1
|
Kalaivani K, Senthil-Nathan S, Stanley-Raja V, Vasantha-Srinivasan P. Physiological and biochemical alterations in Vigna rdiate L. triggered by sesame derived elicitors as defense mechanism against Rhizoctonia and Macrophomina infestation. Sci Rep 2023; 13:13884. [PMID: 37620354 PMCID: PMC10449866 DOI: 10.1038/s41598-023-39660-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Improving agricultural products by the stimulation of plant growth and defense mechanisms by priming with plant extracts is needed to attain sustainability in agriculture. This study focused to consider the possible improvement in Vigna radiata L. seed germination rate, plant growth, and protection against the natural stress by increasing the defense mechanisms through the incorporation of Sesamum indicum phytochemical compounds with pre-sowing seed treatment technologies. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis revealed that the methanol extract of S. indicum leaf extract contained eight major bioactive compounds, namely, 2-ethylacridine (8.24%), tert-butyl (5-isopropyl-2-methylphenoxy) dimethylsilane (13.25%), tris(tert-butyldimethylsilyloxy) arsane (10.66%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (18.50%), acetamide, N-[4-(trimethylsilyl) phenyl (19.97%), 3,3-diisopropoxy-1,1,1,5,5,5-hexamethyltrisiloxane (6.78%), silicic acid, diethyl bis(trimethylsilyl) ester (17.71%) and cylotrisiloxane, hexamethyl-(4.89%). The V. radiata seeds were treated with sesame leaf extract seeds at concentrations 0, 10, 25, 50, and 100 mg/L. Sesame leaf extract at 50 and 100 mg/L concentrations was effective in increasing the germination percentage and the fresh and dry weights of roots and shoots. The increased peroxidase activity was noticed after treatment with S. indicum extract. In addition, disease percentage (< 60%) of both fungal pathogens (Rhizoctonia and Macrophomina) was significantly reduced in V. radiata plants treated with 100 mg/L of sesame leaf extract. These results revealed that physiochemical components present in S. indicum mature leaf extract significantly enhanced growth and defense mechanism in green gram plants.
Collapse
Affiliation(s)
- Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tenkasi, Tamil Nadu, 627 802, India.
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi -Tenkasi, Tamil Nadu, 627 412, India.
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi -Tenkasi, Tamil Nadu, 627 412, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
2
|
Lim H, Lee SY, Ho LY, Sit NW. Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. INSECTS 2023; 14:512. [PMID: 37367328 DOI: 10.3390/insects14060512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants-Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)-against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography-mass spectrometry (GC-MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC-MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum.
Collapse
Affiliation(s)
- Huimei Lim
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Sook Yee Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Lai Yee Ho
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Nam Weng Sit
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
3
|
Bailén M, Illescas C, Quijada M, Martínez-Díaz RA, Ochoa E, Gómez-Muñoz MT, Navarro-Rocha J, González-Coloma A. Anti-Trypanosomatidae Activity of Essential Oils and Their Main Components from Selected Medicinal Plants. Molecules 2023; 28:1467. [PMID: 36771132 PMCID: PMC9920086 DOI: 10.3390/molecules28031467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Kinetoplastida is a group of flagellated protozoa characterized by the presence of a kinetoplast, a structure which is part of a large mitochondria and contains DNA. Parasites of this group include genera such as Leishmania, that cause disease in humans and animals, and Phytomonas, that are capable of infecting plants. Due to the lack of treatments, the low efficacy, or the high toxicity of the employed therapeutic agents there is a need to seek potential alternative treatments. In the present work, the antiparasitic activity on Leishmania infantum and Phytomonas davidi of 23 essential oils (EOs) from plants of the Lamiaceae and Asteraceae families, extracted by hydrodistillation (HD) at laboratory scale and steam distillation (SD) in a pilot plant, were evaluated. The chemical compositions of the EOs were determined by gas chromatography-mass spectrometry. Additionally, the cytotoxic activity on mammalian cells of the major components from the most active EOs was evaluated, and their anti-Phytomonas and anti-Leishmania effects analyzed. L. infantum was more sensitive to the EOs than P. davidi. The EOs with the best anti-kinetoplastid activity were S. montana, T. vulgaris, M. suaveolens, and L. luisieri. Steam distillation increased the linalyl acetate, β-caryophyllene, and trans-α-necrodyl acetate contents of the EOs, and decreased the amount of borneol and 1,8 cineol. The major active components of the EOs were tested, with thymol being the strongest anti-Phytomonas compound followed by carvacrol. Our study identified potential treatments against kinetoplastids.
Collapse
Affiliation(s)
- María Bailén
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Illescas
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mónica Quijada
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Alberto Martínez-Díaz
- Department of Preventive Medicine, Public Health and Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Eneko Ochoa
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - María Teresa Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, 28040 Madrid, Spain
| | - Juliana Navarro-Rocha
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Unidad de Recursos Forestales, 50059 Zaragoza, Spain
| | | |
Collapse
|
4
|
Bohounton RB, Djihinto OY, Dedome OSL, Yovo RM, Djossou L, Koba K, Adomou A, Villeneuve P, Djogbénou LS, Tchobo FP. Euclasta condylotricha flowers essential oils: A new source of juvenile hormones and its larvicidal activity against Anopheles gambiae s.s. (Diptera: Culicidae). PLoS One 2023; 18:e0278834. [PMID: 36689494 PMCID: PMC9870135 DOI: 10.1371/journal.pone.0278834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023] Open
Abstract
The essential oil (EO) of plants of the Poaceae family has diverse chemical constituents with several biological properties. But, data on the chemical constituents and toxicity are still unavailable for some species belonging to this family, such as Euclasta condylotricha Steud (Eu. condylotricha). In this study, the chemical composition of the EOs of Eu. condylotricha flowers was evaluated by gas chromatography coupled with mass spectrometry (GC-MS). The EOs larvicidal property was assessed against third instar larvae of three Anopheles gambiae laboratory strains (Kisumu, Acerkis and Kiskdr) according to the WHO standard protocol. The percentage yields of the EOs obtained from hydro distillation of Eu. condylotricha flowers varied 0.070 to 0.097%. Gas Chromatography-Mass Spectrometry (GC-MS) applied to the EOs revealed fifty-five (55) chemical constituents, representing 94.95% to 97.78% of the total essential oils. Although different chemical profiles of the dominant terpenes were observed for each sample, EOs were generally dominated by sesquiterpenoids with juvenile hormones as the major compounds. The primary compounds were juvenile hormone C16 (JH III) (35.97-48.72%), Methyl farnesoate 10,11-diol (18.56-28.73%), tau-Cadinol (18.54%), and β-Eudesmene (12.75-13.46%). Eu. condylotricha EOs showed a strong larvicidal activity with LC50 values ranging from 35.21 to 52.34 ppm after 24 hours of exposition. This study showed that Eu. Condylotricha flowers essential oils are potent sources of juvenile hormones that could be a promising tool for developing an eco-friendly malaria vector control strategy.
