1
|
Younis SS, Salama AM, Elmehy DA, Heabah NA, Rabah HM, Elakshar SH, Awad RA, Gamea GA. Trichinella spiralis Larval Extract as a Biological Anti-Tumor Therapy in a Murine Model of Ehrlich Solid Carcinoma. Parasite Immunol 2024; 46:e13035. [PMID: 38712475 DOI: 10.1111/pim.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.
Collapse
Affiliation(s)
- Salwa S Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amina M Salama
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia A Elmehy
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nehal A Heabah
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanem M Rabah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sara H Elakshar
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa A Awad
- Department of Clinical Oncology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Gamea
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Petrová M, Hurníková Z, Lauková A, Dvorožňáková E. Antiparasitic Activity of Enterocin M and Durancin-like from Beneficial Enterococci in Mice Experimentally Infected with Trichinella spiralis. Microorganisms 2024; 12:923. [PMID: 38792753 PMCID: PMC11123709 DOI: 10.3390/microorganisms12050923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Beneficial/probiotic strains protect the host from pathogens by competitive displacement and production of antibacterial substances, i.e., bacteriocins. The antiparasitic potential of bacteriocins/enterocins and their producing strains in experimental murine trichinellosis were tested as a new therapeutic strategy. Enterocin M and Durancin-like and their producers Enterococcus faecium CCM8558 and Enterococcus durans ED26E/7 were administered daily to mice that were challenged with Trichinella spiralis. Our study confirmed the antiparasitic effect of enterocins/enterococci, which reduced the number of adults in the intestine (Enterocin M-43.8%, E. faecium CCM8558-54.5%, Durancin-like-16.4%, E. durans ED26E/7-35.7%), suppressed the Trichinella reproductive capacity ex vivo (Enterocin M-61%, E. faecium CCM8558-74%, Durancin-like-38%, E. durans ED26E/7-66%), and reduced the number of muscle larvae (Enterocin M-39.6%, E. faecium CCM8558-55.7%, Durancin-like-15%, E. durans ED26E/7-36.3%). The direct effect of enterocins on Trichinella fecundity was documented by an in vitro test in which Durancin-like showed a comparable reducing effect to Enterocin M (40-60%) in contrast to the ex vivo test. The reducing activity of T.spiralis infection induced by Enterocin M was comparable to its strain E. faecium CCM8558; Durancin-like showed lower antiparasitic activity than its producer E. durans ED26E/7.
Collapse
Affiliation(s)
- Miroslava Petrová
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, 040 01 Kosice, Slovakia;
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia; (M.P.); (Z.H.)
| |
Collapse
|
3
|
Pang JD, Jin XM, Liu Y, Dong ZJ, Ding J, Boireau P, Vallée I, Liu MY, Xu N, Liu XL. Trichinella spiralis inhibits myoblast differentiation by targeting SQSTM1/p62 with a secreted E3 ubiquitin ligase. iScience 2024; 27:109102. [PMID: 38380253 PMCID: PMC10877949 DOI: 10.1016/j.isci.2024.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Trichinella spiralis infection is associated with the formation of cysts within host skeletal muscle cells, thereby enabling immune evasion and subsequent growth and development; however, the pathogenic factors involved in this process and their mechanisms remain elusive. Here, we found that Ts-RNF secreted by T. spiralis is required for its growth and development in host cells. Further study revealed that Ts-RNF functions as an E3 ubiquitin ligase that targets the UBA domain of SQSTM1/p62 by forming K63-type ubiquitin chains. This modification interferes with autophagic flux, leading to impaired mitochondrial clearance and abnormal myotube differentiation and fusion. Our results established that T. spiralis increases its escape by interfering with host autophagy via the secretion of an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Jian da Pang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xue min Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Zi jian Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pascal Boireau
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Isabelle Vallée
- Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Ming yuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225000, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xiao lei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| |
Collapse
|
4
|
Saracino MP, Vila CC, Baldi PC, González Maglio DH. Searching for the one(s): Using Probiotics as Anthelmintic Treatments. Front Pharmacol 2021; 12:714198. [PMID: 34434110 PMCID: PMC8381770 DOI: 10.3389/fphar.2021.714198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Helminths are a major health concern as over one billion people are infected worldwide and, despite the multiple efforts made, there is still no effective human vaccine against them. The most important drugs used nowadays to control helminth infections belong to the benzimidazoles, imidazothiazoles (levamisole) and macrocyclic lactones (avermectins and milbemycins) families. However, in the last 20 years, many publications have revealed increasing anthelmintic resistance in livestock which is both an economical and a potential health problem, even though very few have reported similar findings in human populations. To deal with this worrying limitation of anthelmintic drugs, alternative treatments based on plant extracts or probiotics have been developed. Probiotics are defined by the Food and Agriculture Organization as live microorganisms, which, when consumed in adequate amounts, confer a health benefit to the host. It has been proven that probiotic microbes have the ability to exert an immunomodulatory effect both at the mucosa and the systemic level. The immune response against gastrointestinal helminths is characterized as a type 2 response, with high IgE levels, increased numbers and/or activity of Th2 cells, type 2 innate lymphoid cells, eosinophils, basophils, mast cells, and alternatively activated macrophages. The oral administration of probiotics may contribute to controlling gastrointestinal helminth infections since it has been demonstrated that these microorganisms stimulate dendritic cells to elicit a type 2 or regulatory immune response, among other effects on the host immune system. Here we review the current knowledge about the use of probiotic bacteria as anthelmintic therapy or as a complement to traditional anthelmintic treatments. Considering all research papers reviewed, we may conclude that the effect generated by probiotics on helminth infection depends not only on the parasite species, their stage and localization but also on the administration scheme.
