1
|
Kumas K, Al-Jubury A, Kania PW, Abusharkh T, Buchmann K. Location and elimination of Anisakis simplex third stage larvae in Atlantic herring Clupea harengus L. Int J Parasitol Parasites Wildl 2024; 24:100937. [PMID: 38655447 PMCID: PMC11035366 DOI: 10.1016/j.ijppaw.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
We here describe the location of anisakid third stage larvae in Atlantic herring Clupea harengus L. caught in the North Sea in August 2023. We further demonstrate how industrial processing (mechanical gutting, removal of entrails, head, tail, hypaxial anterior musculature and vertebral column) reduces the overall infection and worm load in the musculature. The isolated anisakid larvae were identified as Anisakis simplex sensu stricto by a combination of morphometrics and molecular methods (PCR of rDNA and mtDNA, sequencing, BLAST analysis). As a baseline we examined a total of 75 specimens of freshly caught and ungutted herring and showed a positive correlation between host size (fish length and weight) and infection level. The overall prevalence of infection was 84 %, the mean intensity 11.3 (range 1-38 parasites per fish) and the abundance 9.52. The main part of the overall worm population was associated with stomach and pyloric caeca in the body cavity (77 %) and only 5 % was found in the musculature. Larvae occurred in the hypaxial part of the musculature (21), the epaxial part (7 worms) and the caudal part (5 worms). The prevalence of muscle infection was 28 % and the mean intensity 1.6 (range 1-5) parasites per fish and abundance 0.44 parasites per fish. In order to assess the effect of industrial processing on worm occurrence in the fish we examined a total of 67 specimens of herring, from exactly the same batch, but following processing. This included removal of organs in the body cavity, cutting the lower part of the hypaxial segment but leaving the right and left musculature connected by dorsal connective tissue. Five out of these fish carried one larva (prevalence 7.5%, mean intensity 1, abundance 0.07 larvae per fish), and these worms were located in the ventral part of the anterior musculature (2), in the central part of the anterior musculature (2) and one larva in the central part of the caudal musculature. The industrial processing reduced the overall occurrence (abundance) of worms in the fish from 9.52 to 0.07 (136 times reduction) and the occurrence in the musculature from 0.44 to 0.07 (6.28 times reduction). The overall prevalence was reduced from 84 % to 7.5 % (11.2 times reduction). Muscle infection prevalence fell from 28 % to 7.5 % (3.7 times reduction). We then followed another batch of herring following a marinating process (11% NaCl for 24 h and subsequent incubation in acetic acid and vinegar) by artificially digesting the flaps during week 1-8. Although a total of 31 larvae were recovered from 144 fish examined no live nematode larvae were isolated. The importance of fish handling, processing and marination for consumer safety is discussed.
Collapse
Affiliation(s)
- Kaan Kumas
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per W. Kania
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Taghrid Abusharkh
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Serrano TD, Vieira DHMD, Pelegrini LS, Fragoso LV, Agostinho BN, Vera M, Porto-Foresti F, Azevedo RKDE, Abdallah VD. Morphological and molecular characterization of Hysterothylacium spp. parasitizing Pomatomus saltatrix and Pagrus pagrus of the State of São Paulo, Brazil. AN ACAD BRAS CIENC 2023; 95:e20211046. [PMID: 36790269 DOI: 10.1590/0001-3765202320211046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/28/2022] [Indexed: 02/12/2023] Open
Abstract
Raphidascarid nematodes have been the focus of several studies, mainly due to the zoonotic potential of some species, even though the cases are underreported. Due to the difficulty in identifying their larvae, the use of diagnostic techniques involving morphological and molecular analyses has grown in the last 20 years. The present study had as objective the morphological and molecular characterization of the L3 larval types of Hysterothylacium collected in Pomatomus saltatrix and Pagrus pagrus from the Brazilian coast, close to the municipality of Santos, State of São Paulo. Twenty specimens of P. saltatrix were necropsied and Hysterothylacium type V (n = 257) and Hysterothylacium type X (n = 5) larvae were found. Five specimens of P. pagrus were necropsied and all were parasitized by Hysterothylacium type V larvae. The analyses showed a genetic proximity relationship between Hysterothylacium types V with other Hysterothylacium V and with H. deardorffoverstreetorum, although this is a species inquirenda. Haplotypes for Hysterothylacium type X found in the present study formed a monophyletic group with other Hysterothylacium X, H. amoyense, and H. zhoushanense. Through this study, new hosts and localities were registered for Hysterothylacium type V and Hysterothylacium type X.
Collapse
Affiliation(s)
- Thaissa D Serrano
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, 18618-689 Botucatu, SP, Brazil
| | - Diego H M D Vieira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, 18618-689 Botucatu, SP, Brazil
| | - Larissa S Pelegrini
- Universidade Federal do Amazonas (UFAM), Laboratório de Ictiologia e Ordenamento Pesqueiro do Vale do Rio Madeira, Rua 29 de Agosto, 786, 69800-000 Humaitá, AM, Brazil
| | - Lúcia V Fragoso
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, 18618-689 Botucatu, SP, Brazil
| | - Beatriz N Agostinho
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Instituto de Biociências de Botucatu, Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, 18618-689 Botucatu, SP, Brazil
| | - Manuel Vera
- University of Santiago de Compostela (USC), Faculty of Veterinary, Department of Zoology, Genetics and Physical Anthropology, Rúa Lope Gómez de Marzoa, s/n, 15782, Lugo, Galicia, Spain
| | - Fábio Porto-Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Faculdade de Ciências, Av. Eng. Luiz Edmundo C. Coube, 14-01, 17033-360 Bauru, SP, Brazil
| | - Rodney K DE Azevedo
- Programa de Pós-Graduação em Análise de Sistemas Ambientais, Centro Universitário CESMAC, Rua Cônego Machado, 917, 57051-160 Maceió, AL, Brazil
| | - Vanessa D Abdallah
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Setor de Parasitologia e Patologia, Campus A. C. Simões, Av. Lourival Melo Mota, s/n, 57072-970 Maceió, AL, Brazil
| |
Collapse
|
3
|
Javanmard E, Mohammad Rahimi H, Nemati S, Soleimani Jevinani S, Mirjalali H. Molecular analysis of internal transcribed spacer 2 of Dicrocoelium dendriticum isolated from cattle, sheep, and goat in Iran. BMC Vet Res 2022; 18:283. [PMID: 35864506 PMCID: PMC9301869 DOI: 10.1186/s12917-022-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Dicrocoelium dendriticum is a broadly distributed zoonotic helminth, which is mainly reported from domesticated and wild ruminants. There is little data covering the molecular features of this trematode; therefore, current study aimed to molecularly analyze D. dendriticum in livestock. Methods Totally, 23 samples of D. dendriticum were collected from cattle, sheep, and goat from Ilam, Lorestan, and Khuzestan, three west and south-west provinces of Iran from February to August 2018. After genomic DNA extraction, the internal transcribed spacer (ITS) 2 fragment was amplified and sequenced in samples. To investigate genetic variations through the ITS 2 fragment of obtained D. dendriticum, phylogenetic tree and network analysis were employed. Results All 23 samples were successfully amplified and sequenced. Phylogenetic tree showed that our samples were clearly grouped in a clade together with reference sequences. There was no grouping based on either geographical regions or hosts. Network analysis confirmed the phylogenetic findings and showed the presence of nine distinct haplotypes, while our samples together most of sequences, which were previously submitted to the GenBank, were grouped in the Hap1. Conclusions Our findings indicated that although ITS 2 fragment discriminate D. dendriticum, this fragment is not suitable to study intra-species genetic variations. Therefore, exploring and describing new genetic markers could be more appropriate to provide new data about the genetic distribution of this trematode.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soleimani Jevinani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114:110295. [DOI: 10.1016/j.ygeno.2022.110295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
5
|
Carmeno C, Rusconi A, Castelli M, Prati P, Bragoni R, Santoro A, Postiglione U, Sassera D, Olivieri E. Molecular identification of Contracaecum rudolphii A and B (Nematoda: Anisakidae) from cormorants collected in a freshwater ecosystem of the pre-alpine area in Northern Italy. Vet Parasitol Reg Stud Reports 2022; 27:100674. [PMID: 35012731 DOI: 10.1016/j.vprsr.2021.100674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Contracaecum rudolphii (s.l.) is a complex of sibling species with different genetic structure and ecological preference. This study reports the presence of specimens of Contracaecum rudolphii (s.l.) from sedentary and wintering cormorants (Phalacrocorax carbo sinensis) from the pre-mountain area of the Alps in Northern Italy, an important crossroads for most of the bird migration routes. A total of 48 specimens of cormorants collected from two adjacent freshwater habitats were analysed and C. rudolphii nematodes were retrieved in 100% of the examined specimens. A subsamples of 115 C. rudolphii individuals were genetically characterized and found to belong to the sibling species C. rudolphii B (n = 90) and C. rudolphii A (n = 25). C. rudolphii B were retrieved from both locations and included adults as well as larvae, while only adults of C. rudolphii A were detected, and in just one location. As expected for a freshwater environment, C. rudolphii B constitutes the largest sibling fraction, indicating that this likely is the endemic species, while cormorants originating from the breeding brackish lagoons and marine coastal environments of central and northern Europe could have brought C. rudolphii A from their breeding sites or migration stopovers.
