1
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
2
|
Karabowicz J, Długosz E, Bąska P, Pękacz M, Wysmołek ME, Klockiewicz M, Wiśniewski M. Analysis of the role of Dirofilaria repens macrophage migration inhibitory factors in host-parasite interactions. J Vet Res 2024; 68:381-388. [PMID: 39318519 PMCID: PMC11418385 DOI: 10.2478/jvetres-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Dirofilaria repens is a zoonotic parasitic filarial nematode that infects carnivores and occasionally humans. Knowledge of the host-parasite molecular interactions enabling the parasite's avoidance of the host immune response in subcutaneous dirofilariasis remains limited. Parasitic orthologues of host macrophage migration inhibitory factor (MIF) are molecules potentially involved in this process. Material and Methods Complementary DNA encoding two D. repens MIF orthologues (rDre-MIF-1 and rDre-MIF-2) was cloned into a pET-28a expression vector. The recombinant proteins were produced in Escherichia coli and purified using affinity nickel chromatography. The reactivity of both recombinant proteins was analysed with infected dog and immunised mouse sera. Results Stronger antibody production was induced by rDre-MIF-1 in mice, as evidenced by significantly higher levels of anti-rDre-MIF-1 total IgG, IgG2 and IgE antibodies than of anti-rDre-MIF-2 immunoglobulins. Additionally, a significantly different level of antibodies specific to both proteins was noted between the sera of infected dogs and those of uninfected dogs. Conclusion This study is the first attempt to characterise MIF orthologues from the filarial parasite D. repens, which may affect the immune response during infection.
Collapse
Affiliation(s)
- Justyna Karabowicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Piotr Bąska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Mateusz Pękacz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Magdalena Elżbieta Wysmołek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Maciej Klockiewicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Marcin Wiśniewski
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| |
Collapse
|
3
|
Galli M, Jacob S, Zheng Y, Ghezellou P, Gand M, Albuquerque W, Imani J, Allasia V, Coustau C, Spengler B, Keller H, Thines E, Kogel KH. MIF-like domain containing protein orchestrates cellular differentiation and virulence in the fungal pathogen Magnaporthe oryzae. iScience 2023; 26:107565. [PMID: 37664630 PMCID: PMC10474474 DOI: 10.1016/j.isci.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.
Collapse
Affiliation(s)
- Matteo Galli
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Christine Coustau
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, UMR1355-7254, ISA, 06903 Sophia Antipolis, France
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research GmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Johannes Gutenberg-University Mainz, Microbiology and Biotechnology at the Institute of Molecular Physiology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
4
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
5
|
Macrophage migration inhibitory factor in Nodding syndrome. PLoS Negl Trop Dis 2021; 15:e0009821. [PMID: 34662363 PMCID: PMC8553141 DOI: 10.1371/journal.pntd.0009821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
Nodding syndrome (NS) is a catastrophic and enigmatic childhood epilepsy, accompanied by multiple neurological impairments and neuroinflammation. Of all the infectious, environmental and psychological factors associated with NS, the major culprit is Onchocerca Volvulus (Ov)-a parasitic worm transmitted to human by blackflies. NS seems to be an 'Autoimmune Epilepsy' in light of the recent findings of deleterious autoimmune antibodies to Glutamate receptors and to Leiomodin-I in NS patients. Moreover, we recently found immunogenetic fingerprints in HLA peptide-binding grooves associate with protection or susceptibility to NS. Macrophage migration inhibitory factor (MIF) is an immune-regulatory cytokine playing a central role in modulating innate and adaptive immunity. MIF is also involved in various pathologies: infectious, autoimmune and neurodegenerative diseases, epilepsy and others. Herein, two functional polymorphisms in the MIF gene, a -794 CATT5-8 microsatellite repeat and a -173 G/C single-nucleotide polymorphism, were assessed in 49 NS patients and 51 healthy controls from South Sudan. We also measured MIF plasma levels in established NS patients and healthy controls. We discovered that the frequency of the high-expression MIF -173C containing genotype was significantly lower in NS patients compared to healthy controls. Interestingly however, MIF plasma levels were significantly elevated in NS patients than in healthy controls. We further demonstrated that the HLA protective and susceptibility associations are dominant over the MIF association with NS. Our findings suggest that MIF might have a dual role in NS. Genetically controlled high-expression MIF genotype is associated with disease protection. However, elevated MIF in the plasma may contribute to the detrimental autoimmunity, neuroinflammation and epilepsy.