Collapse
Affiliation(s)
- Maria Priscila Saracino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Celeste Vila
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo César Baldi
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Horacio González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Grzelak S, Stachyra A, Moskwa B, Bień-Kalinowska J. Exploiting the potential of 2D DIGE and 2DE immunoblotting for comparative analysis of crude extract of Trichinella britovi and Trichinella spiralis muscle larvae proteomes. Vet Parasitol 2020; 289:109323. [PMID: 33278763 DOI: 10.1016/j.vetpar.2020.109323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/01/2022]
Abstract
The Trichinella genus poses an interesting puzzle for researchers, having diverged very early in the evolution of the nematodes. The Trichinella spiralis proteome is a cosmopolitan and well-studied model of Trichinella; however, Trichinella britovi also circulates in the sylvatic environment and both species infect humans, resulting in the development of trichinellosis. Few experiments have examined the proteins belonging to the T. britovi proteome. The aim of the present study was to compare the protein expression profiles of crude extracts of T. spiralis and T. britovi muscle larvae using a highly-sensitive two-dimensional differential in-gel electrophoresis (2D DIGE) technique coupled with 2DE immunoblotting. Selected immunoreactive protein spots were then identified by liquid chromatography coupled with mass spectrometry analysis (LC-MS/MS), and their function in Trichinella and the host-parasite interaction was determined by gene ontology analysis. Spots common to both T. spiralis and T. britovi, spots with different expressions between the two and spots specific to each species were labelled with different cyanine dyes. In total, 196 protein spots were found in both proteomes; of these 165 were common, 23 expressed exclusively in T. spiralis and 8 in T. britovi. A comparative analysis of volume ratio values with Melanie software showed that among the common spots, nine demonstrated higher expression in T. spiralis, and 17 in T. britovi. LC-MS/MS analysis of 11 selected spots identified 41 proteins with potential antigenic characteristics: 26 were specific for T. spiralis, six for T. britovi, and eight were found in both proteomes. Gene Ontology analysis showed that the identified T. spiralis proteins possess hydrolytic endopeptidase, endonuclease and transferase activities. Similarly, most of the T. britovi proteins possess catalytic activities, such as lyase, hydrolase, isomerase and peptidase activity. The applied 2D DIGE technique visualized Trichinella spp. protein spots with different molecular weights or isoelectric point values, as well as those with different expression levels. The identified immunoreactive proteins participate in multiple processes associated with host muscle cell invasion and larval adaptation to the host environment. Their reactivity with the host immune system makes them possible candidates for the development of a novel trichinellosis diagnostic test or vaccine against helminthiasis caused by T. spiralis or T. britovi.
Collapse
Affiliation(s)
- Sylwia Grzelak
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Anna Stachyra
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Bożena Moskwa
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Justyna Bień-Kalinowska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
6
|
Gondek M, Knysz P, Pomorska-Mól M, Ziomek M, Bień-Kalinowska J. Acute phase protein pattern and antibody response in pigs experimentally infected with a moderate dose of Trichinella spiralis, T. britovi, and T. pseudospiralis. Vet Parasitol 2020; 288:109277. [PMID: 33130498 DOI: 10.1016/j.vetpar.2020.109277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to evaluate the acute-phase protein (APP) response in three groups of pigs experimentally infected with a moderate infective dose, i.e. 1000 muscle larvae (ML) of Trichinella spiralis, 3000 ML of Trichinella britovi, and 2000 ML of Trichinella pseudospiralis. Over a 62-day period of infection, we examined the serum level and kinetics of the haptoglobin (Hp), C-reactive protein (CRP), serum amyloid A (SAA), and pig major acute-phase protein (pig-MAP). In addition, to better understand the immune response of pigs experimentally infected with three different species of Trichinella, the kinetics of IgG and IgM antibodies against excretory-secretory (ES) antigens of Trichinella ML were also investigated. In order to assess anti-Trichinella IgG dynamics, we used a commercial and an in-house ELISA based on both heterologous (T. spiralis) and homologous (T. spiralis, T. britovi, and T. pseudospiralis) Trichinella species ES antigens. Among the four APPs analyzed, the concentration of CRP and pig-MAP significantly increased only in T. britovi-infected swine when compared with control pigs. This took place as early as 6 days post-infection (dpi). Hp was the only APP whose concentration significantly increased in pigs infected with T. pseudospiralis, this occurring as late as on day 62 pi. Despite the statistical differences found, increases in pig-MAP, CRP, and Hp levels were rather mild and transitory; none of these proteins were found to be elevated in the serum of all experimental groups of pigs at the same time point after infection. Specific IgG antibodies against ES antigens of Trichinella ML were first detected by the commercial and in-house T. spiralis ML ES-antigen ELISAs on days 30, 36 and 36 pi in pigs experimentally infected with T. spiralis, T. britovi, and T. pseudospiralis, respectively. However, seroconversion in pigs experimentally infected with T. britovi was detected slightly earlier (30 dpi) when the ELISA based on homologous rather than heterologous ES antigens was applied. In serum samples from pigs infected with T. spiralis, statistically significant increases in the level of specific IgM antibodies against T. spiralis ML ES antigens were first detected on day 30 pi and after this time, their concentration began to decrease. No changes in the level of anti-Trichinella IgM were observed in T. britovi- or T. pseudospiralis-infected pigs throughout the entire period of the experiment.