Collapse
Affiliation(s)
- Camilla Carmeno
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Aurora Rusconi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia Department, Italy.
| | - Roldano Bragoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia Department, Italy.
| | - Azzurra Santoro
- European Union Reference Laboratory for Parasites, Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Umberto Postiglione
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Arcos SC, Lira F, Robertson L, González MR, Carballeda-Sangiao N, Sánchez-Alonso I, Zamorano L, Careche M, Jiménez-Ruíz Y, Ramos R, Llorens C, González-Muñoz M, Oliver A, Martínez JL, Navas A. Metagenomics Analysis Reveals an Extraordinary Inner Bacterial Diversity in Anisakids (Nematoda: Anisakidae) L3 Larvae. Microorganisms 2021; 9:1088. [PMID: 34069371 PMCID: PMC8158776 DOI: 10.3390/microorganisms9051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
L3 larvae of anisakid nematodes are an important problem for the fisheries industry and pose a potential risk for human health by acting as infectious agents causing allergies and as potential vectors of pathogens and microrganisms. In spite of the close bacteria-nematode relationship very little is known of the anisakids microbiota. Fresh fish could be contaminated by bacteria vectored in the cuticle or in the intestine of anisakids when the L3 larvae migrate through the muscles. As a consequence, the bacterial inoculum will be spread, with potential effects on the quality of the fish, and possible clinical effects cannot be discarded. A total of 2,689,113 16S rRNA gene sequences from a total of 113 L3 individuals obtained from fish captured along the FAO 27 fishing area were studied. Bacteria were taxonomically characterized through 1803 representative operational taxonomic units (OTUs) sequences. Fourteen phyla, 31 classes, 52 orders, 129 families and 187 genera were unambiguously identified. We have found as part of microbiome an average of 123 OTUs per L3 individual. Diversity indices (Shannon and Simpson) indicate an extraordinary diversity of bacteria at an OTU level. There are clusters of anisakids individuals (samples) defined by the associated bacteria which, however, are not significantly related to fish hosts or anisakid taxa. This suggests that association or relationship among bacteria in anisakids, exists without the influence of fishes or nematodes. The lack of relationships with hosts of anisakids taxa has to be expressed by the association among bacterial OTUs or other taxonomical levels which range from OTUs to the phylum level. There are significant biological structural associations of microbiota in anisakid nematodes which manifest in clusters of bacteria ranging from phylum to genus level, which could also be an indicator of fish contamination or the geographic zone of fish capture. Actinobacteria, Aquificae, Firmicutes, and Proteobacteria are the phyla whose abundance value discriminate for defining such structures.
Collapse
Affiliation(s)
- Susana C. Arcos
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Felipe Lira
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Lee Robertson
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
- Departamento de Protección Vegetal, INIA, 28040 Madrid, Spain
| | - María Rosa González
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | | | - Isabel Sánchez-Alonso
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Laura Zamorano
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - Mercedes Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Yolanda Jiménez-Ruíz
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, University of Valencia, 46980 Valencia, Spain;
| | - Miguel González-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.C.-S.); (M.G.-M.)
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - José L. Martínez
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| |
Collapse
|
7
|
Van Hien H, Thi Dung B, Ngo HD, Doanh PN. First morphological and molecular identification of third-stage larvae of Anisakis typica (Nematoda: Anisakidae) from marine fishes in Vietnamese water. J Nematol 2021; 53:e2021-010. [PMID: 33860256 PMCID: PMC8039996 DOI: 10.21307/jofnem-2021-010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 11/30/2022] Open
Abstract
Anisakid nematodes are parasites of cetaceans, their larval stages live in marine fishes. The third-stage larvae of some Anisakis species are also the etiological agents of human anisakiasis caused by consumption of raw or undercooked infected fish. Thus, identification of Anisakis larvae at the species level is crucial for their ecology and epidemiology. In Vietnam, although Anisakis larvae have been reported, they have not been identified to the species level. The aim of this study was, therefore, to identify third-stage larvae of Anisakis collected from marine fishes in Vietnamese water, based on morphological characteristics and molecular analysis. All Anisakis larvae found in this study were morphologically similar to each other and identical to Anisakis typica. In addition, molecular analysis based on ITS1-5.8S-ITS2 sequences confirmed them as A. typica. Vietnamese A. typica population was genetically close to those from Asian countries and Australia. The third-stage larvae of A. typica were collected from eight fish species from three localities in the South of Vietnam. Among them, seven were recorded as new intermediate hosts of A. typica. This is the first identification of A. typica larvae in Vietnamese water with records of new fish hosts.
Collapse
Affiliation(s)
- Hoang Van Hien
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Thi Dung
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Duy Ngo
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Ngoc Doanh
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
8
|
Pardo González MÁ, Cavazza G, Gustinelli A, Caffara M, Fioravanti M. Absence of anisakis nematodes in smoked farmed Atlantic salmon ( Salmo salar) products on sale in European countries. Ital J Food Saf 2021; 9:8615. [PMID: 33532370 PMCID: PMC7844585 DOI: 10.4081/ijfs.2020.8615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/12/2020] [Indexed: 11/23/2022] Open
Abstract
The increase of global demand of aquaculture products as compensation for the lowering of fishery sustainability has shown a parallel awareness by the consumers on the importance of the safety and quality of fish products. Among these, salmon industry has reached a leading position demonstrating the negligible risk of presence of zoonotic helminths such as anisakis nematodes in farmed salmon. Despite the massive production of data in literature on parasitological surveys carried out on fresh salmon, no data are published on processed farmed salmon such as smoked products. In 2016, 270 slices of smoked farmed Atlantic salmon (Salmo salar) and 13 smoked slices from wild sockeye salmon (Oncorhynchus nerka) have been analyzed by visual inspection and UV-press method searching for the presence of anisakid nematodes. No parasites were detected in samples from farmed Atlantic salmon, while 10 out of 13 from wild salmon were positive for Anisakis simplex s.s. larvae. This first survey on the possible presence of anisakid nematodes in processed smoked salmon confirms that this risk in farmed Atlantic salmon products has to be considered negligible.
Collapse
Affiliation(s)
| | - Giulia Cavazza
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano Emilia (BO), Italy
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano Emilia (BO), Italy
| | - Monica Caffara
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano Emilia (BO), Italy
| | - Marialetizia Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Ozzano Emilia (BO), Italy
| |
Collapse
|
9
|
Al-Hoshani N, Al-Quraishy S, Dkhil MA, Baiomy AA, Abdel-Gaber R. First record of third-stage Terranova larval type II (Nematoda, Anisakidae) in the common ponyfish Leiognathus equulus Forsskål. Microb Pathog 2020; 149:104597. [PMID: 33127534 DOI: 10.1016/j.micpath.2020.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
The current study was carried out to investigate the natural occurrence of nematode parasites that infect the common ponyfish Leiognathus equulus from Jeddah, Saudi Arabia. Third-stage nematode larvae were found to be encysted in the peritoneum of the fish studied, with the prevalence of infection being 25%. Light microscopy revealed that this parasite belongs to the Anisakidae family within the genus Terranova by having all the generic characteristic features. Based on the intestinal caecum ratio to the length of the ventriculus being 2:1, the excretory pore with ventral location below the boring tooth, the body ended with a conical tail; the larvae found in the present study were identified as Terranova larval type. To validate its taxonomic position within Anisakidae, this Terranova species' morphological features were combined with the ITS-1 gene's molecular analysis. It demonstrated sequence similarities 94.38-76.57% with taxa of Anisakidae. A preliminary genetic comparison between the present parasite and other ascaridoids placed it as a putative sister taxon to the previously described Terranova species. The first record of the current anisakid larvae in the common ponyfish with a unique genetic sequence for the partial sequence of the ITS-1 gene was observed in this study. Its taxonomic position was confirmed in Anisakidae.