Collapse
Affiliation(s)
- Roméo Barnabé Bohounton
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | | | | | - Réné Mahudro Yovo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | - Koffi Koba
- Unité de Recherche sur les Matériaux et les Agroressources, École Supérieure D’agronomie, Université de Lomé, Lomé, Togo
| | - Aristide Adomou
- Laboratoire de Botanique et Écologie Végétale (LaBEV), Faculté des Sciences et Techniques (FAST), University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| | - Fidèle Paul Tchobo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
5
|
Lima AR, Silva CM, da Silva LM, Machulek A, De Souza AP, de Oliveira KT, Souza LM, Inada NM, Bagnato VS, Oliveira SL, Caires ARL. Environmentally Safe Photodynamic Control of Aedes aegypti Using Sunlight-Activated Synthetic Curcumin: Photodegradation, Aquatic Ecotoxicity, and Field Trial. Molecules 2022; 27:5699. [PMID: 36080466 PMCID: PMC9457702 DOI: 10.3390/molecules27175699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study reports curcumin as an efficient photolarvicide against Aedes aegypti larvae under natural light illumination. Larval mortality and pupal formation were monitored daily for 21 days under simulated field conditions. In a sucrose-containing formulation, a lethal time 50 (LT50) of 3 days was found using curcumin at 4.6 mg L-1. This formulation promoted no larval toxicity in the absence of illumination, and sucrose alone did not induce larval phototoxicity. The photodegradation byproducts (intermediates) of curcumin were determined and the photodegradation mechanisms proposed. Intermediates with m/z 194, 278, and 370 were found and characterized using LC-MS. The ecotoxicity of the byproducts on non-target organisms (Daphnia, fish, and green algae) indicates that the intermediates do not exhibit any destructive potential for aquatic organisms. The results of photodegradation and ecotoxicity suggest that curcumin is environmentally safe for non-target organisms and, therefore, can be considered for population control of Ae. aegypti.
Collapse
Grants
- 440585/2016-3, 309636/2017-5, 303633/2018-2, 407990/2018-6, 310585/2020-1, 308232/2021-6 Brazilian funding agencies CNPq
- 88881.311921/2018-01, 88887.311920/2018-00, 88887.311798/2018-00, 88881.311799/2018-01 Brazilian funding agencies CAPES
- 59/300.490/2016, 71/700.129/2018 Brazilian funding agencies FUNDECT
- 465360/2014-9 National Institute of Science and Technology of Basic Optics and Optics Applied to Life Science
- 440214/2021-1 National System of Photonics Laboratories - Sisfóton/MCTI
- CEPOF (2013/07276-1), 2019/27176-8 São Paulo Research State Foundation (FAPESP)
- Finance Code 001 Universidade Federal de Mato Grosso do Sul - UFMS/MEC - Brasil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
Collapse
Affiliation(s)
- Alessandra R. Lima
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Cicera M. Silva
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Lucas M. da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Antônio P. De Souza
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Larissa M. Souza
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Natalia M. Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Samuel L. Oliveira
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Anderson R. L. Caires
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
6
|
Chellappandian M, Senthil-Nathan S, Karthi S, Vasantha-Srinivasan P, Kalaivani K, Hunter WB, Ali AM, Veerabahu C, Elshikh MS, Al Farraj DA. Larvicidal and repellent activity of N-methyl-1-adamantylamine and oleic acid a major derivative of bael tree ethanol leaf extracts against dengue mosquito vector and their biosafety on natural predator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15654-15663. [PMID: 34636011 DOI: 10.1007/s11356-021-16219-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Aegle marmelos (L.) Correa belongs to the family Rutaceae is generally known as "bael fruit tree" occuring across the south Asian countries. The current investigation screened the main derivatives from crude ethanolic extracts of the Bael tree leaf and evaluated activity effects on the larvae and adults of Aedes aegypti (L.) Dengue vector mosquito and a non-target aquatic predator. The GC-MS results showed that the peak area was found to be profound in N-methyl-1-adamantaneacetamide (N-M 1a) followed by oleic acid (OA) with 63.08 and 11.43% respectively. The larvicidal activity against the fourth instar larvae and the crude Ex-Am showed prominent mortality rate (93.60%) at the maximum dosage of 100 ppm. The mortality rate of N-M 1a and OA was occurred at 10 ppm (97.73%) and 12 ppm (95.4%). The repellent activity was found to be prominent at crude Ex-Am (50 ppm) as compared to the pure compounds (N-m 1a and OA) with maximum protection time up to 210 min. The non-target screening of Ex-Am, N-M 1a, and OA on mosquito predator Tx. splendens showed that they are scarcely toxic even at the maximum dosage of 1000 ppm (34.13%), 100 ppm (27.3%), and 120 ppm (31.3%) respectively. Thus, the present investigation clearly proved that the crude Ex-Am and their major derivatives Nm 1-a and OA showed their acute larval toxicity as well as potential mosquito repellent against the dengue mosquito and eco-safety against the mosquito predator.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
- PG and Research Department of Botany, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, 628 008, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | - Kandaswamy Kalaivani
- Department of Zoology, Post Graduate and Research Centre, Sri Parasakthi College for Women, Tirunelveli, India
| | - Wayne Brian Hunter
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Ajmal M Ali
- Department of Botany and Microbiology , College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | | | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
7
|
Chellappandian M, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Kalaivani K, Hunter WB, Ali HM, Salem MZM, Abdel-Megeed A. Volatile toxin of Limonia acidissima (L.) produced larvicidal, developmental, repellent, and adulticidal toxicity effects on Aedes aegypti (L.). TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1851723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
- Department of Biotechnology, St. Peter’s Institute of Higher Education and Research, Chennai, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Kandaswamy Kalaivani
- Department of Zoology, Post Graduate and Research Centre, Sri Parasakthi College for Women, Tirunelveli, India
| | - Wayne Brian Hunter
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Timber Trees Research Department, Agriculture Research Center, Horticulture Research Institute, Sabahia Horticulture Research Station, Alexandria, Egypt
| | - Mohamed Z. M. Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, Egypt
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Karthi S, Uthirarajan K, Manohar V, Venkatesan M, Chinnaperumal K, Vasantha-Srinivasan P, Krutmuang P. Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules Against Three Medically Challenging Arthropod Vectors. Molecules 2020; 25:E3844. [PMID: 32847069 PMCID: PMC7504580 DOI: 10.3390/molecules25173844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
The larvicidal potential of crude leaf extracts of Rhizophora mucronata, the red mangrove, using diverse solvent extracts of the plant against the early fourth instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquito vectors was analyzed. The acetone extract of R. mucronata showed the greatest efficacy: for Cx. quinquefasciatus (LC50 = 0.13 mg/mL; LC90 = 2.84 mg/mL), An. stephensi (LC50 = 0.34 mg/mL; LC90 = 6.03 mg/mL), and Ae. aegypti (LC50 = 0.11 mg/mL; LC90 = 1.35 mg/mL). The acetone extract was further fractionated into four fractions and tested for its larvicidal activity. Fraction 3 showed stronger larvicidal activity against all the three mosquito larvae. Chemical characterization of the acetone extract displayed the existence of several identifiable compounds like phytol, 3,7,11,15-tetramethyl-2-hexadecen-1-ol, 1-hexyl-2-nitrocyclohexane, eicosanoic acid etc. Enzyme assay displayed that R. mucronata active F3-fractions exert divergent effects on all three mosquitos' biochemical defensive mechanisms. The plant fractions displayed significant repellent activity against all the three mosquito vectors up to the maximum repellent time of 210 min. Thus, the bioactive molecules in the acetone extract of R. murconata leaves showed significant larvicidal and enzyme inhibitory activity and displayed novel eco-friendly tool for mosquito control.