Collapse
|
6
|
Identification of infiltrating immune cell subsets and heterogeneous macrophages in the lesion microenvironment of hepatic cystic echinococcosis patients with different cyst viability. Acta Trop 2021; 221:106029. [PMID: 34216561 DOI: 10.1016/j.actatropica.2021.106029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Human cystic echinococcosis (CE) is characterized by lesion microenvironment formation through gathering various immune cells, including macrophages. However, immune cell subsets and heterogeneous macrophages in CE lesion microenvironment are poorly defined. Massive infiltrating immune cells formed lesion microenvironment, among which CD4+T cells and CD19+B cells were predominant and CD68+ macrophages were more evident in patients with active cysts. Different degrees of liver fibrosis was observed in Peri-Lesion (PL) liver samples, which was more evident in patients with active cysts. Expression of both M1 and M2 macrophage markers was significantly increased in PL liver samples. Importantly, elevation of M1 macrophage markers was more obvious in patients with inactive cysts, whereas M2 macrophage markers represented dominant macrophage phenotype in patients with active cysts. Additionally, macrophage-derived MIF, TGF-β1 and ECM1 were also expressed at higher level in CE lesion microenvironment of patients with active cysts. Moreover, MIF was evidently enhanced in the serum of hepatic CE patients, which was also predominant in patients with active cysts. Correlation analysis demonstrated positive correlation between expression of macrophage-derived cytokines and liver fibrosis degree. Heterogeneous macrophages may play significant roles in liver fibrosis of CE lesion microenvironment through producing pro-fibrogenic cytokines.
Collapse
|
7
|
Cai J, Huang L, Tang H, Xu H, Wang L, Zheng M, Yu H, Liu H. Macrophage migration inhibitory factor of Thelazia callipaeda induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway. FASEB J 2021; 35:e21866. [PMID: 34416031 DOI: 10.1096/fj.202100676r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF), an immunoregulatory cytokine plays an important role in inflammation and the immune response, and has been described as having a potential role in immune evasion by parasites. Thelazia callipaeda, a vector-borne zoonotic eye worm with a broad host range, has been documented as an agent of ocular infection of thelaziosis. The ability of T. callipaeda to persist in an immunologically competent host has led to the suggestion that it has evolved specific measures to counter immune defenses. To date, whether the immune evasion of T. callipaeda is related to MIF and the possible related signaling pathway and molecular mechanism have remained unclear. In the present study, we examined the effect of T. callipaeda MIF (T. cp-MIF) on macrophages. We analyzed the antigenic epitopes of the candidate T. cp-MIF and found that it exhibited an ideal antigenic index. Morphology, Flow cytometry, and cytokine analysis showed that T. cp-MIF induced the dynamic polarization of THP-1 macrophages from the M1-like phenotype to the M2-like phenotype. The chemotaxis assay revealed an inhibitory effect of T. cp-MIF on THP-1 macrophages. Western blotting suggested that, compared to the control, THP-1 macrophages exposed to T. cp-MIF had higher TLR4 protein expression and the phosphatidylinositol 3'-kinase (PI3K) -Akt pathway activation. In conclusion, T. cp-MIF induces M2-like macrophage polarization through TLR4-mediated activation of the PI3K-Akt pathway, which might provide a basis for future research on how it affects the immune system of the host.