Collapse
Affiliation(s)
- Nawal Al-Hoshani
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A Baiomy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Rewaida Abdel-Gaber
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
10
|
Cucullanus carettae Baylis, 1923, in a loggerhead sea turtle (Caretta caretta) from the Adriatic sea: first detection and molecular characterization. Parasitol Res 2020; 120:341-345. [PMID: 33118608 PMCID: PMC7846504 DOI: 10.1007/s00436-020-06936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2020] [Indexed: 11/29/2022]
Abstract
Cucullanus carettae Baylis, 1923 (Nematoda: Cucullanidae) is found worldwide in loggerhead turtles (Caretta caretta). Regarding the Mediterranean, C. carettae has been identified in the Tyrrhenian and the Ionian Sea and a unique description of a Cucullanus sp. specimen in loggerheads from the Adriatic Sea has been reported in the literature so far. In the framework of a bio-monitoring project of the Abruzzo and Molise coasts, a parasitological survey was performed on stranded and by-caught sea turtles, at the Istituto Zooprofilattico of Abruzzo and Molise “G. Caporale.” During necropsy, the gastrointestinal system of 72 stranded loggerhead turtles was analyzed for the presence of endoparasites and fecal samples were collected for coprological examination. Adult C. carettae (n = 123) was found in the upper intestine of one loggerhead turtle, associated with chronic lymphoplasmocytic enteritis. Additionally, five stool samples (6.9%) were positive for Cucullanus sp. eggs. Molecular characterization of adult nematodes was carried out to study phylogenetic relationships among the Cucullanus species. To our knowledge, this is the first morphological and molecular identification of C. carettae in loggerhead turtles from the Adriatic Sea. Additional studies on the distribution of this parasite in the Mediterranean are encouraged.
Collapse
|
11
|
Nasal localization of a Pseudoterranova decipiens larva in a Danish patient with suspected allergic rhinitis. J Helminthol 2020; 94:e187. [PMID: 32921327 DOI: 10.1017/s0022149x20000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pseudoterranoviasis is a zoonotic disease caused by nematode larvae of species within the genus Pseudoterranova (seal worm, cod worm). Most infections are gastrointestinal, oesophageal or pharyngeal, but here we report a nasal infection. A 33-year-old patient suffering from rhinitis for 1.5 years recovered a worm larva from the nose. Diagnosis was performed by morphological and molecular characterization, showing the causative agent to be a third-stage larva of Pseudoterranova decipiens (sensu stricto). Various infection routes are discussed.
Collapse
|
12
|
C. Arcos S, Robertson L, Ciordia S, Sánchez-Alonso I, Careche M, Carballeda-Sanguiao N, Gonzalez-Muñoz M, Navas A. Quantitative Proteomics Comparison of Total Expressed Proteomes of Anisakis simplex Sensu Stricto, A. pegreffii, and Their Hybrid Genotype. Genes (Basel) 2020; 11:E913. [PMID: 32785065 PMCID: PMC7465371 DOI: 10.3390/genes11080913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
The total proteomes of Anisakis simplex s.s., A. pegreffii and their hybrid genotype have been compared by quantitative proteomics (iTRAQ approach), which considers the level of expressed proteins. Comparison was made by means of two independent experiments considering four biological replicates of A. simplex and two each for A. pegreffii and hybrid between both species. A total of 1811 and 1976 proteins have been respectively identified in the experiments using public databases. One hundred ninety-six proteins were found significantly differentially expressed, and their relationships with the nematodes' biological replicates were estimated by a multidimensional statistical approach. Results of pairwise Log2 ratio comparisons among them were statistically treated and supported in order to convert them into discrete character states. Principal component analysis (PCA) confirms the validity of the method. This comparison selected thirty seven proteins as discriminant taxonomic biomarkers among A. simplex, A. pegreffii and their hybrid genotype; 19 of these biomarkers, encoded by ten loci, are specific allergens of Anisakis (Ani s7, Ani s8, Ani s12, and Ani s14) and other (Ancylostoma secreted) is a common nematodes venom allergen. The rest of the markers comprise four unknown or non-characterized proteins; five different proteins (leucine) related to innate immunity, four proteolytic proteins (metalloendopeptidases), a lipase, a mitochondrial translocase protein, a neurotransmitter, a thyroxine transporter, and a structural collagen protein. The proposed methodology (proteomics and statistical) solidly characterize a set of proteins that are susceptible to take advantage of the new targeted proteomics.
Collapse
Affiliation(s)
- Susana C. Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
| | - Lee Robertson
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
- Departamento de Protección Vegetal, INIA. Ctra La Coruña Km 7’5, 28040 Madrid, Spain
| | - Sergio Ciordia
- Unidad de Proteómica Centro Nacional de Biotecnología, CSIC, calle Darwin 3, Campus 11 de Cantoblanco, 28049 Madrid, Spain;
| | - Isabel Sánchez-Alonso
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
| | - Mercedes Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
| | - Noelia Carballeda-Sanguiao
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC. Calle José Antonio 13 Novais, 10, 28040 Madrid, Spain; (I.S.-A.); (M.C.); (N.C.-S.)
- Servicio de Immunología, Hospital Universitario La Paz. Paseo de la Castellana, 261, 28046 Madrid, Spain;
| | - Miguel Gonzalez-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz. Paseo de la Castellana, 261, 28046 Madrid, Spain;
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias 8 Naturales, CSIC, calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (S.C.A.); (L.R.)
| |
Collapse
|
13
|
Lakemeyer J, Siebert U, Abdulmawjood A, Ryeng KA, IJsseldijk LL, Lehnert K. Anisakid nematode species identification in harbour porpoises ( Phocoena phocoena) from the North Sea, Baltic Sea and North Atlantic using RFLP analysis. Int J Parasitol Parasites Wildl 2020; 12:93-98. [PMID: 32489854 PMCID: PMC7260678 DOI: 10.1016/j.ijppaw.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 10/26/2022]
Abstract
Harbour porpoises (Phocoena phocoena) are the only native cetacean species in the German North and Baltic Seas and the final host of Anisakis (A.) simplex, which infects their first and second gastric compartments and may cause chronic ulcerative gastritis. Anisakis simplex belongs to the family Anisakidae (Ascaridoidea, Rhabditida) as well as the phocine gastric nematode species Pseudoterranova (P.) decipiens and Contracaecum (C.) osculatum. These nematode species are the main causative agents for the zoonosis anisakidosis. The taxonomy of these genus with life cycles including crustaceans and commercially important fish is complex because of the formation of sibling species. Little is known about anisakid species infecting porpoises in the study area. Mature nematodes and larval stages are often identifiable only by molecular methods due to high morphological and genetic similarity. The restriction fragment length polymorphism (RFLP) method is an alternative to sequencing and was applied to identify anisakid nematodes found in harbour porpoises from the North Sea, Baltic Sea and North Atlantic to species level for the first time. In the study areas, five gastric nematodes from different harbour porpoise hosts were selected to be investigated with restriction enzymes HinfI, RsaI and HaeIII, which were able to differentiate several anisakid nematode species by characteristic banding patterns. Anisakis simplex s. s. was the dominant species found in the North Sea and Baltic porpoises, identified by all three restriction enzymes. Additionally, a hybrid of A. simplex s. s. and A. pegreffii was determined by HinfI in the North Sea samples. Within the North Atlantic specimens, A. simplex s. s., P. decipiens s. s. and Hysterothylacium (H.) aduncum were identified by all enzymes. This demonstrates the value of the RFLP method and the chosen restriction enzymes for the species identification of a broad variety of anisakid nematodes affecting the health of marine mammals.