Collapse
Affiliation(s)
- Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Knysz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Justyna Bień-Kalinowska
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| |
Collapse
|
7
|
Wu H, Li M, Shao X, An Z, Du J, Yin H, Pan J, Li S, Zhang Y, Du L. Trichinella spiralis muscle larvae excretory/secretory products trigger apoptosis and S-phase arrest of the non-small-cell lung cancer line A549. Exp Parasitol 2020; 218:107983. [PMID: 32861680 DOI: 10.1016/j.exppara.2020.107983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Trichinella spiralis (T. spiralis) muscle larvae (ML) excretory/secretory products (ESPs) are antitumor substances extracted from the culture medium of T. spiralis ML. The ESPs inhibit tumor growth and induce tumor cell apoptosis. To explore the effects of these products on the non-small-cell lung cancer (NSCLC) line A549, logarithmically growing A549 cells were co-cultured with different concentrations of T. spiralis ML ESPs for 24, 36 and 48 h. Our results showed that T. spiralis ML ESPs significantly inhibited A549 cells proliferation, which was dose-and time-dependent. To evaluate the inhibition by T. spiralis ML ESPs of the growth of A549 cells, we assayed their apoptosis and cell-cycle distribution by flow cytometry (FCM). To determine whether ESPs induced apoptosis of A549 cells via the mitochondrial pathway, we evaluated the levels of mitochondrion-related factors by Western blotting. The FCM indicated a clear trend toward apoptosis of A549 cells co-cultured with ESPs for 24 h. The cells were blocked in S-phase. Western blotting revealed that the expression levels of the genes encoding Bax, caspase-3, and caspase-9 increased (compared to a control group), and the Bcl-2 gene expression level decreased. Our results suggest that T. spiralis ML ESPs induce apoptosis of the NSCLC line A549 via the mitochondrial pathway; the cells become arrested in S-phase. This may explain the antineoplastic activity of T. spiralis ML ESPs.
Collapse
Affiliation(s)
- Heliang Wu
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Meichen Li
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xinnuo Shao
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Zixi An
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jingjing Du
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Haofeng Yin
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Jingdan Pan
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Shichang Li
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Yinguang Zhang
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China
| | - Luanying Du
- Department of Pathogenic Biology, Chengde Medical University, Chengde, 067000, Hebei, China.
| |
Collapse
|
8
|
Chu KB, Lee HA, Moon EK, Quan FS. Resistance against Trichinella spiralis infection in pups delivered by T. spiralis-infected dam. Vet Parasitol 2019; 273:60-66. [PMID: 31442895 DOI: 10.1016/j.vetpar.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Maternal antibody transmission via placenta and breastmilk are known to confer protection in infants. In this study, we investigated the maternal immunity transmission in pups delivered by rats infected with Trichinella spiralis and assessed the resulting resistance against subsequent parasitic infection. Our results revealed that parasite-specific IgG, IgG1 and IgG2a antibodies were present in pups prior to breastmilk ingestion (pre-milk), in which IgG and IgG1 antibodies persisted until week 8 after birth while parasite-specific IgG2a antibodies only lasted until week 4. After weaning on week 3, pups delivered by T. spiralis-infected dam and subsequently challenge-infected (immune-challenge) were found to possess higher mucosal IgG antibodies than control groups, whereas mucosal IgA levels were not significantly different across all groups. T. spiralis excretory-secretory antigen was discovered to react with pup sera until week 8, correlating with the resistance against parasitic infection which is represented by lessened worm burden. Upon T. spiralis infection at weeks 3 and 8, lower levels of eosinophil responses were detected in immune-challenge pups compared to naïve-challenge pups, indicating correlates of resistances in which ADCC may be involved. Findings from the present study demonstrate that resistances against T. spiralis infection in pups can be acquired by maternally-derived IgG, IgG1 and IgG2a antibody transmission through the placenta and breastmilk from T. spiralis-infected dam, which lasts until week 8.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Liao C, Cheng X, Liu M, Wang X, Boireau P. Trichinella spiralis and Tumors: Cause, Coincidence or Treatment? Anticancer Agents Med Chem 2019; 18:1091-1099. [PMID: 29173187 PMCID: PMC6340159 DOI: 10.2174/1871520617666171121115847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
Abstract
Background: Conventional therapeutic strategies for tumors have had limited success, and innovative and more effective approaches to treatment are urgently required. The ancient idea that various biological, bacterial, yeast, viral, and para-sitic agents can be used as cancer therapeutics has gradually attracted considerable interest. Certain parasites have been widely discussed in association with human and animal tumors. The purpose of this review was to examine previous literatures which investigates the relations between Trichinella spiralis (T. spiralis) and tumors. Methods: Using PubMed, articles published before 2018 in the whole world have been searched and comprehensively re-viewed. Results: Many researches have provided proofs that T. spiralis possesses antitumor activities. The antitumor effect of T. spi-ralis was first described in the 1970s. However, its research has been inconsistent, and little progress has been made in this field. Therefore, the mechanisms underlying these inhibitory effects are still unclear, and convincing evidence of the links be-tween T. spiralis and the prevention or treatment of tumors from clinical trials is absent. Meanwhile, some other researches al-so suggested that T. spiralis may cause or contribute to coinfection with a tumors. Conclusion: The review has highlighted the scientific literature focussing on evidence for T. spiralis to act as a pro- or anti-tumorigenic agent is summarized and discussed, in hope of contributing to a better understanding of the relations between T. spiralis and tumors