Collapse
Affiliation(s)
- Sengodan Karthi
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal, Tiruchengode Tamil Nadu 637 215, India; (S.K.); (K.U.); (V.M.)
| | - Karthic Uthirarajan
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal, Tiruchengode Tamil Nadu 637 215, India; (S.K.); (K.U.); (V.M.)
| | - Vinothkumar Manohar
- Department of Biochemistry, Centre for Biological Sciences, K.S. Rangasamy College of Arts and Science (Autonomous), Namakkal, Tiruchengode Tamil Nadu 637 215, India; (S.K.); (K.U.); (V.M.)
| | - Manigandan Venkatesan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Chettinad Academy of Research and Education, Kelambakkam, Chennai Tamil Nadu 603 103, India
| | | | - Prabhakaran Vasantha-Srinivasan
- Department of Biotechnology, St. Peter’s Institute of Higher Education and Research, Avadi, Chennai Tamil Nadu 600 054, India;
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Muang Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
de Souza MA, da Silva L, Dos Santos MAC, Macêdo MJF, Lacerda-Neto LJ, Coutinho HDM, de Oliveira LCC, Cunha FAB. Larvicidal Activity of Essential Oils Against Aedes aegypti (Diptera: Culicidae). Curr Pharm Des 2020; 26:4092-4111. [PMID: 32767924 DOI: 10.2174/1381612826666200806100500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.
Collapse
Affiliation(s)
- Mikael A de Souza
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Larissa da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Maria A C Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Márcia J F Macêdo
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Luiz J Lacerda-Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Lígia C C de Oliveira
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| | - Francisco A B Cunha
- Department of Biological Chemistry, Regional University of Cariri, Crato (CE), Brazil
| |
Collapse
|
10
|
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25987-26024. [PMID: 32385820 DOI: 10.1007/s11356-020-08444-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/13/2020] [Indexed: 05/25/2023]
Abstract
Mosquitoes spread several life-threatening diseases such as malaria, filaria, dengue, Japanese encephalitis, West Nile fever, chikungunya, and yellow fever and are associated with millions of deaths every year across the world. However, insecticides of synthetic origin are conventionally used for controlling various vector-borne diseases but they have various associated drawbacks like impact on non-targeted species, negative effects on the environment, and development of resistance in vector species by alteration of the target site. Plant extracts, phytochemicals, and their nanoformulations can serve as ovipositional attractants, insect growth regulators, larvicides, and repellents with least effects on the environment. Such plant-derived products exhibit broad-spectrum resistance against various mosquito species and are relatively cheaper, environmentally safer, biodegradable, easily accessible, and are non-toxic to non-targeted organisms. Therefore, in this review article, the current knowledge of phytochemical sources exhibiting larvicidal activity and their variations in response to solvents used for their extraction is underlined. Also, different methods such as physical, chemical, and biological for silver nanoparticle (AgNPs) synthesis, their mechanism of synthesis using plant extract, their potent larvicidal activity, and the possible mechanism by which these particles kill mosquito larvae are discussed. In addition, constraints related to commercialization of nanoherbal products at government and academic or research level and barriers from laboratory experiments to field trial have also been discussed. This comprehensive information can be gainfully employed for the development of herbal larvicidal formulations and nanopesticides against insecticide-resistant vector species in the near future. Graphical abstract.
Collapse
Affiliation(s)
- Dinesh Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Himmat Singh
- National Institute of Malaria Research, Dwarka, Delhi, 110077, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Senthil-Nathan S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front Physiol 2020; 10:1591. [PMID: 32158396 PMCID: PMC7052130 DOI: 10.3389/fphys.2019.01591] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programes profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programes.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
12
|
Sudeep HV, Venkatakrishna K, Sundeep K, Vasavi HS, Raj A, Chandrappa S, Shyamprasad K. Turcuron: A standardized bisacurone-rich turmeric rhizome extract for the prevention and treatment of hangover and alcohol-induced liver injury in rats. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_32_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Thanigaivel A, Chanthini KMP, Karthi S, Vasantha-Srinivasan P, Ponsankar A, Sivanesh H, Stanley-Raja V, Shyam-Sundar N, Narayanan KR, Senthil-Nathan S. Toxic effect of essential oil and its compounds isolated from Sphaeranthus amaranthoides Burm. f. against dengue mosquito vector Aedes aegypti Linn. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:163-170. [PMID: 31519251 DOI: 10.1016/j.pestbp.2019.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti is a major mosquito vector that can transfer many deadly diseases such as dengue, chikungunya, Zika, and yellow fever viruses. Due to the developing resistance among the vector populations by the application of chemical insecticides, alternative eco-friendly vector management strategies are being focused. In this aspect, the present study was carried out to evaluate the mosquitocidal potentials of essential oil of Sphaeranthus amaranthoides (EO-Sa). EO-Sa was found to be effective against Ae. aegypti mosquito vector by exhibiting significant larvicidal, adulticidal and repellent activities. GCMS analysis of EO-Sa revealed the presence of Carvone as the major component (peak area of 89.7%). The larvicidal bioassays performed revealed that the second instar larvae were relatively more susceptible (94.32% mortality) to EO-Sa treatments (75 ppm), LC50, 20.38 ppm.The sub lethal treatment concentration (20 ppm) significantly affected the oviposition, fecundity and morphology of Ae. aegypti. At sub lethal treatment concentration, EO-Sa down regulated α- and β carboxylesterase and up regulated the GST and CYP450 level of third and fourth instar larvae. Thus the present results illustrates that EO-Sa can deliver a durable larvicidal, repellent and adulticidal activity against Ae. aegypti in an effective and eco-friendly manner.