Collapse
Affiliation(s)
- Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine, Foundation, Hannover, Werftstrasse 6, 25761, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine, Foundation, Hannover, Werftstrasse 6, 25761, Büsum, Germany
| | - Amir Abdulmawjood
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Foundation, Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Kathrine A. Ryeng
- Institute of Marine Research, Fram Centre, P.O. Box 6606 Langnes, NO, 9296, Tromsø, Norway
| | - Lonneke L. IJsseldijk
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division of Pathology, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, the Netherlands
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine, Foundation, Hannover, Werftstrasse 6, 25761, Büsum, Germany
| |
Collapse
|
14
|
Amor N, Farjallah S, Merella P, Alagaili AN, Mohammed OB. Multilocus approach reveals discordant molecular markers and corridors for gene flow between North African populations of Fasciola hepatica. Vet Parasitol 2020; 278:109035. [PMID: 32014829 DOI: 10.1016/j.vetpar.2020.109035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/15/2022]
Abstract
Fasciolosis is a foodborne trematodosis characterised by a worldwide distribution. Various approaches have been developed for the study of the causative agents of this parasitic infection: Fasciola hepatica, Fasciola gigantica and the aspermic intermediated forms (hybrid and introgressed). In the present study, novel and common molecular markers (pepck and pold, ITS, CO1, ND1 and CO1-trnT-rrnL) were used to characterise Fasciola flukes from the Tunisian-Algerian border, to estimate the gene flow between these populations and to evaluate the reliability of different molecular markers. All nuclear and mitochondrial markers, apart from pepck, supported the monophyly of the studied flukes identified as F. hepatica. Multiplex PCR for pepck revealed three different genotypes corresponding to F. hepatica (pepck-Fh), F. gigantica (pepck-Fg) and the aspermic Fasciola flukes (pepck-Fh/Fg). Sequence analysis of pepck revealed high polymorphism, length variation, within this intronic marker. The observed inconsistencies were due to the position of the forward primer within the intronic region. Pepck sequences showed different level of heterozygosity and homozygosity with length polymorphisms in the introns. Pepck multiplex PCR patterns could not differentiate between Fasciola species. All studies based on only pepck multiplex PCR with mitochondrial markers should be revised. Nuclear and mitochondrial markers revealed an important gene flow between Tunisian and Algerian populations of F. hepatica. The combination of nuclear and mitochondrial sequence analysis is still the best method to distinguish these taxa. Effective measures are needed in order to better control cross-country illegal trade of vector.
Collapse
Affiliation(s)
- Nabil Amor
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia; Laboratory of Biodiversity, Parasitology & Aquatic Ecosystems (LR18ES05) Tunis El Manar University, 2092 Tunis, Tunisia.
| | - Sarra Farjallah
- Laboratory of Biodiversity, Parasitology & Aquatic Ecosystems (LR18ES05) Tunis El Manar University, 2092 Tunis, Tunisia
| | - Paolo Merella
- Parassitologia e Malattie Parassitarie, Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Setyawan AC, Zuo S, Kania PW, Buchmann K. Endoparasitic helminths in Baltic salmon Salmo salar: ecological implications. DISEASES OF AQUATIC ORGANISMS 2019; 135:193-199. [PMID: 31486411 DOI: 10.3354/dao03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Parasites in fish are ecological indicators, as they reflect the host's migration routes, feeding behavior and immune status. We performed a parasitological investigation of sea-running Baltic salmon to study the use of parasites as indicators for this fish stock. The host-a strain of Atlantic salmon Salmo salar-has been isolated for several millennia in the semi-enclosed brackish Baltic Sea, with limited migration to and from the North Sea. Twenty-four salmon (total body weight: 4.2-14.2 kg; total body length: 80-105 cm) were caught by spoon bait in the southern Baltic Sea during feeding migrations, necropsied shortly afterwards and internal organs subjected to parasitological investigation focusing on endoparasitic helminths. The pyloric region was heavily parasitized by the cestode Eubothrium crassum (100% prevalence; intensity: 97-273 parasites per infected fish), reflecting a diet of smaller pelagic fishes. The stomach contained the hemiurid digeneans Brachyphallus crenatus (95.8% prevalence; intensity: 8-151) and Hemiurus luehei (58.3% prevalence; intensity: 2-13), indicating a diet of clupeids. Schistocephalus solidus (25% prevalence; intensity: 1-2), liberated from ingested sticklebacks, the acanthocephalan Echinorhynchus truttae (54% prevalence; intensity: 1-13) and the adult nematode Hysterothylacium aduncum (29% prevalence; intensity: 1-13) were found in the intestine. The liver was parasitized by third-stage nematode larvae of Contracaecum osculatum (45.8% prevalence; intensity: 1-4), but these were growth-stunted and encapsulated. The parasite fauna differs markedly from salmon in North Atlantic waters, and the lack of purely marine parasite species indicates that the Baltic salmon has remained in the Baltic Sea during its life history.
Collapse
Affiliation(s)
- Agung Cahyo Setyawan
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark
| | | | | | | |
Collapse
|
16
|
Arafa WM, Hassan AHA, Mahrous LN, Abdel‐Ghany AE, Aboelhadid SM. Occurrence and molecular characterization of zoonotic
Anisakis simplex sensu stricto
and
Anisakis pegreffii
larvae in retail‐marketed fish. J Food Saf 2019. [DOI: 10.1111/jfs.12682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Waleed M. Arafa
- Parasitology Department, Faculty of Veterinary MedicineBeni‐Suef University Beni‐Suef Egypt
| | - Abdelrahim H. A. Hassan
- Food Hygiene and Control Department, Faculty of Veterinary MedicineBeni‐Suef University Beni‐Suef Egypt
| | - Lilian N. Mahrous
- Parasitology Department, Faculty of Veterinary MedicineBeni‐Suef University Beni‐Suef Egypt
| | - Ahmed E. Abdel‐Ghany
- Hygiene, Zoonoses and Epidemiology Department, Faculty of Veterinary MedicineMinia University El Minia Egypt
| | - Shawky M. Aboelhadid
- Parasitology Department, Faculty of Veterinary MedicineBeni‐Suef University Beni‐Suef Egypt
| |
Collapse
|
17
|
Roca-Geronès X, Montoliu I, Godínez-González C, Fisa R, Shamsi S. Morphological and genetic characterization of Hysterothylacium Ward & Magath, 1917 (Nematoda: Raphidascarididae) larvae in horse mackerel, blue whiting and anchovy from Spanish Atlantic and Mediterranean waters. JOURNAL OF FISH DISEASES 2018; 41:1463-1475. [PMID: 30047590 DOI: 10.1111/jfd.12825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The presence of zoonotic Hysterothylacium larvae in fish from Spanish Atlantic and Mediterranean waters, which can cause economic losses for commercial fisheries, has been reported in several studies; however, little is known about species identity in this region. The aim of this study was to identify at species level the Hysterothylacium morphotypes detected in three commonly consumed fish: horse mackerel (Trachurus trachurus), blue whiting (Micromesistius poutassou) and anchovy (Engraulis encrasicolus). Third- and fourth-stage Hysterothylacium larvae, as well as adults obtained from larval in vitro culture, were morphologically and molecularly identified by ITS1/ITS2 rDNA sequencing. Four Hysterothylacium morphotypes were detected. Genetic analysis showed that morphotypes VIII and IX were different larval stages of Hysterothylacium aduncum, which was supported by cultured adult species identification. Morphotypes III and IV were found to correspond to different developmental stages of another species of Hysterothylacium. As all larval types detected were morphologically indistinguishable from others previously reported yet showed clear genetic differences, they are referred here as new genotypes. This is the first time that ITS-sequence data of various developmental stages of the same species, including adults, have been studied and compared, providing crucial knowledge for future studies on Hysterothylacium identification and biology.