Collapse
Affiliation(s)
- Chengshui Liao
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health/ College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuelin Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pascal Boireau
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China.,OIE Collaborating Center for Food-Borne Parasites in the Asian-Pacific Region, Changchun, China.,ANSES, Laboratory for Animal Health, Maisons-Alfort, France
| |
Collapse
|
10
|
Hasby Saad M, Safwat O, El-Guindy D, Raafat R, Elgendy D, Hasby E. Biomolecular Changes and Cortical Neurodegenerative Lesions in Trichinella Spiralis Infected BALB/c Mice: A Preliminary Study Elucidating a Potential Relationship Between Systemic Helminthic Infections and Idiopathic Parkinson's. Helminthologia 2018; 55:261-274. [PMID: 31662657 PMCID: PMC6662001 DOI: 10.2478/helm-2018-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
Idiopathic Parkinson's (IP) is a neurodegenerative disease that is suspected to be due to exposure to infections during early life. Toxoplasmosishas been the only suspected parasitic infection in IP (Celik et al., 2010). Recently, some non-central nervous system bacterial and viral infections have been incriminated in IP (Çamcı & Oğuz, 2016). So in the current study, we tried to explore if the systemic inflammatory reactions triggered by some helminths like Trichinella spiralis can induce Parkinsonian lesions in the brain, especially that the cerebral complications have been reported in 10-20% of Trichinella spiralis infected patients . An experimental study was designed to assess the neurodegenerative and biomolecular changes that may occur in Trichinella spiralis infected BALB/C mice in comparison to rotenone induced PD model and apparently healthy ones. The motor affection was significantly lesser in the Trichinella infected mice than the Parkinson's model, but when the catalepsy score was calculated (through the grid and bar tests) it was found to be significantly higher in the infected mice than in the healthy ones. A significant increase in the blood advanced oxidative protein products (AOPP), IFN-γ, TGF-β, and brain DNA fragmentation was also detected in the Trichinella spiralis infected mice. After histopathological examination, a significant increase in the cortical apoptotic neurons and Lewy's body were observed in the Trichinella infected and the rotenone induced Parkinson's model sections. A significant decrease in the immunohistochemical expression of the tyrosine hydroxylase expression in the brain sections and the ELISA measured dopamine level in the brain homogenate was also reported in the infected mice group. This study findings may collectively suggest that the systemic inflammatory reactions and the oxidative stresses associated with some systemic helminthic infections like trichinellosis are possible to precipitate neurodegenerative lesions and biomolecular changes in the brain , and manifest with IPD later in life.
Collapse
Affiliation(s)
- M. Hasby Saad
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - O. Safwat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. El-Guindy
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - R. Raafat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. Elgendy
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - E. Hasby
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| |
Collapse
|
11
|
The resistance against Trichinella spiralis infection induced by primary infection with respiratory syncytial virus. Parasitology 2018; 146:634-642. [PMID: 30394235 DOI: 10.1017/s0031182018001889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human infections with Trichinella spiralis and respiratory syncytial virus (RSV) are common, as T. spiralis infections are re-emerging in various parts of the world and RSV infections remain a threat for infants. Yet, studies investigating the relationship pertaining to the two are severely lacking. In particular, immune response induction via RSV and T. spiralis remain largely elusive. Here, we investigated the resistance against T. spiralis infection induced upon primary infection with RSV. RSV, notorious for causing severe inflammatory reaction in the lungs, were intranasally infected, followed with a T. spiralis infection in mice. Our results revealed that primary RSV infection in mice significantly raised T. spiralis-specific and total IgE, IgG and its subclass antibody responses upon T. spiralis challenge infection (RSV-Ts). Blood eosinophil levels were decreased in RSV-Ts, accompanied with significant increase in both Th1 and Th2 cytokines. Antibodies generated against RSV in RSV-infected mice were found to react with T. spiralis excretory/secretory antigen, showing several bands determined through immunoblotting. RSV-Ts also had a marked reduction of T. spiralis worm burden in diaphragm. These results indicate that immune responses induced by RSV infection contribute to resistance against subsequent T. spiralis infection.