Collapse
Affiliation(s)
- Annamalai Thanigaivel
- Department of Zoology, Sri Paramakalyani College, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Biotechnology, St. Peter's Institute of Higher Education and Research, Avadi, 600 054 Chennai, Tamil Nadu, India
| | - Athirstam Ponsankar
- Department of Biotechnology, Sri Paramakalyani College, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | | | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
14
|
Murfadunnisa S, Vasantha-Srinivasan P, Ganesan R, Senthil-Nathan S, Kim TJ, Ponsankar A, Dinesh Kumar S, Chandramohan D, Krutmuang P. Larvicidal and enzyme inhibition of essential oil from Spheranthus amaranthroids (Burm.) against lepidopteran pest Spodoptera litura (Fab.) and their impact on non-target earthworms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101324] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Chellappandian M, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Kalaivani K, Sivanesh H, Stanley-Raja V, Chanthini KMP, Shyam-Sundar N. Target and non-target botanical pesticides effect of Trichodesma indicum (Linn) R. Br. and their chemical derivatives against the dengue vector, Aedes aegypti L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16303-16315. [PMID: 30977009 DOI: 10.1007/s11356-019-04870-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/13/2019] [Indexed: 05/06/2023]
Abstract
The effects of crude ethanol derived leaf extract Trichodesma indicum (Linn) (Ex-Ti) and their chief derivatives were accessed on the survival and development of the dengue mosquito Ae. aegypti also their non-toxic activity against mosquito predator. T. indicum is recognized to be the vital weed plant and a promising herb in the traditional ayurvedic medicine. In this study, the GC-MS chromatogram of Ex-Ti showed higher peak area percentage for cis-10-Heptadecenoic acid (21.83%) followed by cycloheptadecanone (14.32%). The Ex-Ti displayed predominant mortality in larvae with 96.45 and 93.31% at the prominent dosage (200 ppm) against III and IV instar. Correspondingly, sub-lethal dosage against the enzymatic profile of III and IV instar showed downregulation of α,β-carboxylesterase and SOD protein profiles at the maximum concentration of 100 ppm. However, enzyme level of GST as well as CYP450 increased significantly dependent on sub-lethal concentration. Likewise, fecundity and hatchability of egg rate of dengue mosquito decreased to the sub-lethal concentration of Ex-Ti. Repellent assay illustrates that Ex-Ti concentration had greater protection time up to 210 min at 100 ppm. Also, activity of Ex-Ti on adult mosquito displayed 100% mortality at the maximum dosage of 600, 500 and 400 ppm within the period of 50, 60 and 70 min, respectively. Photomicrography screening showed that lethal dosage of Ex-Ti (100 ppm) produced severe morphological changes with dysregulation in their body parts as matched to the control. Effects of Ex-Ti on the Toxorhynchites splendens IV instar larvae showed less mortality (43.47%) even at the maximum dosage of 1500 ppm as matched to the chemical pesticide Temephos. Overall, the present research adds a toxicological valuation on the Ex-Ti and their active constituents as a larvicidal, repellent and adulticidal agents against the global burdening dengue mosquito.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
- Department of Biotechnology, St. Peter's Institute of Higher Education and Research, Avadi, Chennai, Tamil Nadu, 600 054, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627 802, India
| | - Haridoss Sivanesh
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Vethamonickam Stanley-Raja
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| |
Collapse
|
16
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Lee MY. Essential Oils as Repellents against Arthropods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6860271. [PMID: 30386794 PMCID: PMC6189689 DOI: 10.1155/2018/6860271] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Abstract
The development of effective and safe repellents against arthropods is very important, because there are no effective vaccines against arthropod-borne viruses (arboviruses) and parasites. Arboviruses and parasites are transmitted to humans from arthropods, and mosquitoes are the most common arthropods associated with dengue, malaria, and yellow fever. Enormous efforts have been made to develop effective repellents against arthropods, and thus far synthetic repellents have been widely used. However, the use of synthetic repellents has raised several concerns in terms of environmental and human health risks and safety. Thus, plant essential oils (EOs) have been widely used as an alternative to synthetic repellents. In this review, we briefly introduce and summarize recent studies that have investigated EOs as insect repellents. Current technology and research trends to develop effective and safe repellents from plant EOs are also described in this review.
Collapse
Affiliation(s)
- Mi Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, 22 Soonchunhyang–ro, Asan, Chungnam 31537, Republic of Korea
| |
Collapse
|
18
|
Dinesh-Kumar A, Srimaan E, Chellappandian M, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, Ponsankar A, Muthu-Pandian Chanthini K, Shyam-Sundar N, Annamalai M, Kalaivani K, Hunter WB, Senthil-Nathan S. Target and non-target response of Swietenia Mahagoni Jacq. chemical constituents against tobacco cutworm Spodoptera litura Fab. and earthworm, Eudrilus eugeniae Kinb. CHEMOSPHERE 2018; 199:35-43. [PMID: 29428514 DOI: 10.1016/j.chemosphere.2018.01.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Toxicological screening of Swietenia mahagoni Jacq. (Meliaceae, West Indies Mahogany) against the lepidopteran pest Spodoptera litura was examined. Phytochemical screening through GC-MS analysis revealed nine peaks with prominent peak area % in Bis (2-ethylhexyl) phthalate (31.5%) was observed. The larvae exposed to discriminating dosage of 100 ppm deliver significant mortality rate compare to other treatment concentrations. The lethal concentrations (LC50 and LC90) was observed at the dosage of 31.04 and 86.82 ppm respectively. Sub-lethal concentrations (30 ppm) showed higher larval and pupal durations. However, pupal weight and mean fecundity rate reduced significantly. Similarly, the adult longevity reduced significantly in dose dependent manner. Midgut histology studies showed that the methanolic extracts significantly disturbs the gut epithelial layer, lumen and brush border membrane compare to the control. The soil assay on a non-target beneficial organism, the soil indicator earthworm Eudrilus eugeniae, with extracts from S. mahagoni (200 mg/kg) showed no toxicity compared to Monocrotophos at the dosage of 10 ppm/kg. Current results suggest that this bio-rational plant product from S. mahagoni displays a significant effect to reduce lepidopteran pests with low toxicity to other beneficial species.
Collapse
Affiliation(s)
- Anandan Dinesh-Kumar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Elangovan Srimaan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Kanagaraj Muthu-Pandian Chanthini
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Narayanan Shyam-Sundar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India
| | - Mahendiran Annamalai
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India; Crop Protection Division, NRRI, ICAR, Cuttack, Odisha, 735006, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam 627 802, Tirunelveli, Tamil Nadu, India
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
19
|
Giatropoulos A, Kimbaris A, Michaelakis Α, Papachristos DP, Polissiou MG, Emmanouel N. Chemical composition and assessment of larvicidal and repellent capacity of 14 Lamiaceae essential oils against Aedes albopictus. Parasitol Res 2018; 117:1953-1964. [DOI: 10.1007/s00436-018-5892-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
|
20
|
Yeom HJ, Lee HR, Lee SC, Lee JE, Seo SM, Park IK. Insecticidal Activity of Lamiaceae Plant Essential Oils and Their Constituents Against Blattella germanica L. Adult. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:653-661. [PMID: 29474548 DOI: 10.1093/jee/tox378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The insecticidal activities of 13 Lamiaceae plant oils and their components against adult German cockroaches, Blattella germanica L. (Blattodea: Blattellidae), were evaluated using fumigant and contact bioassay. Among the tested oils, basil, pennyroyal, and spearmint showed the strongest insecticidal activities against adult B. germanica. Insecticidal activity of pennyroyal was 100% against male B. germanica at 1.25 mg concentration in fumigant bioassay. Basil and spearmint revealed 100% and 100% insecticidal activity against male B. germanica at 5 mg concentration, but their activities reduced to 80% and 25% at 2.5 mg concentration, respectively. In contact, toxicity bioassay, basil, pennyroyal, and spearmint oils exhibited 100%, 100%, and 98% mortality against female B. germanica at 1 mg/♀, respectively. Among the constituents identified in basil, pennyroyal, and spearmint oils, insecticidal activity of pulegone was the strongest against male and female B. germanica.