Collapse
Affiliation(s)
- Juan Cai
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lin Huang
- Qiannan Medical College for Nationalities, Duyun, China
| | - Hongri Tang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongling Xu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Minghui Zheng
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
9
|
Zhao J, Mao Z, Sun Q, Liu Q, Jian H, Xie B. MiMIF-2 Effector of Meloidogyne incognita Exhibited Enzyme Activities and Potential Roles in Plant Salicylic Acid Synthesis. Int J Mol Sci 2020; 21:ijms21103507. [PMID: 32429304 PMCID: PMC7278917 DOI: 10.3390/ijms21103507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant-parasitic nematodes secrete a series of effectors to promote parasitism by modulating host immunity, but the detailed molecular mechanism is ambiguous. Animal parasites secrete macrophage migration inhibitory factor (MIF)-like proteins for evasion of host immune systems, in which their biochemical activities play essential roles. Previous research demonstrated that MiMIF-2 effector was secreted by Meloidogyne incognita and modulated host immunity by interacting with annexins. In this study, we show that MiMIF-2 had tautomerase activity and protected nematodes against H2O2 damage. MiMIF-2 expression not only decreased the amount of H2O2 generation during nematode infection in Arabidopsis, but also suppressed Bax-induced cell death by inhibiting reactive oxygen species burst in Nicotiana benthamiana. Further, RNA-seq transcriptome analysis and RT-qPCR showed that the expression of some heat-shock proteins was down regulated in MiMIF-2 transgenic Arabidopsis. After treatment with flg22, RNA-seq transcriptome analysis indicated that the differentially expressed genes in MiMIF-2 expressing Arabidopsis were pointed to plant hormone signal transduction, compound metabolism and plant defense. RT-qPCR and metabolomic results confirmed that salicylic acid (SA) related marker genes and SA content were significantly decreased. Our results provide a comprehensive understanding of how MiMIF-2 modulates plant immunity and broaden knowledge of the intricate relationship between M. incognita and host plants.
Collapse
Affiliation(s)
- Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Plant Pathology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China;
- Correspondence: (H.J.); (B.X.)
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China; (J.Z.); (Z.M.); (Q.S.)
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
10
|
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5943-5958. [PMID: 31365744 PMCID: PMC6812717 DOI: 10.1093/jxb/erz348] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes secrete numerous effectors to facilitate parasitism, but detailed functions of nematode effectors and their plant targets remain largely unknown. Here, we characterized four macrophage migration inhibitory factors (MIFs) in Meloidogyne incognita resembling the MIFs secreted by human and animal parasites. Transcriptional data showed MiMIFs are up-regulated in parasitism. Immunolocalization provided evidence that MiMIF proteins are secreted from the nematode hypodermis to the parasite surface, detected in plant tissues and giant cells. In planta MiMIFs RNA interference in Arabidopsis decreased infection and nematode reproduction. Transient expression of MiMIF-2 could suppress Bax- and RBP1/Gpa2-induced cell death. MiMIF-2 ectopic expression led to higher levels of Arabidopsis susceptibility, suppressed immune responses triggered by flg22, and impaired [Ca2+]cyt influx induced by H2O2. The immunoprecipitation of MiMIF-2-interacting proteins, followed by co-immunoprecipitation and bimolecular fluorescence complementation validations, revealed specific interactions between MiMIF-2 and two Arabidopsis annexins, AnnAt1 and AnnAt4, involved in the transport of calcium ions, stress responses, and signal transduction. Suppression of expression or overexpression of these annexins modified nematode infection. Our results provide functional evidence that nematode effectors secreted from hypodermis to the parasite cuticle surface target host proteins and M. incognita uses MiMIFs to promote parasitism by interfering with the annexin-mediated plant immune responses.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lijuan Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Pei Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Shuang Li
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée (CCMA), Université de Nice Sophia Antipolis, Nice, France
| | | | - Pierre Abad
- Université Côte d’Azur, INRA, CNRS, ISA, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
11
|
