium). On rough substrate, claws and spine-like setae interlock with asperities and secure a firm grip, whereas the unfolding arolium generates adhesive contact on smooth surfaces. Differences of the folded arolium of Sceliphron and Formica probably correlate with differences in the mechanism of folding/unfolding.
Collapse
Affiliation(s)
- Rolf Georg Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Adrian Richter
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
| | - Roberto A Keller
- Museu Nacional de Historia Natural e da Ciência and Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco Hita Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
14
|
Tröger D, Grabe V, Beutel RG, Pohl H. The endoparasitic larval stages of Eoxenos laboulbenei: An atypical holometabolan development (Strepsiptera, Mengenillidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100932. [PMID: 32375099 DOI: 10.1016/j.asd.2020.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Endoparasitic larval stages of Eoxenos laboulbenei were documented with different techniques, with a main focus on the male tertiary larva. Two discrete endoparasitic stages occur, the secondary and the tertiary larva. The presence of large compound eyes and externally visible wing buds in the tertiary larva is a unique feature within Holometabola. The brain with large optic lobes is followed by a single postcephalic ganglionic complex. The cephalic musculature is greatly reduced but pharyngeal dilators and muscles associated with the mouth field are present. Postcephalic sclerites are absent except for the pronotum. The segmented legs bear filiform pretarsal claws. The indirect flight muscles fill up a large part of the metathorax. The 10-segmented abdomen lacks appendages. Pleural folds are present on the thorax and abdomen. The digestive tract is characterized by a very short oesophagus. The large midgut and the narrow hindgut are disconnected. Six short Malpighian tubules are present. Large testes fill out almost the entire abdomen. In contrast to the tertiary larva, the muscles of the secondary larva are not fully differentiated. Cephalic appendages are present as bud-shaped anlagen. The legs lack a pretarsal claw. The developmental transformations are outlined and discussed, also with respect to phylogenetic implications.
Collapse
Affiliation(s)
- Daniel Tröger
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Veit Grabe
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
15
|
Engelkes K, Helfsgott J, Hammel JU, Büsse S, Kleinteich T, Beerlink A, Gorb SN, Haas A. Measurement error in μCT-based three-dimensional geometric morphometrics introduced by surface generation and landmark data acquisition. J Anat 2019; 235:357-378. [PMID: 31062345 DOI: 10.1111/joa.12999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Computed-tomography-derived (CT-derived) polymesh surfaces are widely used in geometric morphometric studies. This approach is inevitably associated with decisions on scanning parameters, resolution, and segmentation strategies. Although the underlying processing steps have been shown to potentially contribute artefactual variance to three-dimensional landmark coordinates, their effects on measurement error have rarely been assessed systematically in CT-based geometric morphometric studies. The present study systematically assessed artefactual variance in landmark data introduced by the use of different voxel sizes, segmentation strategies, surface simplification degrees, and by inter- and intra-observer differences, and compared their magnitude to true biological variation. Multiple CT-derived surface variants of the anuran (Amphibia: Anura) pectoral girdle were generated by systematic changes in the factors that potentially influence the surface geometries. Twenty-four landmarks were repeatedly acquired by different observers. The contribution of all factors to the total variance in the landmark data was assessed using random-factor nested permanovas. Selected sets of Euclidean distances between landmark sets served further to compare the variance among factor levels. Landmark precision was assessed by landmark standard deviation and compared among observers and days. Results showed that all factors, except for voxel size, significantly contributed to measurement error in at least some of the analyses performed. In total, 6.75% of the variance in landmark data that mimicked a realistic biological study was caused by measurement error. In this landmark dataset, intra-observer error was the major source of artefactual variance followed by inter-observer error; the factor segmentation contributed < 1% and slight surface simplification had no significant effect. Inter-observer error clearly exceeded intra-observer error in a different landmark dataset acquired by six partly inexperienced observers. The results suggest that intra-observer error can potentially be reduced by including a training period prior to the actual landmark acquisition task and by acquiring landmarks in as few sessions as possible. Additionally, the application of moderate and careful surface simplification and, potentially, also the use of case-specific optimal combinations of automatic local thresholding algorithms and parameters for segmentation can help reduce intra-observer error. If landmark data are to be acquired by several observers, it is important to ensure that all observers are consistent in landmark identification. Despite the significant amount of artefactual variance, we have shown that landmark data acquired from microCT-derived surfaces are precise enough to study the shape of anuran pectoral girdles. Yet, a systematic assessment of measurement error is advisable for all geometric morphometric studies.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Jennice Helfsgott
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.,Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Hackel-Haus und Biologiedidaktik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Sebastian Büsse
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | | | | | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Alexander Haas
- Center of Natural History (CeNak), Universität Hamburg, Hamburg, Germany
| |
Collapse
|