Collapse
Affiliation(s)
- Hwa-Jeong Yeom
- Incheon International Airport Regional Office, Animal and Plant Quarantine Agency, Gonghang-ro, Jung-gu, Incheon, Republic of Korea
| | - Hyo-Rim Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Chan Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Eun Lee
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seon-Mi Seo
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Il-Kwon Park
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Chellappandian M, Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Kalaivani K, Senthil-Nathan S, Benelli G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10294-10306. [PMID: 28455566 DOI: 10.1007/s11356-017-8952-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Use of environmentally friendly, decomposable natural products for effective vector control has gained considerable momentum in modern society. In this study, essential oil of Sphaeranthus indicus (Si-EO) was extracted and further phytochemical screening revealed fourteen compounds with prominent peak area percentage of 24.9 and 22.54% in 3,5-di-tert-butyl-4-hydroxybenzaldehyde and benzene,2-(1,1-dimethylethyl)-1,4-dimethoxy, respectively. The Si-EO was further evaluated for their larvicidal response against Culex quinquefasciatus and Aedes aegypti at different dosages (62.5, 125, 250 and 500 ppm). The Si-EO displayed prominent larvicidal activity at higher concentration (500 ppm) against both species of mosquitoes. The LC50 and LC90 values of oils were observed at 130 and 350 ppm against C. quinquefasciatus larvae and at 140 and 350 ppm against A. aegypti larvae, respectively. Repellent bioassay established higher protection rate at 200 ppm up to 120 min against both the mosquitoes. However, adulticidal response displayed higher mortality rate only at 700 and 800 ppm against C. quinquefasciatus and A. aegypti, respectively. Toxicological screening against mosquito predator Toxorhynchites splendens revealed that the Si-EO was harmless even at the concentration of 1500 ppm. Overall, these results suggest that the Si-EO plays a significant role as a new bio-rational product against ecological burden mosquito vectors which provides an eco-friendly alternative to synthetic pesticides.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627802, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627412, India.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del 23 Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
22
|
Vasantha-Srinivasan P, Thanigaivel A, Edwin ES, Ponsankar A, Senthil-Nathan S, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10434-10446. [PMID: 28852982 DOI: 10.1007/s11356-017-9714-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2017] [Indexed: 05/06/2023]
Abstract
Dengue is the most rapidly spreading mosquito-borne viral disease in the world. The mosquito, Aedes aegypti, also spreads Yellow fever, Chikungunya, and Zika virus. As the primary vector for dengue, Ae. aegypti now occurs in over 20 countries and is a serious concern with reports of increasing insecticide resistance. Developing new treatments to manage mosquitoes are needed. Formulation of crude volatile oil from Piper betle leaves (Pb-CVO) was evaluated as a potential treatment which showed larvicidal, ovipositional, and repellency effects. Gut-histology and enzyme profiles were analyzed post treatment under in-vitro conditions. The Pb-CVO from leaves of field collected plants was obtained by steam distillation and separated through rotary evaporation. The Pb-CVO were evaluated for chemical constituents through GC-MS analyses revealed 20 vital compounds. The peak area was establish to be superior in Eudesm-7(11)-en-4-ol (14.95%). Pb-CVO were determined and tested as four different concentrations (0.25, 0.5, 1.0, and 1.5 mg/L) of Pb-CVO towards Ae. aegypti. The larvicidal effects exhibited dose dependent mortality being greatest at 1.5 mg Pb-CVO/10 g leaves. The LC50 occurred at 0.63 mg Pb-CVO/L. Larva of Ae. aegypti exposed to Pb-CVO showed significantly reduced digestive enzyme actions of α- and β-carboxylesterases. In contrast, GST and CYP450 enzyme levels increased significantly as concentration increased. Correspondingly, oviposition deterrence index and egg hatch of Ae. aegypti exposed to sub-lethal doses of Pb-CVO demonstrated a strong effect suitable for population suppression. Repellency at 0.6 mg Pb-CVO applied as oil had a protection time of 15-210 min. Mid-gut histological of Ae. aegypti larvae showed severe damage when treated with 0.6 mg of Pb-CVO treatment compared to the control. Non-toxic effects against aquatic beneficial insects, such as Anisops bouvieri and Toxorhynchites splendens, were observed at the highest concentrations, exposed for 3 h. These results suggest that the Pb-CVO may contain effective constituents suitable for development of new vector control agents against Ae. aegypti.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627 802, India
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Veeramuthu Duraipandiyan
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
23
|
Thanigaivel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, Chellappandian M, Kalaivani K, Senthil-Nathan S, Benelli G. Development of an eco-friendly mosquitocidal agent from Alangium salvifolium against the dengue vector Aedes aegypti and its biosafety on the aquatic predator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10340-10352. [PMID: 28580548 DOI: 10.1007/s11356-017-9102-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Plant extracts with their enriched chemical constituents have established potential alternative mosquito control agents. In this research, we developed an eco-friendly mosquitocidal agent from Alangium salvifolium leaves against the dengue and Zika virus vector Aedes aegypti and we investigated its biosafety on the mosquito aquatic predator Toxorhynchites splendens. Results showed that the methanolic extract of A. salvifolium leaves was composed by eight main compounds, with major peak area for hexadecenoic acid (21.74%). LC50 and LC90 values calculated on Ae. aegypti fourth instar larvae were 104.80 and 269.15 ppm respectively. The methanolic extract tested at 100 ppm decreased the α-β carboxylesterase and SOD ratio significantly and upregulated the GST and CYP450 level. The A. salvifolium methanolic extract displayed significant repellent and adulticidal activity at 100 and 400 ppm respectively. The treatment with 100 ppm of the methanolic extract led to 210 min of protection from Ae. aegypti bites. Four hundred parts per million of the extract showed 98% adult mortality within 30 min from the treatment. Lastly, biosafety assays on the mosquito aquatic predator Tx. splendens showed that the toxicity of the A. salvifolium extract was significantly lower if compared to the cypermethrin-based treatments. The methanolic extract of A. salvifolium showed a maximum of 47.3% mortality rate at the concentration of 1000 ppm, while 0.7 ppm of cypermethrin achieved 91.3% mortality rate on Tx. splendens. Overall, our study enhances basic knowledge on how to improve natural larvicidal agents against dengue and Zika virus mosquito vector with harmless responses on non-target aquatic predators.
Collapse
Affiliation(s)
- Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, 627 802, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del 23 Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
24
|
Chellappandian M, Vasantha-Srinivasan P, Senthil-Nathan S, Karthi S, Thanigaivel A, Ponsankar A, Kalaivani K, Hunter WB. Botanical essential oils and uses as mosquitocides and repellents against dengue. ENVIRONMENT INTERNATIONAL 2018; 113:214-230. [PMID: 29453089 DOI: 10.1016/j.envint.2017.12.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 12/30/2017] [Indexed: 05/20/2023]
Abstract
Plants naturally produce bioactive compounds along with many secondary metabolites which serve as defensive chemical against herbivorers including insect pests. One group of these phytochemicals are the 'Essential Oils' (EO's), which possess an extensive range of biological activity especially insecticidal and insect repellents. This review provides a comprehensive viewpoint on potential modes of action of biosafety plant derived Essential Oils (EO's) along with their principal chemical derivatives against larvae and adult mosquito vectors of dengue virus. The development and use of Essential Oils (EO's) effectively applied in small rural communities provides an enormous potential for low cost effective management of insect vectors of human pathogens which cause disease.