Collapse
Affiliation(s)
- Xavier Roca-Geronès
- School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovations, Charles Sturt University, Wagga Wagga, NSW, Australia
- Laboratory of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Isabel Montoliu
- Laboratory of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Carla Godínez-González
- Laboratory of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Roser Fisa
- Laboratory of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Shokoofeh Shamsi
- School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovations, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
18
|
Klapper R, Carballeda-Sangiao N, Kuhn T, Jensen HM, Buchmann K, Gonzalez-Muñoz M, Karl H. Anisakid infection levels in fresh and canned cod liver: Significant reduction through liver surface layer removal. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Llorens C, Arcos SC, Robertson L, Ramos R, Futami R, Soriano B, Ciordia S, Careche M, González-Muñoz M, Jiménez-Ruiz Y, Carballeda-Sangiao N, Moneo I, Albar JP, Blaxter M, Navas A. Functional insights into the infective larval stage of Anisakis simplex s.s., Anisakis pegreffii and their hybrids based on gene expression patterns. BMC Genomics 2018; 19:592. [PMID: 30086708 PMCID: PMC6080401 DOI: 10.1186/s12864-018-4970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anisakis simplex sensu stricto and Anisakis pegreffii are sibling species of nematodes parasitic on marine mammals. Zoonotic human infection with third stage infective larvae causes anisakiasis, a debilitating and potentially fatal disease. These 2 species show evidence of hybridisation in geographical areas where they are sympatric. How the species and their hybrids differ is still poorly understood. RESULTS Third stage larvae of Anisakis simplex s.s., Anisakis pegreffii and hybrids were sampled from Merluccius merluccius (Teleosti) hosts captured in waters of the FAO 27 geographical area. Specimens of each species and hybrids were distinguished with a diagnostic genetic marker (ITS). RNA was extracted from pools of 10 individuals of each taxon. Transcriptomes were generated using Illumina RNA-Seq, and assembled de novo. A joint assembly (here called merged transcriptome) of all 3 samples was also generated. The inferred transcript sets were functionally annotated and compared globally and also on subsets of secreted proteins and putative allergen families. While intermediary metabolism appeared to be typical for nematodes in the 3 evaluated taxa, their transcriptomes present strong levels of differential expression and enrichment, mainly of transcripts related to metabolic pathways and gene ontologies associated to energy metabolism and other pathways, with significant presence of excreted/secreted proteins, most of them allergens. The allergome of the 2 species and their hybrids has also been thoroughly studied; at least 74 different allergen families were identified in the transcriptomes. CONCLUSIONS A. simplex s.s., A. pegreffi and their hybrids differ in gene expression patterns in the L3 stage. Strong parent-of-origin effects were observed: A. pegreffi alleles dominate in the expression patterns of hybrids albeit the latter, and A. pegreffii also display significant differences indicating that hybrids are intermediate biological entities among their parental species, and thus of outstanding interest in the study of speciation in nematodes. Analyses of differential expression based on genes coding for secreted proteins suggests that co-infections presents different repertoires of released protein to the host environment. Both species and their hybrids, share more allergen genes than previously thought and are likely to induce overlapping disease responses.
Collapse
Affiliation(s)
- C. Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - S. C. Arcos
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - L. Robertson
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - R. Ramos
- Unidad de Genómica, Campus de Cantoblanco, Scientific Park of Madrid, Calle Faraday, 7, Campus de Cantoblanco, 28049 Madrid, Spain
| | - R. Futami
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - B. Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Valencia Spain
| | - S. Ciordia
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Calle Darwin, 3, 28049 Madrid, Spain
| | - M. Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Calle José Antonio Novais, 10, 28040 Madrid, Spain
| | - M. González-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Y. Jiménez-Ruiz
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - N. Carballeda-Sangiao
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - I. Moneo
- Servicio de Immunología, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - J. P. Albar
- Unidad de Proteomica Centro Nacional de Biotecnología, CSIC, Calle Darwin, 3, 28049 Madrid, Spain
| | - M. Blaxter
- Edinburgh Genomics, and Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, EH9 3JT UK
| | - A. Navas
- Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Calle José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
20
|
Mattiucci S, Cipriani P, Levsen A, Paoletti M, Nascetti G. Molecular Epidemiology of Anisakis and Anisakiasis: An Ecological and Evolutionary Road Map. ADVANCES IN PARASITOLOGY 2018. [PMID: 29530312 DOI: 10.1016/bs.apar.2017.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review addresses the biodiversity, biology, distribution, ecology, epidemiology, and consumer health significance of the so far known species of Anisakis, both in their natural hosts and in human accidental host populations, worldwide. These key aspects of the Anisakis species' biology are highlighted, since we consider them as main driving forces behind which most of the research in this field has been carried out over the past decade. From a public health perspective, the human disease caused by Anisakis species (anisakiasis) appears to be considerably underreported and underestimated in many countries or regions around the globe. Indeed, when considering the importance of marine fish species as part of the everyday diet in many coastal communities around the globe, there still exist significant knowledge gaps as to local epidemiological and ecological drivers of the transmission of Anisakis spp. to humans. We further identify some key knowledge gaps related to Anisakis species epidemiology in both natural and accidental hosts, to be filled in light of new 'omic' technologies yet to be fully developed. Moreover, we suggest that future Anisakis research takes a 'holistic' approach by integrating genetic, ecological, immunobiological, and environmental factors, thus allowing proper assessment of the epidemiology of Anisakis spp. in their natural hosts, in human populations, and in the marine ecosystem, in both space and time.
Collapse
|
21
|
Zuo S, Barlaup L, Mohammadkarami A, Al-Jubury A, Chen D, Kania PW, Buchmann K. Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua). Parasitol Res 2017; 116:2721-2726. [PMID: 28795224 DOI: 10.1007/s00436-017-5580-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/28/2022]
Abstract
Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.
Collapse
Affiliation(s)
- S Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - L Barlaup
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Mohammadkarami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Al-Jubury
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - D Chen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - P W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - K Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol 2016. [DOI: 10.1016/j.fawpar.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Kuhn T, Cunze S, Kochmann J, Klimpel S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci Rep 2016; 6:30246. [PMID: 27507328 PMCID: PMC4995312 DOI: 10.1038/srep30246] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022] Open
Abstract
Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species.
Collapse
Affiliation(s)
- Thomas Kuhn
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438 Frankfurt/Main, Germany
| | - Sarah Cunze
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438 Frankfurt/Main, Germany
| | - Judith Kochmann
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438 Frankfurt/Main, Germany
| | - Sven Klimpel
- Goethe-University, Institute for Ecology, Evolution and Diversity; Senckenberg Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Max-von-Laue-Str. 13, D-60438 Frankfurt/Main, Germany
| |
Collapse
|
24
|
Zuo S, Huwer B, Bahlool Q, Al-Jubury A, Daugbjerg Christensen N, Korbut R, Kania P, Buchmann K. Host size-dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences. DISEASES OF AQUATIC ORGANISMS 2016; 120:69-75. [PMID: 27304871 DOI: 10.3354/dao03002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (>38 cm) compared to smaller cod (<30 cm) recently recorded in the Baltic cod population.
Collapse
Affiliation(s)
- Shaozhi Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A review of methods for nematode identification. J Microbiol Methods 2016; 138:37-49. [PMID: 27262374 DOI: 10.1016/j.mimet.2016.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Nematodes are non-segmented roundworms found in soil, aquatic environment, plants, or animals. Either useful or pathogenic, they greatly influence environmental equilibrium, human and animal health, as well as plant production. Knowledge on their taxonomy and biology are key issues to answer the different challenges associated to these organisms. Nowadays, most of the nematode taxonomy remains unknown or unclear. Several approaches are available for parasite identification, from the traditional morphology-based techniques to the sophisticated high-throughput sequencing technologies. All these techniques have advantages or drawbacks depending on the sample origin and the number of nematodes to be processed. This review proposes an overview of all newly available methods available to identify known and/or unknown nematodes with a specific focus on emerging high-throughput molecular techniques.
Collapse
|
26
|
Genetic diversity and population structure of Synthesium pontoporiae (Digenea, Brachycladiidae) linked to its definitive host stocks, the endangered Franciscana dolphin, Pontoporia blainvillei (Pontoporiidae) off the coast of Brazil and Argentina. J Helminthol 2016; 89:19-27. [PMID: 26262593 DOI: 10.1017/s0022149x13000540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pontoporia blainvillei (Gervais and d'Orbigny, 1844) is an endangered small cetacean endemic to South America with four Franciscana Management Areas (FMA) recognized as different population stocks. The role of the intestinal parasite Synthesium pontoporiae (Digenea: Brachycladiidae) as a possible biological marker to differentiate P. blainvillei stocks was evaluated using nuclear and mitochondrial DNA markers. Internal transcribed sequence 1 and 2 (ITS1 and ITS2) regions of S. pontoporiae did not show intraspecific variability. The mitochondrial NADH dehydrogenase subunit 3 (ND3) and cytochrome oxidase subunit I (COI) gene sequences suggested lack of population structure in S. pontoporiae and population expansion. The apparent panmixia of S. pontoporiae may be due to the high mobility of one or more of its intermediary hosts. Alternatively, it may be due to the small sample size. This result is incongruent with the previously proposed FMA.