Njume FN, Ghogomu SM, Shey RA, Gainkam LOT, Poelvoorde P, Humblet P, Kamgno J, Robert A, Mutesa L, Lelubre C, Edelweiss E, Poterszman A, Anheuser S, Vanhamme L, Souopgui J. Identification and characterization of the Onchocerca volvulus Excretory Secretory Product Ov28CRP, a putative GM2 activator protein. PLoS Negl Trop Dis 2019; 13:e0007591. [PMID: 31329585 PMCID: PMC6675134 DOI: 10.1371/journal.pntd.0007591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/01/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Onchocerca volvulus is the nematode pathogen responsible for human onchocerciasis also known as "River blindness", a neglected tropical disease that affects up to 18 million people worldwide. Helminths Excretory Secretory Products (ESPs) constitute a rich repertoire of molecules that can be exploited for host-parasite relationship, diagnosis and vaccine studies. Here, we report, using a range of molecular techniques including PCR, western blot, recombinant DNA technology, ELISA, high performance thin-layer chromatography and mass spectrometry that the 28 KDa cysteine-rich protein (Ov28CRP) is a reliable component of the O. volvulus ESPs to address the biology of this parasite. We showed that (1) Ov28CRP is a putative ganglioside GM2 Activator Protein (GM2AP) conserved in nematode; (2) OvGM2AP gene is transcriptionally activated in all investigated stages of the parasitic life cycle, including larval and adult stages; (3) The full-length OvGM2AP was detected in in-vitro O. volvulus ESPs of adult and larval stages; (4) the mass expressed and purified recombinant OvGM2AP purified from insect cell culture medium was found to be glycosylated at asparagine 173 and lacked N-terminal signal peptide sequence; (5) the recombinant OvGM2AP discriminated serum samples of infected and uninfected individuals; (6) OvGM2AP competitively inhibits MUG degradation by recombinant β-hexosaminidase A but not MUGS, and could not hydrolyze the GM2 to GM3; (7) humoral immune responses to the recombinant OvGM2AP revealed a negative correlation with ivermectin treatment. Altogether, our findings suggest for the first time that OvGM2AP is an antigenic molecule whose biochemical and immunological features are important to gain more insight into our understanding of host-parasite relationship, as well as its function in parasite development at large.
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Lea Olive Tchouate Gainkam
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Perrine Humblet
- École de santé publique, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Joseph Kamgno
- Department of Epidemiology, Centre for research on filariasis and other tropical diseases, Yaounde, Cameroon
| | - Annie Robert
- Faculté de santé publique, Institut de recherche expérimentale et clinique, Pôle d'épidémiologie et biostatistique, Université Catholique de Louvain, Clos Chapelle-aux-champs, Woluwe-Saint-Lambert, Belgium
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Christophe Lelubre
- Laboratoire de Médecine Expérimentale, Université Libre de Bruxelles (ULB)—Unité 222, CHU Charleroi (Hôpital André Vésale), Rue de Gozée, Montigny-Le-Tilleul, Belgium
| | - Evelina Edelweiss
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, UMR7104, Illkirch, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, UMR7104, Illkirch, France
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, UMR7104, Illkirch, France
| | - Susi Anheuser
- LIMES Institute, Membrane Biology & Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
12
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. Reprint of: The non-mammalian MIF superfamily. Immunobiology 2017; 222:858-867. [PMID: 28552269 DOI: 10.1016/j.imbio.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
13
|
Machicado C, Marcos LA. A computational assessment of the predicted structures of Human Macrophage Migration Inhibitory Factor 1 orthologs in parasites and its affinity to human CD74 receptor. J Mol Recognit 2017; 30. [PMID: 28513076 DOI: 10.1002/jmr.2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/09/2017] [Accepted: 04/21/2017] [Indexed: 11/10/2022]
Abstract
The human macrophage migration inhibitory factor 1 (Hu-MIF-1) is a protein involved in the inflammatory and immunology response to parasite infection. In the present study, the existence of Hu-MIF-1 from parasites have been explored by mining WormBase. A total of 35 helminths were found to have Hu-MIF-1 homologs, including some parasites of importance for public health. Physicochemical, structural, and biological properties of Hu-MIF-1 were compared with its orthologs in parasites showing that most of these are secretory proteins, with positive net charge and presence of the Cys-Xaa-Xaa-Cys motif that is critical for its oxidoreductase activity. The inhibitor-binding site present in Hu-MIF-1 is well conserved among parasite MIFs suggesting that Hu-MIF inhibitors may target orthologs in pathogens. The binding of Hu-MIF-1 to its cognate receptor CD74 was predicted by computer-assisted docking, and it resulted to be very similar to the predicted complexes formed by parasite MIFs and human CD74. More than 1 plausible conformation of MIFs in the extracellular loops of CD74 may be possible as demonstrated by the different predicted conformations of MIF orthologs in complex with CD74. Parasite MIFs in complex with CD74 resulted with some charged residues oriented to CD74, which was not observed in the Hu-MIF-1/CD74 complex. Our findings predict the binding mode of Hu-MIF-1 and orthologs with CD74, which can assist in the design of novel MIF inhibitors. Whether the parasite MIFs function specifically subvert host immune responses to suit the parasite is an open question that needs to be further investigated. Future research should lead to a better understanding of parasite MIF action in the parasite biology.