Collapse
Affiliation(s)
- Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802 Tirunelveli, Tamil Nadu, India
| | - Wayne B Hunter
- United States Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| |
Collapse
|
25
|
Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shivakumar MS. Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia nilotica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020388. [PMID: 29473901 PMCID: PMC5858457 DOI: 10.3390/ijerph15020388] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Botanical metabolites are increasingly realized as potential replacements to chemical insecticides. In the present study, Acacia nilotica seed essential oil and seed pod solvent extracts were tested for bioefficacy against three important types of mosquitoes. Mortality was recorded 24 h post-treatment, while smoke toxicity of adult mosquitoes was recorded at 10 min intervals for 40 min. Seed pod powder was extracted with different solvents and hydrodistilled seed oil chemical constituents were determined by using Gas chromatography mass spectroscopy (GC-MS) -. Larvicidal and adulticidal efficacy of seed hydrodistilled essential oil and solvent extracts were tested against larval and adult mosquitoes. The seed hydrodistilled oil provided strong larvicidal activity against Anopheles stephensi, (LC50 (lethal concentration that kills 50% of the exposed larvae) = 5.239, LC90 (lethal concentration that kills 90% of the exposed larvae) = 9.713 mg/L); Aedes aegypti, (LC50 = 3.174, LC90 = 11.739 mg/L); and Culex quinquefasciatus, (LC50 = 4.112, LC90 = 12.325 mg/L). Smoke toxicities were 82% in Cx. quinquefasciatus, 90% in Ae. aegypti, and 80% mortality in An. stephensi adults, whereas 100% mortality was recorded for commercial mosquito coil. The GC-MS profile of seed essential oil from A. nilotica showed the presence of hexadecane (18.440%) and heptacosane (15.914%), which are the main and active compounds, and which may be involved in insecticidal activity. Overall findings suggest that the seed oil showed strong mosquitocidal activity against mosquito vectors and therefore may provide an ecofriendly replacement to chemical insecticides.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| | - Raji Venkatesan
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| | - Govindaraju Ramkumar
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | | |
Collapse
|
26
|
Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin ES, Selin-Rani S, Chellappandian M, Pradeepa V, Lija-Escaline J, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:439-446. [PMID: 28213320 DOI: 10.1016/j.ecoenv.2017.01.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Resistance to treatments with Temephos or plant derived oil, Pb-CVO, between a field collected Wild Strain (WS) and a susceptible Laboratory Strain (LS) of Ae. aegypti were measured. The Temephos (0.1mg/L) showed the greatest percentage of mosquito mortality compared to Pb-CVO (1.5mg/L) in LS Ae. aegypti. However, WS Ae. aegypti was not significantly affected by Temephos (0.1mg/L) treatment compare to the Pb-CVO (1.5mg/L). However, both strains (LS and WS) when treated with Pb-CVO (1.5mg/L) displayed steady larval mortality rate across all instars. The LC50 of Temephos was 0.027mg in LS, but increased in WS to 0.081mg/L. The LC50 of Pb-CVO treatment was observed at concentrations of 0.72 and 0.64mg/L for LS and WS strains respectively. The enzyme level of α- and β-carboxylesterase was reduced significantly in both mosquito strains treated with Pb-CVO. Whereas, there was a prominent deviation in the enzyme ratio observed between LS and WS treated with Temephos. The GST and CYP450 levels were upregulated in the LS, but decreased in WS, after treatment with Temephos. However, treatment with Pb-CVO caused both enzyme levels to increase significantly in both the strains. Visual observations of the midgut revealed cytotoxicity from sub-lethal concentrations of Temephos (0.04mg/L) and Pb-CVO (1.0mg/L) in both strains of Ae. aegypti compared to the control. The damage caused by Temephos was slightly less in WS compared to LS mosquito strains.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India.
| | - Athirstam Ponsankar
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Annamalai Thanigaivel
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Edward-Sam Edwin
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Muthiah Chellappandian
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Venkatraman Pradeepa
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Jalasteen Lija-Escaline
- óDivision of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- óPost Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627 802 Tirunelveli, Tamil Nadu, India
| | - Wayne B Hunter
- óUnited States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Veeramuthu Duraipandiyan
- óDepartment of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- óDepartment of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Qi H, Ning L, Yu Z, Dou G, Li L. Proteomic Identification of eEF1A1 as a Molecular Target of Curcumol for Suppressing Metastasis of MDA-MB-231 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3074-3082. [PMID: 28345336 DOI: 10.1021/acs.jafc.7b00573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Curcumol, a major volatile component in Rhizoma Curcumae, exhibits a potent antimetastatic effect on breast cancer cells. However, its molecular mechanism remains poorly understood. In this study, we employed two-dimensional gel electrophoresis-based proteomics to investigate the cellular targets of curcumol in MDA-MB-231 cells and identified 10 differentially expressed proteins. Moreover, Gene Ontology analysis revealed that these proteins are mainly involved in nine types of cellular components, seven different biological processes, and nine kinds of molecular functions, and 35 pathways (p < 0.05) were enriched by KEGG pathway analysis. Specially, eEF1A1, a well-characterized actin binding protein, draws our attention. Curcumol decreased eEF1A1 expression at both mRNA and protein levels. EEF1A1 expression was shown to be correlated with the invasiveness of cancer cells. Importantly, overexpression of eEF1A1 significantly reversed the inhibition of curcumol regarding the invasion and adhesion of MDA-MB-231 cells (p < 0.05). Together, our data suggest that eEF1A1 may be a potential molecular target underlying the antimetastatic effect of curcumol.
Collapse
Affiliation(s)
- Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P.R. China
| | - Ling Ning
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P.R. China
| | - Zanyang Yu
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P.R. China
| | - Guojun Dou
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P.R. China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P.R. China
| |
Collapse
|
28
|
Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, Nicoletti M, Senthil-Nathan S, Mehlhorn H, Maggi F. Acute larvicidal toxicity of five essential oils ( Pinus nigra , Hyssopus officinalis , Satureja montana , Aloysia citrodora and Pelargonium graveolens ) against the filariasis vector Culex quinquefasciatus : Synergistic and antagonistic effects. Parasitol Int 2017; 66:166-171. [DOI: 10.1016/j.parint.2017.01.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023]
|
29
|
Edwin ES, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Ponsankar A, Pradeepa V, Selin-Rani S, Kalaivani K, Hunter WB, Abdel-Megeed A, Duraipandiyan V, Al-Dhabi NA. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 2016; 163:167-78. [PMID: 27443607 DOI: 10.1016/j.actatropica.2016.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/07/2016] [Accepted: 07/16/2016] [Indexed: 01/20/2023]
Abstract
The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management.
Collapse
Affiliation(s)
- Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India.
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Venkatraman Pradeepa
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu 627 802, India
| | - Wayne B Hunter
- United States Department of Agriculture, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, P.O. Box. 21531, Alexandria 21526, Egypt
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box.2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box.2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, Edwin ES, Selin-Rani S, Abdel-Megeed A. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res 2015; 114:4239-49. [PMID: 26277727 DOI: 10.1007/s00436-015-4662-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
The leaves of Piper nigrum L. (Piperaceae) were evaluated for chemical constituents and mosquito larvicidal activity against the larvae of Aedes aegypti. GC and GC-MS analyses revealed that the crude extracts contain 16 compounds. Thymol (20.77%) and ç-elemene (10.42%) were identified as the major constituents followed by cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1 methylethyl)-, (3R-trans) (7.58%), 4,6-octadienoic acid, 2-acetyl-2-methyl-, ethyl ester (6.98), 2(3H)-furanone, 3,4-bis(1,3-benzodioxol-5-ylmethyl) dihydro-, (3R-trans) (6.95%), 1-naphthalenol, 1,2,3,4,4a,7,8,8a-octahydro-1,6-dimethyl-4-(1-methylethyl)-, [1R-(1à,4á,4aá,8aá)]-(Cedreanol) (5.30%), trans-2-undecen-1-ol (4.48%), phytol (4.22%), 1,6-cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-,[s-(E,E)] (3.78%) and 2,6-dimethyl-3,5,7-octatriene-2-ol, Z,Z (2.39%). Larval mortality was observed after 3 h of exposure period. The crude extract showed remarkable larvicidal activity against Ae. aegypti (LC50 = 34.97). The larvae of Ae. aegypti exposed to the P. nigrum, significantly reduced the activities of α- and β-carboxylesterases and superdioxide. Further, P. nigrum extract was severely affecting the mosquito gut cellular organelles. Based on the results, the chemical constituents of crude extracts of P. nigrum can be considered as a new source of larvicide for the control of Ae. aegypti.