Collapse
|
27
|
Ascaridoid parasites infecting in the frequently consumed marine fishes in the coastal area of China: A preliminary investigation. Parasitol Int 2015; 65:87-98. [PMID: 26546570 DOI: 10.1016/j.parint.2015.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/04/2015] [Accepted: 11/01/2015] [Indexed: 11/24/2022]
Abstract
Marine fishes represent the important components of the diet in the coastal areas of China and they are also natural hosts of various parasites. However, to date, little is known about the occurrence of ascaridoid parasites in the frequently consumed marine fishes in China. In order to determine the presence of ascaridoid parasites in the frequently consumed marine fishes in the coastal town Huizhou, Guangdong Province, China, 211 fish representing 45 species caught from the South China Sea (off Daya Gulf) were examined. Five species of ascaridoid nematodes at different developmental stages were detected in the marine fishes examined herein, including third-stage larva of Anisakis typica (Diesing, 1860), third and fourth-stage larvae of Hysterothylacium sp. IV-A of Shamsi, Gasser & Beveridge, 2013, adult and third-stage larvae of Hysterothylacium zhoushanense Li, Liu & Zhang, 2014, adults and third-stage larvae of Raphidascaris lophii (Wu, 1949) and adults of Raphidascaris longispicula Li, Liu & Zhang, 2012. The overall prevalence of infection is 18.0%. Of them, Hysterothylacium sp. IV-A with the highest prevalence (17.5%) and intensity (mean=14.6) of infection was the predominant species. The prevalence and intensity of A. typica were very low (1/211 of marine fish infected with an intensity of one parasite per fish). The morphological and molecular characterization of all nematode species was provided. A cladistic analysis based on ITS sequence was constructed in order to determine the phylogenetic relationships of these ascaridoid parasites obtained herein. The present study provided important information on the occurrence and diagnosis of ascaridoid nematodes in the commercially important marine fishes from the South China Sea. The low level of infection and the species composition of ascaridoid nematodes seem to indicate the presence of low risk of human anisakidosis when local population consumed these marine fishes examined herein.
Collapse
|
28
|
Kong Q, Fan L, Zhang J, Akao N, Dong K, Lou D, Ding J, Tong Q, Zheng B, Chen R, Ohta N, Lu S. Molecular identification of Anisakis and Hysterothylacium larvae in marine fishes from the East China Sea and the Pacific coast of central Japan. Int J Food Microbiol 2015; 199:1-7. [DOI: 10.1016/j.ijfoodmicro.2015.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/01/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
29
|
Keskin E, Koyuncu CE, Genc E. Molecular identification of Hysterothylacium aduncum specimens isolated from commercially important fish species of Eastern Mediterranean Sea using mtDNA cox1 and ITS rDNA gene sequences. Parasitol Int 2014; 64:222-8. [PMID: 25543079 DOI: 10.1016/j.parint.2014.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/07/2014] [Accepted: 12/21/2014] [Indexed: 11/30/2022]
Abstract
The presence of a Raphidascarid parasitic nematode Hysterothylacium aduncum (Rudolphi, 1802) in two sparid fish (Sparus aurata and Diplodus vulgaris) and one soleid fish (Solea solea) was investigated in this study. A total of 868 individuals; 385 S. aurata, 437 D. vulgaris and 46 S. solea were collected from the Mersin Bay between February 2013 and January 2014 and examined. Variations in the prevalence, mean intensity, and mean abundance of the parasite were 14.55%, 2.05, and 0.30 for S. aurata, 4.12%, 2.44, and 0.10 for D. vulgaris, and 15.22%, 3.29, and 0.50 for S. sole respectively. Nucleotide sequences of 1398 base pair long fragment of 18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA region and 641 base pair long fragment of mtDNA cytochrome c oxidase I (cox1) gene were used in molecular identification of isolated parasites at species level. All the parasite samples were identified as H. aduncum based on nucleotide sequence comparisons. Both ITS rDNA and mtDNA cox1 sequences revealed a genetic variation among H. aduncum specimens isolated from different fish species, while only mtDNA cox1 sequences were indicating a mean genetic distance of 0.010 among H. aduncum specimens of the same host species.
Collapse
Affiliation(s)
- Emre Keskin
- Department of Fisheries and Aquaculture, Agricultural Faculty, 06110 Diskapi, Ankara, Turkey.
| | - Cafer Erkin Koyuncu
- Fish Diseases Lab., Department of Aquaculture, Fisheries Faculty, Mersin University, 33169 Yenisehir, Mersin, Turkey
| | - Ercument Genc
- Department of Fisheries and Aquaculture, Agricultural Faculty, 06110 Diskapi, Ankara, Turkey
| |
Collapse
|
30
|
Mehrdana F, Bahlool QZM, Skov J, Marana MH, Sindberg D, Mundeling M, Overgaard BC, Korbut R, Strøm SB, Kania PW, Buchmann K. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet Parasitol 2014; 205:581-7. [PMID: 25224792 DOI: 10.1016/j.vetpar.2014.08.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Abstract
Baltic cod Gadus morhua (a total of total 224 specimens) captured east of the island of Bornholm in the southern Baltic Sea were subjected to a parasitological investigation between March 2013 and April 2014. Full artificial digestion of fillets from 188 cod and additional investigation of livers from 36 cod were performed. Cod or seal worm Pseudoterranova decipiens was recorded in musculature (prevalences up to 55% and intensities up to 56 worms per fish) associated with a negative correlation between worm intensity and condition factor. Liver worm Contracaecum osculatum (100% prevalence with intensities up to 320 worms per fish) in liver tissue were recorded but only a slight negative correlation between intensity and condition factor was noted. Seals act as final host for both worm species and the increased occurrence during recent years is associated with the increasing grey seal population in the area. Infection with Anisakis simplex (the herring or whale worm) in Baltic cod was found at a low level corresponding to previous studies.
Collapse
Affiliation(s)
- Foojan Mehrdana
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Qusay Z M Bahlool
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jakob Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Moonika H Marana
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Diana Sindberg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mai Mundeling
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Bettina C Overgaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rozalia Korbut
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sverri B Strøm
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per W Kania
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
31
|
Baird FJ, Gasser RB, Jabbar A, Lopata AL. Foodborne anisakiasis and allergy. Mol Cell Probes 2014; 28:167-74. [PMID: 24583228 DOI: 10.1016/j.mcp.2014.02.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 11/18/2022]
Abstract
Human anisakiasis, a disease caused by Anisakis spp. (Nematoda), is often associated with clinical signs that are similar to those associated with bacterial or viral gastroenteritis. With the globalisation of the seafood industry, the risk of humans acquiring anisakiasis in developed countries appears to be underestimated. The importance of this disease is not only in its initial manifestation, which can often become chronic if the immune response does not eliminate the worm, but, importantly, in its subsequent sensitisation of the human patient. This sensitisation to Anisakis-derived allergens can put the patient at risk of an allergic exacerbation upon secondary exposure. This article reviews some aspects of this food-borne disease and explains its link to chronic, allergic conditions in humans.