Collapse
Affiliation(s)
- Claudia Machicado
- Research and Development Laboratories, Faculty of Science and Philosophy, Cayetano Heredia Peruvian University, Lima, Peru.,Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
| | - Luis A Marcos
- Department of Medicine (Infectious Diseases), Stony Brook University, Stony Brook, NY, USA.,Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, USA.,Global Health Institute, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
14
|
Wang H, Zhou B, Niu R, Wang J, Zhang J, Wang J. Analysis of the roles of dietary protein and calcium in fluoride-induced changes in T-lymphocyte subsets in rat. ENVIRONMENTAL TOXICOLOGY 2017; 32:1587-1595. [PMID: 28158927 DOI: 10.1002/tox.22386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The roles of dietary protein (Pr) and calcium (Ca) levels on the changes in T-lymphocyte subsets induced by excessive fluoride (F) intake were assessed using rats that were malnourished for 120 days as a model. The CD4+ and CD8+ T-lymphocytes in the spleen tissue were determined by flow cytometry and immunofluorescence assay. The percentages of CD3+ , CD4+ , and CD8+ T-lymphocytes were reduced in the spleen of rats exposed to excessive F, and malnutrition aggravated these changes in the T-lymphocytes. In addition, the mRNA expression levels of IL-1β, IL-2, IL-6, TNF-α, and IFN-γ in the spleen were downregulated significantly. We also reported herein the increased apoptosis ratio following caspase-9 and caspase-3 upregulation in the spleen of rats exposed to excessive amount of F. Light and transmisison electron microscopy revealed the irregularly arranged lymphocytes, few lymph nodules and the apoptotic characteristic of lymphocytes, which are caused by the increased expression of caspase. In addition, Pr and Ca supplementation reversed the morphologic and T-lymphocytic changes in spleen under malnutrition. Taken together, our results revealed an endogenous caspase-mediated mechanism of regulating the apoptosis of the T-lymphocyte subsets, as well as the immune-related cytokine secretion, which reduces the immune function in F-induced rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1587-1595, 2017.
Collapse
Affiliation(s)
- Hongwei Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471003, People's Republic of China
| | - Bianhua Zhou
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471003, People's Republic of China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| |
Collapse
|
15
|
Sparkes A, De Baetselier P, Roelants K, De Trez C, Magez S, Van Ginderachter JA, Raes G, Bucala R, Stijlemans B. The non-mammalian MIF superfamily. Immunobiology 2017; 222:473-482. [PMID: 27780588 PMCID: PMC5293613 DOI: 10.1016/j.imbio.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.
Collapse
Affiliation(s)
- Amanda Sparkes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB Structural Biology Research Center, Brussels, Belgium; Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium.
| |
Collapse
|
16
|
Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti. Acta Trop 2016; 153:14-20. [PMID: 26432350 DOI: 10.1016/j.actatropica.2015.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/25/2023]
Abstract
Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2.
Collapse
|
17
|
Nutman TB. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths. Parasite Immunol 2015; 37:304-13. [PMID: 25869527 DOI: 10.1111/pim.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections.