Collapse
Affiliation(s)
- Jalasteen Lija-Escaline
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India.
| | - Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Venkatraman Pradeepa
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Edward Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi-627 412, Tirunelveli, Tamil Nadu, India
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt.,Department of Botany and Microbiology, College of Science, King Saud University, PO Box: 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
31
|
Laboratory evaluation of aqueous leaf extract of Tephrosia vogelii against larvae of Aedes albopictus (Diptera: Culicidae) and non-target aquatic organisms. Acta Trop 2015; 146:36-41. [PMID: 25771114 DOI: 10.1016/j.actatropica.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/29/2015] [Accepted: 02/07/2015] [Indexed: 11/21/2022]
Abstract
Mosquito control using insecticides has been the most successful intervention known to reduce malaria prevalence or incidence. However, vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In this research, the leaf aqueous leachate of Tephrosia vogelii was evaluated for its toxicity against larvae of the most invasive mosquito worldwide, Aedes albopictus (Diptera: Culicidae), and toward adults of the water flea, Daphnia magna (Cladocera: Crustacea) and Oreochromis niloticus, two non-target aquatic organisms that share the same ecological niche of A. albopictus. The leaf aqueous leachate of T. vogelii was evaluated against fourth-instar larvae, non-blood fed 3-5 days old laboratory strains of A. albopictus under laboratory condition. In addition, the objective of the present work was to study the environmental safety evaluation for aquatic ecosystem. Mortality was then recorded after 7d exposure. The leaf aqueous leachate of T. vogelii showed high mosquitocidal activity against larvae of A. albopictus, with a LC50=1.18μg/mL. However, it had a remarkable acute toxicity also toward adults of the non-target arthropod D. magna, with a LC50=0.47μg/L and O. niloticus with a LC50=5.31μg/L. The present findings have important implications in the practical control of mosquito larvae in the aquatic ecosystem, as the medicinal plants studied are commonly available in large quantities. The extract could be used in stagnant water bodies for the control of mosquitoes acting as vector for many communicable diseases.
Collapse
|
32
|
Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Exp Parasitol 2015; 153:8-16. [DOI: 10.1016/j.exppara.2015.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
|
33
|
Pradeepa V, Sathish-Narayanan S, Kirubakaran SA, Senthil-Nathan S. Antimalarial efficacy of dynamic compound of plumbagin chemical constituent from Plumbago zeylanica Linn (Plumbaginaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 2014; 113:3105-9. [DOI: 10.1007/s00436-014-4015-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/24/2022]
|
34
|
Bayala B, Bassole IHN, Gnoula C, Nebie R, Yonli A, Morel L, Figueredo G, Nikiema JB, Lobaccaro JMA, Simpore J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One 2014; 9:e92122. [PMID: 24662935 PMCID: PMC3963878 DOI: 10.1371/journal.pone.0092122] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/28/2023] Open
Abstract
This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the highest activity on SF-763 cells. Altogether these results justify the use of these plants in traditional medicine in Burkina Faso and open a new field of investigation in the characterization of the molecules involved in anti-proliferative processes.
Collapse
Affiliation(s)
- Bagora Bayala
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Laboratoire de Biologie et Génétique (LABIOGENE), Centre Médical Saint Camille, Ouagadougou, Université de Ouagadougou, Ouagadougou, Burkina Faso
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6293, GReD, Aubière, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1103, GReD, Aubière, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Imaël Henri Nestor Bassole
- Laboratoire de Biochimie Alimentaire, Enzymologie, Biotechnologies industrielles et Bioinformatique (BAEBIB), Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR-SVT), Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Charlemagne Gnoula
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Laboratoire de Biologie et Génétique (LABIOGENE), Centre Médical Saint Camille, Ouagadougou, Université de Ouagadougou, Ouagadougou, Burkina Faso
- Laboratoire de Pharmacologie, de Toxicologie et de Chimie Thérapeutique, Unité de Formation et de Recherche en Sciences de la Santé (UFR-SDS), Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Roger Nebie
- Institut de Recherche en Sciences Appliquées et Techniques, Département des Substances Naturelles, Ouagadougou, Burkina Faso
| | - Albert Yonli
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Laboratoire de Biologie et Génétique (LABIOGENE), Centre Médical Saint Camille, Ouagadougou, Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Laurent Morel
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6293, GReD, Aubière, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1103, GReD, Aubière, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Gilles Figueredo
- LEXVA Analytique, Biopole Clermont-Limagne, Saint-Beauzire, France
| | - Jean-Baptiste Nikiema
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Laboratoire de Biologie et Génétique (LABIOGENE), Centre Médical Saint Camille, Ouagadougou, Université de Ouagadougou, Ouagadougou, Burkina Faso
- Centre Médical Saint Camille de Ouagadougou, Ouagadougou, Burkina Faso
| | - Jean-Marc A. Lobaccaro
- Clermont Université, Université Blaise Pascal, Génétique Reproduction et Développement (GReD), Clermont-Ferrand, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6293, GReD, Aubière, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1103, GReD, Aubière, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Jacques Simpore
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Laboratoire de Biologie et Génétique (LABIOGENE), Centre Médical Saint Camille, Ouagadougou, Université de Ouagadougou, Ouagadougou, Burkina Faso
- Centre Médical Saint Camille de Ouagadougou, Ouagadougou, Burkina Faso
| |
Collapse
|
35
|
Revathi K, Chandrasekaran R, Thanigaivel A, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S. Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:369-376. [PMID: 24267699 DOI: 10.1016/j.pestbp.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
The culture supernatant of a strain of Bacillus subtilis isolated from soil samples killed larvae of the mosquito Aedes aegypti. The metabolites produced by B. subtilis were characterized using high performance liquid chromatography (HPLC). Mortality rate was dose-dependent for all larval instars of A. aegypti. Log probit analysis (95% confidence level) revealed an LC50 of 1.73 and an LC90 3.71μg/ml. Molecular weights/masses of B. subtilis metabolites were confirmed using SDS-PAGE analysis. B. subtilis metabolites were confirmed using HPLC analysis. We demonstrate that secondary metabolites from B. subtilis have larvicidal activity against A. aegypti and may be suitable for the control of this and other mosquito vectors of human disease. The larvae to the metabolites, significant reduction in the activities of acetylcholinesterse, α-carboxylesterase, and acid phosphatases were recorded.