Collapse
|
12
|
Etewa SE, Fathy GM, Abdel-Rahman SA, El-Khalik DA, Sarhan MH, Badawey MS. The impact of anthelminthic therapeutics on serological and tissues apoptotic changes induced by experimental trichinosis. J Parasit Dis 2018; 42:232-242. [PMID: 29844628 PMCID: PMC5962499 DOI: 10.1007/s12639-018-0990-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022] Open
Abstract
Trichinosis is a sharable parasitic disease caused by Trichinella spp., the disease occurred on eating inappropriate cooked pork infected by the parasite encysted larvae. This study aimed to evaluate experimentally the impact of treatment by thiabendazole, praziquantel (PZQ) and prednisone on T. spiralis induced parasitological, serological and apoptotic changes. Forty albino rats were infected orally each by ± 1000 larvae, divided into four groups each of 10 rats, group (A) infected control, group (B) thiabendazole tested, group (C) PZQ tested and group (D) prednisone tested. On the seventh and 40th days post-infection, all groups were evaluated parasitologically by the number of the intestinal worms and the muscular encysted larvae, while IFN-γ and TNF-α were estimated by ELISA, histopathological and histochemical assessment of the tissue changes during both phases were performed by different stains. In conclusion, thiabendazole was a potent and curable drug, it showed nearly 100% efficacy on intestinal worms, highly significant variations in cytokines levels during both the intestinal and muscular phases, while it induced moderate effects on encysted muscular larvae number, In addition it ameliorated myocytes apoptotic changes induced by trichinosis.
Collapse
Affiliation(s)
- Samia E. Etewa
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada M. Fathy
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara A. Abdel-Rahman
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia Abd El-Khalik
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H. Sarhan
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha S. Badawey
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Bucková B, Hurníková Z, Lauková A, Revajová V, Dvorožňáková E. The Anti-parasitic Effect of Probiotic Bacteria via Limiting the Fecundity of Trichinella Spiralis Female Adults. Helminthologia 2018; 55:102-111. [PMID: 31662635 PMCID: PMC6799552 DOI: 10.2478/helm-2018-0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
A potential protective effect of probiotic strains against zoonotic Trichinella spiralis infection was investigated in the framework of a new therapeutic strategy aimed at using probiotics to control parasitic zoonoses. The study was focused on the impact of six selected probiotic (bacteriocinogenic) strains on the intensity of T. spiralis infection and female fecundity ex vivo and in vitro. Bacterial strains of different origin (Enterococcus faecium EF55, Enterococcus faecium 2019 = CCM7420, Enterococcus faecium AL41 = CCM8558, Enterococcus durans ED26E/7, Lactobacillus fermentum AD1 = CCM7421, Lactobacillus plantarum 17L/1) were administered daily in a dose of 109 CFU/ml in 100 μl, and mice were infected with 400 T. spiralis larvae on day 7 of treatment. Female adults of T. spiralis were isolated on day 5 post infection (p.i.) and subsequently were used in fecundity test ex vivo. E. faecium CCM8558, E. faecium CCM7420 and E. durans ED26E/7 strains significantly reduced the number of adults in the intestine. The application of L. fermentum CCM7421, L. plantarum 17L/1, E. faecium CCM8558 and E. durans ED26E/7 caused a significant decrease in the number of muscle larvae. The treatment with E. faecium CCM8558 and E. durans ED26E/7 showed the highest inhibitory effect on female fecundity (94 %). The number of newborn larvae (NBL) was also significantly decreased after administration of L. fermentum CCM7421 and L. plantarum 17L/1 (80 %). A direct impact of probiotic strains on female reproductive capacity was examined in vitro in females isolated from untreated infected mice on day 5 p.i. A correlation was found between the inhibitory effect and the concentration of probiotic strains. The reduction effects of the strains manifested as follows: L. fermentum CCM7421 (93 %), E. faecium CCM8558, L. plantarum 17L/1, E. faecium EF55 (about 80 %), E. faecium CCM7420 and E. durans ED26E/7 (about 60 %).