Collapse
Affiliation(s)
- T B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Chauhan N, Sharma R, Hoti S. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop 2015; 142:71-8. [PMID: 25446175 DOI: 10.1016/j.actatropica.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/24/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Homologues of human macrophage migration inhibitory factor (hMIF) have been reported from vertebrates, invertebrates and prokaryotes, as well as plants. Filarial parasites produce two homologues of hMIF viz., MIF-1 and MIF-2, which play important role in the host immune modulation. Earlier, we have characterized MIF-1 (Wba-mif-1) from Wuchereria bancrofti, the major causal organism of human lymphatic filariasis. Here, we are reporting the molecular and biochemical characterization of MIF-2 from this parasite (Wba-mif-2). The complete Wba-mif-2 gene and its cDNA were amplified, cloned and sequenced. The size of Wba-mif-2 gene and cDNA were found to be 4.275 kb and 363 bp, respectively. The gene annotation revealed the presence of a large intron of 3.912 kb interspersed with two exons of 183 bp and 180 bp. The alignment of derived amino acid sequences of Wba-MIF-2 with Wba-MIF-1 showed 44% homology. The conserved CXXC oxido-reductase catalytic site present in Wba-mif-1 was found absent in Wba-mif-2 coding sequence. The amplified Wba-mif-2 cDNA was cloned into an expression vector pRSET-B and transformed into salt inducible Escherichia coli strain GJ1158. The expressed recombinant Wba-MIF-2 protein showed tautomerase activity against L-dopachrome methyl ester and the specific activity was determined to be 18.57±0.77 μmol/mg/min. Three known inhibitors of hMIF tautomerase activity significantly inhibited the tautomerase activity of recombinant Wba-MIF-2. Although the conserved CXXC oxido-reductase motif is absent in Wba-mif-2, the recombinant protein showed significant oxido-reductase activity in the insulin reduction assay, possibly because of the presence of vicinal cysteine residues.
Collapse
|
19
|
Qu G, Fetterer R, Leng L, Du X, Zarlenga D, Shen Z, Han W, Bucala R, Tuo W. Ostertagia ostertagi macrophage migration inhibitory factor is present in all developmental stages and may cross-regulate host functions through interaction with the host receptor. Int J Parasitol 2014; 44:355-67. [PMID: 24583184 DOI: 10.1016/j.ijpara.2014.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 01/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) of Ostertagia ostertagi, an abomasal parasite of cattle, was characterised in the present study. Phylogenetic analysis identified at least three O. ostertagi MIFs (Oos-MIFs), each encoded by a distinct transcript: Oos-MIF-1.1, Oos-MIF-1.2 and Oos-MIF-2. Oos-MIF-2 is only distantly related to Oos-MIF-1s, but has higher sequence similarity with the Caenorhabditis elegans MIF2. Oos-MIF-1.1 and Oos-MIF-1.2 are similar (93%) and thus collectively referred to as Oos-MIF-1 when characterised with immunoassays. Recombinant Oos-MIF-1.1 (rOos-MIF-1.1) is catalytically active as a tautomerase. A mutation (rOos-MIF-1.1P1G) or duplication of Pro1 residue (rOos-MIF-1.1P1+P) resulted in reduced oligomerisation and loss of tautomerase activity. The tautomerase activity of rOos-MIF-1.1 was only partially inhibited by ISO-1 but was abrogated by a rOos-MIF-1.1-specific antibody. Oos-MIF-1 was detected in all developmental stages of O. ostertagi, with higher levels in the adult stage; it was also detected in adult worm excretory/secretory product. Oos-MIF-1 was localised to the hypodermis/muscle, reproductive tract and intestine, but not to the cuticle. rOos-MIF-1.1, but not rOos-MIF-1.1P1G, was able to specifically bind to human CD74, a MIF cell surface receptor, with an affinity comparable with human MIF. Immunostaining indicated that macrophages were able to internalise rOos-MIF-1.1, further supporting receptor-mediated transportation. Herein we also show that rOos-MIF-1.1 inhibited migration of bovine macrophages and restored glucocorticoid-suppressed, lipopolysaccharide-induced TNF-α and IL-8 in human and/or bovine macrophages. Given its dual role in self-regulation and molecular mimicry, this secreted parasite protein warrants investigation as a vaccine candidate against O. ostertagi infections in cattle.
Collapse
Affiliation(s)
- Guanggang Qu
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA; Shangdong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou City, Shandong 256600, China
| | - Raymond Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Lin Leng
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xin Du
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Zhiqiang Shen
- Shangdong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou City, Shandong 256600, China
| | - Wenyu Han
- College of Veterinary Medicine and Animal Science, Jilin University, Changchun, China
| | - Richard Bucala
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|