Collapse
Affiliation(s)
- Kannan Revathi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tirunelveli, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
36
|
Dua VK, Kumar A, Pandey AC, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn. (Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit Vectors 2013; 6:30. [PMID: 23379981 PMCID: PMC3573908 DOI: 10.1186/1756-3305-6-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indiscriminate use of synthetic insecticides to eradicate mosquitoes has caused physiological resistance. Plants provide a reservoir of biochemical compounds; among these compounds some have inhibitory effect on mosquitoes. In the present study the larvicidal, adulticidal and genotoxic activity of essential oil of Psoralea corylifolia Linn. against Culex quinquefasciatus Say was explored. METHODS Essential oil was isolated from the seeds of P. corylifolia Linn. Larvicidal and adulticidal bioassay of Cx. quinquefasciatus was carried out by WHO method. Genotoxic activity of samples was determined by comet assay. Identification of different compounds was carried out by gas chromatography- mass spectrometry analysis. RESULTS LC50 and LC90 values of essential oil were 63.38±6.30 and 99.02±16.63 ppm, respectively against Cx. quinquefasciatus larvae. The LD50 and LD90 values were 0.057±0.007 and 0.109±0.014 mg/cm2 respectively against adult Cx. quinquefasciatus,. Genotoxicity of adults was determined at 0.034 and 0.069 mg/cm2. The mean comet tail length was 6.2548±0.754 μm and 8.47±0.931 μm and the respective DNA damage was significant i.e. 6.713% and 8.864% in comparison to controls. GCMS analysis of essential oil revealed 20 compounds. The major eight compounds were caryophyllene oxide (40.79%), phenol,4-(3,7-dimethyl-3-ethenylocta-1,6-dienyl) (20.78%), caryophyllene (17.84%), α-humulene (2.15%), (+)- aromadendrene (1.57%), naphthalene, 1,2,3,4-tetra hydro-1,6-dimethyle-4-(1-methyl)-, (1S-cis) (1.53%), trans- caryophyllene (0.75%), and methyl hexadecanoate (0.67%). CONCLUSION Essential oil obtained from the seeds of P. corylifolia showed potent toxicity against larvae and adult Cx. quinquefasciatus. The present work revealed that the essential oil of P. corylifolia could be used as environmentally sound larvicidal and adulticidal agent for mosquito control.
Collapse
Affiliation(s)
- Virendra K Dua
- National Institute of Malaria Research, Sector-3, Health Centre, Field Unit BHEL, Ranipur, Hardwar, Uttrakhand, 249403, India.
| | | | | | | |
Collapse
|
37
|
Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and Biochemistry of Terpenoids fromCurcumaand Related Species. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/22311866.2013.782757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Larvicidal activity of lansiumamide B from the seeds of Clausena lansium against Aedes albopictus (Diptera: Culicidae). Parasitol Res 2012; 112:511-6. [DOI: 10.1007/s00436-012-3161-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/22/2022]
|
39
|
Sagnou M, Mitsopoulou K, Koliopoulos G, Pelecanou M, Couladouros E, Michaelakis A. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 2012; 123:190-5. [PMID: 22634203 DOI: 10.1016/j.actatropica.2012.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/23/2012] [Accepted: 05/13/2012] [Indexed: 11/27/2022]
Abstract
The three curcuminoid components commonly isolated from Curcuma longa, curcumin (1), demethoxycurcumin (2), and bis-demethoxycurcumin (3) were separated and isolated from a commercially available turmeric extract product in high purity and sufficient amounts. Three more derivatives of curcumin, the di-O-demethylcurcumin (4), di-O-methylcurcumin (5) and the di-O-acetylcurcumin (6) were also synthesized and characterized. All six compounds were evaluated for their larvicidal effect against the mosquito Culex pipiens. Curcumin (1) exhibited highly potent larvicidal activity with LC(50) value of 19.07mgL(-1). Moreover, di-O-demethylcurcumin (4), was found to be equally active with LC(50) value of 12.42mgL(-1). Based on the LC(90) values of the two compounds, di-O-demethylcurcumin (4) was the most active of all, resulting in an LC(90) value of 29.40mgL(-1), almost half of the LC(90) value 61.63mgL(-1) found for compound 1. The rest of the compounds were inactive at concentrations even as high as 150mgL(-1) indicating a dependence of the larvicidal activity upon the substitution patent and the presence of aromatic hydroxyl and methoxy moieties. These results show for the first time the potential of this valuable natural product regarding its use as vector control agent.
Collapse
|
40
|
Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res 2012; 57:1510-28. [PMID: 22887802 DOI: 10.1002/mnfr.201100741] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/21/2012] [Accepted: 04/03/2012] [Indexed: 12/20/2022]
Abstract
Although much has been published about curcumin, which is obtained from turmeric, comparatively little is known about turmeric itself. Turmeric, a golden spice obtained from the rhizome of the plant Curcuma longa, has been used to give color and taste to food preparations since ancient times. Traditionally, this spice has been used in Ayurveda and folk medicine for the treatment of such ailments as gynecological problems, gastric problems, hepatic disorders, infectious diseases, and blood disorders. Modern science has provided the scientific basis for the use of turmeric against such disorders. Various chemical constituents have been isolated from this spice, including polyphenols, sesquiterpenes, diterpenes, triterpenoids, sterols, and alkaloids. Curcumin, which constitutes 2-5% of turmeric, is perhaps the most-studied component. Although some of the activities of turmeric can be mimicked by curcumin, other activities are curcumin-independent. Cell-based studies have demonstrated the potential of turmeric as an antimicrobial, insecticidal, larvicidal, antimutagenic, radioprotector, and anticancer agent. Numerous animal studies have shown the potential of this spice against proinflammatory diseases, cancer, neurodegenerative diseases, depression, diabetes, obesity, and atherosclerosis. At the molecular level, this spice has been shown to modulate numerous cell-signaling pathways. In clinical trials, turmeric has shown efficacy against numerous human ailments including lupus nephritis, cancer, diabetes, irritable bowel syndrome, acne, and fibrosis. Thus, a spice originally common in the kitchen is now exhibiting activities in the clinic. In this review, we discuss the chemical constituents of turmeric, its biological activities, its molecular targets, and its potential in the clinic.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory,, Department of Experimental Therapeutics,, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition. Parasitol Res 2011; 110:1993-9. [PMID: 22167370 DOI: 10.1007/s00436-011-2728-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
The larvicidal activities of methanolic fractions from Adhatoda vasica leaf extracts were investigated against the bancroftian filariasis vector Culex quinquefasciatus and dengue vector Aedes aegypti. The results indicated that the mortality rates was high at 100, 150, 200 and 250 ppm of methanol extract of fractions III with R (f) value 0.67 and methanol extract of fraction V with R (f) value 0.64 of A. vasica against all the larval instars of C. quinquefasciatus and A. aegypti. The result of log probit analysis (at 95% confidence level) revealed that lethal concentration, LC(50) and LC(90) values were 106.13 and 180.6 ppm for fraction III, 110.6 and 170 ppm for fraction V of C. quinquefasciatus. And, the LC(50) and LC(90) values were 157.5 and 215.5 ppm for fraction III of A. aegypti and 120 and 243.5 ppm for the fraction V of A. aegypti, respectively. All the tested fractions proved to have strong larvicidal activity (doses from 100 to 250 ppm) against C. quinquefasciatus and A. aegypti. In general, second instar was more susceptible than the later instar. The results achieved suggest that, in addition to their ethnopharmacology value, A. vasica may also serve as a natural larvicidal agent.
Collapse
|
42
|
A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 2011; 110:1801-13. [DOI: 10.1007/s00436-011-2702-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/14/2011] [Indexed: 11/26/2022]
|