Collapse
Affiliation(s)
- B. Bucková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001Košice, Slovakia
| | - Z. Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001Košice, Slovakia
| | - A. Lauková
- Institute of Animal Physiology – Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4, 040 01Košice, Slovakia
| | - V. Revajová
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81Košice, Slovakia
| | - E. Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001Košice, Slovakia
| |
Collapse
|
14
|
Zhang R, Sun Q, Chen Y, Sun X, Gu Y, Zhao Z, Cheng Y, Zhao L, Huang J, Zhan B, Zhu X. Ts-Hsp70 induces protective immunity against Trichinella spiralis infection in mouse by activating dendritic cells through TLR2 and TLR4. PLoS Negl Trop Dis 2018; 12:e0006502. [PMID: 29775453 PMCID: PMC5979045 DOI: 10.1371/journal.pntd.0006502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 05/05/2018] [Indexed: 02/03/2023] Open
Abstract
Background Trichinellosis is a serious food-borne parasitic zoonosis worldwide. In the effort to develop vaccine against Trichinella infection, we have identified Trichinella spiralis Heat shock protein 70 (Ts-Hsp70) elicits partial protective immunity against T. spiralis infection via activating dendritic cells (DCs) in our previous study. This study aims to investigate whether DCs were activated by Ts-Hsp70 through TLR2 and/or TLR4 pathways. Methods and findings After blocking with anti-TLR2 and TLR4 antibodies, the binding of Ts-Hsp70 to DCs was significantly reduced. The reduced binding effects were also found in TLR2 and TLR4 knockout (TLR2-/- and TLR4-/-) DCs. The expression of TLR2 and TLR4 on DCs was upregulated after treatment with Ts-Hsp70 in vitro. These results suggest that Ts-Hsp70 is able to directly bind to TLR2 and TLR4 on the surface of mouse bone morrow-derived DCs. In addition, the expression of the co-stimulatory molecules (CD80, CD83) on Ts-Hsp70-induced DCs was reduced in TLR2-/- and TLR4-/- mice. More evidence showed that Ts-Hsp70 reduced its activation on TLR2/4 knockout DCs to subsequently activate the naïve T-cells. Furthermore, Ts-Hsp70 elicited protective immunity against T. spiralis infection was reduced in TLR2-/- and TLR4-/- mice correlating with the reduced humoral and cellular immune responses. Conclusion This study demonstrates that Ts-Hsp70 activates DCs through TLR2 and TLR4, and TLR2 and TLR4 play important roles in Ts-Hsp70-induced DCs activation and immune responses. Trichinellosis is a serious food-borne parasitic zoonosis caused by tissue-dwelling nematode Trichinella spiralis. Vaccine development is needed as an alternative approach to control the infection in domestic livestock or in humans. Ts-Hsp70 has been identified to elicit partial protective immunity against Trichinella spiralis infection via activating dendritic cells (DCs) in our previous study. This study aims to investigate the pathway(s) through which the Ts-Hsp70 activates DCs. Our results identified that Ts-Hsp70 could bind to DCs which was inhibited by blocking TLR2 and TLR4 with antibodies or TLR2 and TLR4 knockout. Ts-Hsp70 stimulated the expression of TLR2 and TLR4 and the co-stimulatory CD80, CD83 and CD86 on the surface of DCs which was reduced in TLR2 or TLR4 knockout mice. With TLR2 or TLR4 knockout, DCs were less stimulated by Ts-Hsp70 and subsequently reduce the activation of naïve T-cells. The protective immunity induced by Ts-Hsp70 against T. spiralis infection was also reduced in TLR2 or TLR4 knockout mice. The results conclude that Ts-Hsp70 activates DCs through activating TLR2 and TLR4 and TLR2 and TLR4 play important roles in Ts-Hsp70-induced protective immunity against Trichinella infection.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Qing Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhang Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Limei Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Research Centre of Microbiome, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Yang Z, Li W, Yang Z, Pan A, Liao W, Zhou X. A novel antigenic cathepsin B protease induces protective immunity in Trichinella-infected mice. Vaccine 2017; 36:248-255. [PMID: 29199042 DOI: 10.1016/j.vaccine.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Trichinellosis is a foodborne disease that remains a public health hazard and an economic problem in food safety. Vaccines against the parasite can be an effective way to control this disease; however, commercial vaccines against Trichinella infection are not yet available. Trichinella cathepsin B proteins appear to be promising targets for vaccine development. Here, we reported for the first time the characterization of a novel cDNA that encodes Trichinella spiralis (T. spiralis) cathepsin B-like protease 2 gene (TsCPB2). The recombinant mature TsCPB2 protein was successfully expressed in E. coli system and purified with Ni-affinity chromatography. TsCPB2 expression was detected at all the developmental stages of T. spiralis and it was expressed as an excretory-secretory protein of T. spiralis muscle larvae. Immunization with TsCPB2 antigen induced a combination of humoral and cellular immune responses, which manifested as a mixed Th1/Th2 response, as well as remarkably elevated IgE level. Moreover, vaccination of mice with TsCPB2 that were subsequently challenged with T. spiralis larvae resulted in a 52.3% (P < .001) reduction in worm burden and a 51.2% (P < .001) reduction in muscle larval burden. Our results suggest that TsCPB2 induces protective immunity in Trichinella-infected mice and might be a novel vaccine candidate against trichinellosis.