Collapse
Affiliation(s)
- Fiona J Baird
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia; Centre of Biosecurity and Tropical Infectious Diseases, James Cook University, Townsville, Queensland 4811, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland 4811, Australia
| | - Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
| | - Abdul Jabbar
- Department of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
| | - Andreas L Lopata
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia; Centre of Biosecurity and Tropical Infectious Diseases, James Cook University, Townsville, Queensland 4811, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
32
|
Anshary H, Sriwulan, Freeman MA, Ogawa K. Occurrence and molecular identification of Anisakis Dujardin, 1845 from marine fish in southern Makassar Strait, Indonesia. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:9-19. [PMID: 24623876 PMCID: PMC3949002 DOI: 10.3347/kjp.2014.52.1.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/23/2022]
Abstract
Anisakis spp. (Nematoda: Anisakidae) parasitize a wide range of marine animals, mammals serving as the definitive host and different fish species as intermediate or paratenic hosts. In this study, 18 fish species were investigated for Anisakis infection. Katsuwonus pelamis, Euthynnus affinis, Caranx sp., and Auxis thazard were infected with high prevalence of Anisakis type I, while Cephalopholis cyanostigma and Rastrelliger kanagurta revealed low prevalence. The mean intensity of Anisakis larvae in K. pelamis and A. thazard was 49.7 and 5.6, respectively. A total of 73 Anisakis type I larvae collected from K. pelamis and A. thazard were all identified as Anisakis typica by PCR-RFLP analysis. Five specimens of Anisakis from K. pelamis and 15 specimens from A. thazard were sequenced using ITS1-5.8S-ITS2 region and 6 specimens from A. thazard and 4 specimens from K. pelamis were sequenced in mtDNA cox2 region. Alignments of the samples in the ITS region showed 2 patterns of nucleotides. The first pattern (genotype) of Anisakis from A. thazard had 100% similarity with adult A. typica from dolphins from USA, whereas the second genotype from A. thazard and K. pelamis had 4 base pairs different in ITS1 region with adult A. typica from USA. In the mtDNA cox2 regions, Anisakis type I specimens from A. thazard and K. pelamis showed similarity range from 94% to 99% with A. typica AB517571/DQ116427. The difference of 4 bp nucleotides in ITS1 regions and divergence into 2 subgroups in mtDNA cox2 indicating the existence of A. typica sibling species in the Makassar Strait.
Collapse
Affiliation(s)
- Hilal Anshary
- Laboratory of Fish Parasites and Diseases, Department of Fisheries, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| | - Sriwulan
- Laboratory of Fish Parasites and Diseases, Department of Fisheries, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| | - Mark A Freeman
- Institute of Ocean and Earth Sciences, University of Malaya, Malaysia
| | - Kazuo Ogawa
- Meguro Parasitological Museum, Meguro-ku, Tokyo 153-0064, Japan
| |
Collapse
|
33
|
Guo YN, Xu Z, Zhang LP, Hu YH, Li L. Occurrence of Hysterothylacium and Anisakis nematodes (Ascaridida: Ascaridoidea) in the tanaka’s snailfish Liparis tanakae (Gilbert & Burke) (Scorpaeniformes: Liparidae). Parasitol Res 2014; 113:1289-300. [DOI: 10.1007/s00436-014-3767-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/10/2014] [Indexed: 11/25/2022]
|
34
|
Mohandas N, Jabbar A, Podolska M, Zhu XQ, Littlewood DTJ, Jex AR, Gasser RB. Mitochondrial genomes of Anisakis simplex and Contracaecum osculatum (sensu stricto)--comparisons with selected nematodes. INFECTION GENETICS AND EVOLUTION 2013; 21:452-62. [PMID: 24211683 DOI: 10.1016/j.meegid.2013.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/26/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022]
Abstract
Anisakid nematodes parasitize mainly fish, marine mammals and/or fish-eating birds, and can be transmitted to a range of fish-eating mammals, including humans, where they can cause gastrointestinal disease linked to larval infection or allergic responses. In spite of the animal and human health significance of these parasites, there are still gaps in our understanding of the systematics, biology, epidemiology and ecology of anisakids. Mitochondrial (mt) DNA provides useful genetic markers for investigations in these areas, but complete mt genomic data have been lacking for most anisakids. In the present study, the mt genomes of Anisakis simplex sensu stricto and Contracaecum osculatum sensu stricto were amplified from genomic DNA by long-range polymerase chain reaction and sequenced using 454 technology. The circular mt genomes of these species were 13,926 and 13,823 bp, respectively, and each of them contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for members of the Ascaridida, Oxyurida, Spirurida, Rhabditida and Strongylida. These mt genomes provide a stepping-stone for future comparative analyses of a range of anisakids and a basis for reinvestigating their genetic relationships. In addition, these markers might be used in prospecting for cryptic species and exploring host affiliations.
Collapse
Affiliation(s)
- Namitha Mohandas
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdul Jabbar
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Magdalena Podolska
- National Marine Fisheries Research Institute (NMFRI), Kollataja 1, 81-332 Gdynia, Poland
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | | | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
35
|
Anisakis – A food-borne parasite that triggers allergic host defences. Int J Parasitol 2013; 43:1047-57. [DOI: 10.1016/j.ijpara.2013.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/20/2022]
|
36
|
Molecular characterization of Hysterothylacium fabri (Nematoda: Anisakidae) from Zeus faber (Pisces: Zeidae) caught off the Mediterranean coasts of Turkey based on nuclear ribosomal and mitochondrial DNA sequences. Parasitol Int 2013; 63:127-31. [PMID: 24148286 DOI: 10.1016/j.parint.2013.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/23/2022]
Abstract
In the present study, Hysterothylacium fabri was found in the coasts of the Mediterranean Sea, Turkey and characterized by sequencing of nuclear (internal transcribed spacer, ITS) and mitochondrial (cytochrome c oxidase subunit 2, cox2) markers. Pairwise comparison between the entire ITS fragment including ITS-1, 5.8S, ITS-2 sequences of the H. fabri isolates from the Mediterranean Sea (Turkey, KC852206) and other H. fabri isolates from the South China Sea (JQ520158), the South Korea waters (JX974558) showed differences ranged from 0.1 and 1.1%. With the present study, H. fabri from the Mediterranean Sea was characterized for the first time by sequencing of the cox2 gene.
Collapse
|
37
|
Characterization ofDicrocoelium dendriticumisolates from small ruminants in Shaanxi Province, north-western China, using internal transcribed spacers of nuclear ribosomal DNA. J Helminthol 2013; 89:124-9. [DOI: 10.1017/s0022149x13000503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe genetic variations in internal transcribed spacers (ITS) spanning ITS-1, 5.8S and ITS-2 rDNA ofDicrocoelium dendriticum, isolated from sheep and goats in four geographical regions in Shaanxi province, were examined. The lengths of ITS-1, 5.8S and ITS-2 rDNA sequences forD. dendriticumwere 749 bp, 161 bp and 234 bp, respectively. Intra-specific sequence variations ofD. dendriticumwere 0–0.5% for ITS-1 and 0–1.3% for ITS-2 rDNA, while the inter-specific variations among species in genusDicrocoeliumin ITS-2 rDNA were 3.4–12.3%. Phylogenetic analysis based on sequences of ITS-2 rDNA showed that allD. dendriticumisolates in the present study were grouped with referenceD. dendriticumisolates from sheep and goats, andD. dendriticumisolates from cattle and Japanese serow were clustered in a sister clade. However, the phylogenetic tree could not reveal geographically genetic relationships ofD. dendriticumisolates in different origins and hosts. These findings provided basic information for further study of molecular epidemiology and control ofD. dendriticuminfection in Shaanxi province as well as in the world.
Collapse
|
38
|
Kuhn T, Hailer F, Palm HW, Klimpel S. Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasitol (Praha) 2013; 60:123-34. [DOI: 10.14411/fp.2013.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Jabbar A, Fong RWJ, Kok KX, Lopata AL, Gasser RB, Beveridge I. Molecular characterization of anisakid nematode larvae from 13 species of fish from Western Australia. Int J Food Microbiol 2012; 161:247-53. [PMID: 23353682 DOI: 10.1016/j.ijfoodmicro.2012.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/30/2012] [Accepted: 12/03/2012] [Indexed: 02/03/2023]
Abstract
This study characterized anisakid nematodes in estuarine and near-shore species of fish in southern Western Australia. A total of 108 fish representing 13 species were examined for anisakid larvae. For the molecular characterization of anisakid larvae (n=218), we used PCR-coupled mutation scanning-sequencing-phylogenetic analyses of sequence variation in the internal transcribed spacers of nuclear ribosomal DNA. With the exception of Sillaginoides punctatus and Sillago schomburgkii, all the fish species examined (Aldrichetta forsteri, Arripis georgianus, Hyporhamphus regularis, Mugil cephalus, Platycephalus speculator, Pomatomus saltatrix, Pseudocaranx dentex, Pseudocaranx wrighti, Thysanophrys cirronatus, Trachurus novaezeelandiae and Upeneichthys lineatus) harboured at least one species of anisakid. Mutation scanning analysis identified 11 different genotypes of anisakid larvae. Phylogenetic analyses of the sequence data, employing reference sequence data for a wide range of anisakids (31 species) from public databases, revealed the presence of Anisakis pegreffii (n=3), Contracaecum multipapillatum (49), Contracaecum ogmorhini (1), Hysterothylacium larval type IV (82), Hysterothylacium larval type Vb (14), Hysterothylacium larval type VIII (3), Hysterothylacium larval type X (65), and Terranova type I (1) in the fish examined. The present study provides valuable information on the diversity of anisakids in southern Western Australia and also a basis for future investigations to assess the public health significance of these parasites.