Collapse
Affiliation(s)
- Zhaoshou Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenjie Li
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zifan Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Aihua Pan
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wanqin Liao
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| | - Xingwang Zhou
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
16
|
Xu N, Liu X, Tang B, Wang L, Shi HN, Boireau P, Liu M, Bai X. Recombinant Trichinella pseudospiralis Serine Protease Inhibitors Alter Macrophage Polarization In Vitro. Front Microbiol 2017; 8:1834. [PMID: 28983296 PMCID: PMC5613137 DOI: 10.3389/fmicb.2017.01834] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/07/2017] [Indexed: 11/13/2022] Open
Abstract
During parasite infection, serine protease inhibitors secreted by parasites play important roles in suppressing host defenses. However, the mechanism of immune regulation is unclear. In this study, a serpin gene from Trichinella pseudospiralis, named Tp-Serpin, was cloned and expressed, in order to reveal its role in the regulation of the host immune response in T. pseudospiralis infection. The results showed that Tp-Serpin encodes a 43 kDa protein that was recognized by serum from T. pseudospiralis infected mice at 60 days post-infection (dpi). Tp-Serpin was found to be expressed at all developmental stages of T. pseudospiralis. Inhibitory activity analysis showed that recombinant Tp-Serpin (rTp-Serpin) effectively inhibited the hydrolytic activity of porcine pancreatic elastase (elastase P), human neutrophil elastase (elastase H), and mouse mast cell protease-1, but showed little inhibitory for human neutrophil cathepsin G (cathepsin G). Furthermore, rTp-Serpin induced polarization of macrophages toward the alternatively activated phenotype (M2) alone by activation of the signal transducer and activator of transcription 3 signaling pathway, and inhibited lipopolysaccharide-induced classically activation (M1) in vitro. These data preliminarily demonstrate that Tp-Serpin may play an important role in the immunoregulation of T. pseudospiralis infection by activating the M2-polarized signaling pathway.
Collapse
Affiliation(s)
- Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Libo Wang
- Yunnan Institute of Parasitic DiseasesPuer, China
| | - Hai N Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital, BostonMA, United States
| | - Pascal Boireau
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Laboratory for Animal Health, ANSES, INRA, ENVA, Université Paris-EstChamps-sur-Marne, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
17
|
Nonencapsulated Trichinella pseudospiralis Infection Impairs Follicular Helper T Cell Differentiation with Subclass-Selective Decreases in Antibody Responses. Infect Immun 2016; 84:3550-3556. [PMID: 27736779 DOI: 10.1128/iai.00597-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 11/20/2022] Open
Abstract
Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b+ spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation.
Collapse
|
18
|
Developmental profile of select immune cells in mice infected with Trichinella spiralis during the intestinal phase. Vet Parasitol 2016; 231:77-82. [PMID: 27501987 DOI: 10.1016/j.vetpar.2016.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/21/2022]
Abstract
Trichinella spiralis can cause immunosuppression during the intestinal phase of early infection. However, changes in the peripheral blood during T. spiralis early infection remain unclear. Here, select immune cells in mice infected with 500 muscle larvae (ML) of T. spiralis during the intestinal phase of infection were studied. First, the recovery rates of the intestinal worms and female fecundity were determined, and the results showed that the intestinal worms were completely eliminated at 17 days post-infection (dpi) and that large numbers of new-born larvae (NBL) were generated from 5 to 9dpi. Using flow cytometry, it was shown that the number of CD4+ T cells and CD8+ T cells increased over the entire intestinal phase, except on 7dpi when CD4+ T cells decreased significantly compared to the control groups. Although both CD4+ and CD8+ T cells increased, CD8+ T cells increased more than CD4+ T cells, leading to a lower CD4+/CD8+ ratio compared to the control group. Subsequently, a depression of the proliferative response of T cells to concanavalin A (Con A) was noticed at 7 and 11dpi. Although the proliferative response of B cells to LPS was enhanced, the number of B cells from mouse peripheral blood stimulated by T. spiralis antigens showed no differences with the control group prior to 11dpi. The expression of CD14 on monocyte-macrophages decreased during the same period, which meant that the antigen-presenting response was reduced in the immune system of the infected mice. Moreover, the alternatively activated macrophages were induced in T. spiralis early infection. These data provide a better understanding of the development of the intestinal immune response in mice infected with T. spiralis.
Collapse
|
19
|
Dvorožňáková E, Dvorožňáková M, Šoltys J. Heavy metal intoxication compromises the host cytokine response in Ascaris Suum model infection. Helminthologia 2016. [DOI: 10.1515/helmin-2015-0063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Summary
Lead (Pb), Cadmium (Cd) and Mercury (Hg) are recognized for their deleterious effect on the environment and immunity where subsequently compromised immune response affects the susceptibility to the potential parasitic infections. This study examined the host cytokine response after heavy metal intoxication (Pb, Cd, and Hg) and subsequent Ascaris suum infection in BALB/c mice. Pb modulated murine immune response towards the Th2 type of response (delineated by IL-5 and IL-10 cytokine production) what was also dominant for the outcome of A. suum infection. Chronic intoxication with Pb caused a more intensive development of the parasite infection. Cd stimulated the Th1 immune response what was associated with increase in IFN-γ production and reduction of larvae present in the liver of intoxicated mice. The larval burden was also low in mice intoxicated with Hg. This was probably not related to the biased Th1/Th2 type of immune response, but rather to the bad host conditions caused by mercury toxicity and high level of pro-cachectic cytokine TNF-α.
Collapse
Affiliation(s)
- E. Dvorožňáková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
| | - M. Dvorožňáková
- Eastern Slovak Institute for Cardiovascular Diseases, Košice, Slovak Republic
| | - J. Šoltys
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
| |
Collapse
|
20
|
Deng G, Deng R, Yao J, Liao B, Chen Y, Wu Z, Hu H, Zhou X, Ma Y. Trichinella spiralis infection changes immune response in mice performed abdominal heterotopic cardiac transplantation and prolongs cardiac allograft survival time. Parasitol Res 2015; 115:407-14. [DOI: 10.1007/s00436-015-4762-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
21
|
Induction of protection in murine experimental models againstTrichinella spiralis: an up-to-date review. J Helminthol 2015; 89:526-39. [DOI: 10.1017/s0022149x15000140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThe parasitic nematodeTrichinella spiralis, an aetiological agent of the disease known as trichinellosis, infects wild and domestic animals through contaminated pig meat, which is the major source forTrichinellatransmission. Prevention of this disease by interrupting parasite transmission includes vaccine development for livestock; however, major challenges to this strategy are the complexity of theT. spiralislife cycle, diversity of stage-specific antigens, immune-evasion strategies and the modulatory effect of host responses. Different approaches have been taken to induce protective immune responses byT. spiralisimmunogens. These include the use of whole extracts or excretory–secretory antigens, as well as recombinant proteins or synthesized epitopes, using murine experimental models for trichinellosis. Here these schemes are reviewed and discussed, and new proposals envisioned to block the zoonotic transmission of this parasite.
Collapse
|
22
|
Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells. Vet Parasitol 2013; 196:106-13. [PMID: 23499484 DOI: 10.1016/j.vetpar.2013.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 12/24/2022]
Abstract
Recently, attempts have been made to use parasites as novel candidates for live vaccine vectors against solid tumors. In this study, we examined the effects of Trichinella spiralis (T. spiralis) infection on solid tumor growth and metastasis. After oral infection with T. spiralis larvae, B16-F10 cells were injected subcutaneously and intravenously into C57BL/6 mice to evaluate tumor growth and metastatic potential, respectively. Tumor growth and lung metastases in T. spiralis infected mice were significantly reduced compared with control mice. To elucidate the mechanism of tumor reduction by parasitic infection, we conducted cytokine arrays using mouse serum. CXCL9 and CXCL10 were increased in the infection group and decreased in the infection-tumor group. However, the expression level was not changed in the infection-metastasis group compared to the infection or control-metastasis groups. Although SDF-1 and IL-4 were increased in the infection group, there was no significant change in expression in the infection-tumor group or the infection-metastasis group. Additionally, IL-4 and KC were increased in the infection-tumor group compared to the control-tumor group, but there was no difference in expression between the control-metastasis group and the infection-metastasis group. CXCL13 was significantly increased in the infection-metastasis group only. These results suggest that T. spiralis infection reduced tumor growth and metastasis through a complex transition in cytokine regulation profiles including CXCL9, CXCL10, and CXCL13.
Collapse
|
23
|
Franssen FFJ, Fonville M, Takumi K, Vallée I, Grasset A, Koedam MA, Wester PW, Boireau P, van der Giessen JWB. Antibody response against Trichinella spiralis in experimentally infected rats is dose dependent. Vet Res 2011; 42:113. [PMID: 22129040 PMCID: PMC3247182 DOI: 10.1186/1297-9716-42-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022] Open
Abstract
Domestic pigs are the main representatives of the domestic cycle of Trichinella spiralis that play a role in transmission to humans. In Europe, backyard pigs of small household farms are the most important risks for humans to obtain trichinellosis. Rats might play a role in the transmission of Trichinella spiralis from domestic to sylvatic animals and vice versa. In order to be able to investigate the role of wild rats in the epidemiology of T. spiralis in The Netherlands, we studied the dynamics of antibody response after T. spiralis infections in experimental rats, using infection doses ranging from very low (10 muscle larvae, ML, per rat) to very high (16 000 ML per rat). To evaluate the feasibility of rats surviving high infection doses with T. spiralis, clinical and pathological parameters were quantified. Serological tools for detecting T. spiralis in rats were developed to quantitatively study the correlation between parasite load and immunological response. The results show that an infection dose-dependent antibody response was developed in rats after infection with as low as 10 ML up to a level of 10 000 ML. A positive correlation was found between the number of recovered ML and serum antibody levels, although specific measured antibody levels correspond to a wide range of LPG values. Serum antibodies of rats that were infected even with 10 or 25 ML could readily be detected by use of the T. spiralis western blot 2 weeks post infection. We conclude that based on these low infection doses, serologic tests are a useful tool to survey T. spiralis in wild rats.
Collapse
Affiliation(s)
- Frits F J Franssen
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|