Collapse
Affiliation(s)
- Abdul Jabbar
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Victoria 3030, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Koinari M, Karl S, Elliot A, Ryan U, Lymbery AJ. Identification of Anisakis species (Nematoda: Anisakidae) in marine fish hosts from Papua New Guinea. Vet Parasitol 2012; 193:126-33. [PMID: 23290280 DOI: 10.1016/j.vetpar.2012.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
The third-stage larvae of several genera of anisakid nematodes are important etiological agents for zoonotic human anisakiasis. The present study investigated the prevalence of potentially zoonotic anisakid larvae in fish collected on the coastal shelves off Madang and Rabaul in Papua New Guinea (PNG) where fish represents a major component of the diet. Nematodes were found in seven fish species including Decapterus macarellus, Gerres oblongus, Pinjalo lewisi, Pinjalo pinjalo, Selar crumenophthalmus, Scomberomorus maculatus and Thunnus albacares. They were identified by both light and scanning electron microscopy as Anisakis Type I larvae. Sequencing and phylogenetic analysis of the ribosomal internal transcribed spacer (ITS) and the mitochondrial cytochrome C oxidase subunit II (cox2) gene identified all nematodes as Anisakis typica. This study represents the first in-depth characterisation of Anisakis larvae from seven new fish hosts in PNG. The overall prevalence of larvae was low (7.6%) and no recognised zoonotic Anisakis species were identified, suggesting a very low threat of anisakiasis in PNG.
Collapse
Affiliation(s)
- M Koinari
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | | | | | | | | |
Collapse
|
41
|
Occurrence and molecular characterization of Hysterothylacium aduncum (Nematoda: Anisakidae) from Merlangius merlangus euxinus and Trachurus trachurus off the Turkish coast of Black Sea. Parasitol Res 2012; 112:1031-7. [DOI: 10.1007/s00436-012-3227-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
42
|
Li L, Liu YY, Zhang LP. Morphological and molecular identification of Hysterothylacium longilabrum sp. nov. (Nematoda: Anisakidae) and larvae of different stages from marine fishes in the South China Sea. Parasitol Res 2012; 111:767-77. [DOI: 10.1007/s00436-012-2897-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/13/2012] [Indexed: 11/25/2022]
|
43
|
Wang C, Gao J, Zhu X, Zhao Q. Characterization of Bunostomum trigonocephalum and Bunostomum phlebotomum from sheep and cattle by internal transcribed spacers of nuclear ribosomal DNA. Res Vet Sci 2012; 92:99-102. [DOI: 10.1016/j.rvsc.2010.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/24/2022]
|
44
|
Jabbar A, Khoon ATW, Hui TX, Schaeffner BC, Jex AR, Nolan MJ, Lopata A, Gasser RB, Beveridge I. Mutation scanning-based analysis of anisakid larvae from Sillago flindersi from Bass Strait, Australia. Electrophoresis 2012; 33:499-505. [DOI: 10.1002/elps.201100438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Li L, Gibson DI, Liu YY, Zhang LP. Morphological and molecular study of the poorly known species Pseudanisakis rajae (Yamaguti, 1941) (Nematoda: Acanthocheilidae) from elasmobranchs in the Yellow Sea and Taiwan Strait off the coast of China. Syst Parasitol 2011; 81:115-23. [PMID: 22183921 DOI: 10.1007/s11230-011-9331-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/27/2011] [Indexed: 11/28/2022]
Abstract
Ascaridoid nematodes identified as Pseudanisakis rajae (Yamaguti, 1941) were collected from the skates Bathyraja smirnovi (Soldatov & Pavlenko), Okamejei kenojei (Müller & Henle) and Raja pulchra Liu (Rajiformes: Rajidae) in the Yellow Sea and Taiwan Strait off the coast of China. Their examination using light microscopy and, for the first time, scanning electron microscopy revealed erroneous and previously unreported morphological features, necessitating the redescription of this little known species. In addition, specimens of P. rajae collected from the three different hosts were characterised using molecular methods by sequencing and analysing the internal transcribed spacer (ITS) of the ribosomal DNA. These new morphological and molecular data enabled an updated diagnosis of this nematode and the presentation of an identification key to the species of Pseudanisakis Layman & Borovkova, 1926.
Collapse
Affiliation(s)
- Liang Li
- College of Life Science, Hebei Normal University, 050016 Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Kuhn T, García-Màrquez J, Klimpel S. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites. PLoS One 2011; 6:e28642. [PMID: 22180787 PMCID: PMC3236750 DOI: 10.1371/journal.pone.0028642] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/11/2011] [Indexed: 11/30/2022] Open
Abstract
Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area.
Collapse
Affiliation(s)
- Thomas Kuhn
- Biodiversity and Climate Research Centre (BiK-F, LOEWE), Medical Biodiversity and Parasitology; Senckenberg Gesellschaft für Naturforschung (SGN); Goethe-University (GO), Institute for Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| | - Jaime García-Màrquez
- Departamento de Gestión Ambiental, Carbones del Cerrejón Limited, Bogotá, Colombia
| | - Sven Klimpel
- Biodiversity and Climate Research Centre (BiK-F, LOEWE), Medical Biodiversity and Parasitology; Senckenberg Gesellschaft für Naturforschung (SGN); Goethe-University (GO), Institute for Ecology, Evolution and Diversity, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
47
|
Morphological and molecular evidence for a new species of the genus Raphidascaris (Nematoda: Anisakidae) from marine fishes from the South China Sea. Parasitol Res 2011; 110:1473-9. [DOI: 10.1007/s00436-011-2650-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
48
|
Lin Q, Li HM, Gao M, Wang XY, Ren WX, Cong MM, Tan XC, Chen CX, Yu SK, Zhao GH. Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA. Parasitol Res 2011; 110:1297-303. [PMID: 21870244 DOI: 10.1007/s00436-011-2618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 11/26/2022]
Abstract
In the present study, a total of 20 nematode isolates, (including 10 male and 10 female worms) representing Baylisascaris schroederi from 5 Qinling subspecies of giant pandas (Ailuropoda melanoleuca) in Shaanxi Province of China, were characterized and grouped genetically by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA). The rDNA fragment spanning 3' end of 18S rDNA, complete ITS-1 rDNA, and 5' end of 5.8S rDNA were amplified and sequenced. The sequence variability in ITS-1 rDNA was examined within B. schroederi and among parasites in order Ascaridata available in GenBank™, and their phylogenetic relationships were also reconstructed. The sequences of ITS-1 rDNA for all the B. schroederi isolates were 427 bp in length, with no genetic variation detected among these isolates. Phylogenetic analyses based on the ITS-1 rDNA sequences revealed that all the male and female B. schroederi isolates sequenced in the present study were posited into the clade of genus Baylisascaris, sistered to zoonotic nematodes in genus Ascaris, and the ITS-1 rDNA sequence could distinguish different species in order Ascaridata. These results showed that the ITS-1 rDNA provides a suitable molecular marker for the inter-species phylogenetic analysis and differential identification of nematodes in order Ascaridata.
Collapse
Affiliation(s)
- Q Lin
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ai L, Chen MX, Alasaad S, Elsheikha HM, Li J, Li HL, Lin RQ, Zou FC, Zhu XQ, Chen JX. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vectors 2011; 4:101. [PMID: 21658284 PMCID: PMC3121690 DOI: 10.1186/1756-3305-4-101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/10/2011] [Indexed: 12/30/2022] Open
Abstract
Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..
Collapse
Affiliation(s)
- Lin Ai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province 730046, P R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|