1
|
Tang D, Chen XH, Yu YD, Deng Y. Synthesis and evaluation of febrifugine derivatives as anticoccidial agents. Arch Pharm (Weinheim) 2024; 357:e2300540. [PMID: 38217306 DOI: 10.1002/ardp.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
A series of new febrifugine derivatives with a 4(3H)-quinazolinone scaffold were synthesized and evaluated for their anticoccidial activity both in vitro and in vivo. The targets' in vitro activity against Eimeria tenella was studied using quantitative real-time reverse transcription polymerase chain reaction and Madin-Darby bovine kidney cells. Most of these compounds demonstrated anticoccidial efficacy, with inhibition ratios ranging from 3.3% to 85.7%. Specifically, compounds 33 and 34 showed significant inhibitory effects on the proliferation of E. tenella and exhibited lower cytotoxicity compared to febrifugine. The IC50 values of compounds 33 and 34 were 3.48 and 1.79 μM, respectively, while the CC50 values were >100 μM for both compounds. Furthermore, in a study involving 14-day-old chickens infected with 5 × 104 sporulated oocysts, treatment with five selected compounds (22, 24, 28, 33, and 34), which exhibited in vitro inhibition rate of over 50% at 100 μM, at a dose of 40 mg/kg in daily feed for 8 consecutive days showed that compound 34 possessed moderate in vivo activity against coccidiosis, with an anticoccidial index of 164. Structure-activity relationship studies suggested that spirocyclic piperidine may be a preferable substructure to maintain high effectiveness in inhibiting Eimeria spp., when the side chain 1-(3-hydroxypiperidin-2-yl)propan-2-one was replaced.
Collapse
Affiliation(s)
- Da Tang
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| | - Xiao-Hu Chen
- Department of Clinical Laboratory, Rongchang District People's Hospital, Rongchang, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| | - Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| |
Collapse
|
2
|
Qu Z, Gong Z, Olajide JS, Wang J, Cai J. CRISPR-Cas9-based method for isolating microgametes of Eimeria tenella. Vet Parasitol 2024; 327:110131. [PMID: 38301346 DOI: 10.1016/j.vetpar.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Eimeria tenella infections are known to cause severe caecal damage and death of the infected chicken. Gamogony is an essential stage in E. tenella life cycle and in the establishment of coccidiosis. Prior research had extensively explored isolation and separation of the parasite gametes - microgamete (male) and macrogamete (female). However, there is little information on the efficient, highly purified and distinctly separated male and female gametes. In this study, we generated a genome editing line expressing mCherry fluorescent protein fused with GCS1 protein in E. tenella by using Toxoplasma gondii CRISPR-Cas9 system, flow cytometry and fluorescence microscopy. This allowed precise separation of E. tenella male and female gametes in the transgenic parasite population. The separation of male and female gametes would not only build on our understanding of E. tenella transmission, but it would also facilitate development of gametocidal compounds as drug targets for E. tenella infection.
Collapse
Affiliation(s)
- Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China.
| |
Collapse
|
3
|
Ma X, Liu B, Gong Z, Wang J, Qu Z, Cai J. Comparative proteomic analysis across the developmental stages of the Eimeria tenella. Genomics 2024; 116:110792. [PMID: 38215860 DOI: 10.1016/j.ygeno.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.
Collapse
Affiliation(s)
- Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
4
|
Song H, Wang B, Zhao G, Lu S, Zhang D, Kong J, Li J, Zhang X, Lyu Y, Liu L. Discovery and biochemical characterization of two hexokinases from Crassostrea gigas. Protein Expr Purif 2024; 215:106408. [PMID: 38008389 DOI: 10.1016/j.pep.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Hexokinases (HKs) play a vital role in glucose metabolism, which controls the first committed step catalyzing the production of glucose-6-phosphate from glucose. Two HKs (CGIHK1 and CGIHK2) from the Pacific oyster Crassostrea giga were cloned and characterized. CGIHK1 and CGIHK2 were recombinantly expressed in Escherichia coli and successfully purified by the Ni-NTA column. The optimum pH of the two enzymes was pH 8.0 and 8.5, respectively. The optimum temperature of the two enzymes was 42 °C and 50 °C, respectively. Both enzymes showed a clear requirement for divalent magnesium and were strongly inhibited by SDS. CGIHK1 exhibited highly strict substrate specificity to glucose, while CGIHK2 could also catalyze other 11 monosaccharide substrates. This is the first report on the in vitro biosynthesis of glucose-6-phosphate by the hexokinases from Crassostrea gigas. The facile expression and purification procedures combined with different substrate specificities make CGIHK1 and CGIHK2 candidates for the biosynthesis of glucose-6-phosphate and other sugar-phosphates.
Collapse
Affiliation(s)
- Huibo Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China; Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Wang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China
| | - Guihong Zhao
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China.
| | - Shihai Lu
- Shandong Bigtree Dreyfus Special Meals Food Co., Ltd, Heze, 274000, China
| | - Dahu Zhang
- Shandong Bigtree Dreyfus Special Meals Food Co., Ltd, Heze, 274000, China
| | - Jianbiao Kong
- Heze Product Inspection and Testing Research Institute, Heze, 274000, China
| | - Jianxin Li
- Heze Institute for Food and Drug Control. Heze, 274000, China
| | - Xiaoyang Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Memariani H, Memariani M, Ghasemian A. Quercetin as a Promising Antiprotozoan Phytochemical: Current Knowledge and Future Research Avenues. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7632408. [PMID: 38456097 PMCID: PMC10919984 DOI: 10.1155/2024/7632408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Despite tremendous advances in the prevention and treatment of infectious diseases, only few antiparasitic drugs have been developed to date. Protozoan infections such as malaria, leishmaniasis, and trypanosomiasis continue to exact an enormous toll on public health worldwide, underscoring the need to discover novel antiprotozoan drugs. Recently, there has been an explosion of research into the antiprotozoan properties of quercetin, one of the most abundant flavonoids in the human diet. In this review, we tried to consolidate the current knowledge on the antiprotozoal effects of quercetin and to provide the most fruitful avenues for future research. Quercetin exerts potent antiprotozoan activity against a broad spectrum of pathogens such as Leishmania spp., Trypanosoma spp., Plasmodium spp., Cryptosporidium spp., Trichomonas spp., and Toxoplasma gondii. In addition to its immunomodulatory roles, quercetin disrupts mitochondrial function, induces apoptotic/necrotic cell death, impairs iron uptake, inhibits multiple enzymes involved in fatty acid synthesis and the glycolytic pathways, suppresses the activity of DNA topoisomerases, and downregulates the expression of various heat shock proteins in these pathogens. In vivo studies also show that quercetin is effective in reducing parasitic loads, histopathological damage, and mortality in animals. Future research should focus on designing effective drug delivery systems to increase the oral bioavailability of quercetin. Incorporating quercetin into various nanocarrier systems would be a promising approach to manage localized cutaneous infections. Nevertheless, clinical trials are needed to validate the efficacy of quercetin in treating various protozoan infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Hu J, Sun M, Qi N, Abuzeid AM, Li J, Cai H, Lv M, Lin X, Liao S, Li G. Inhibitory effect of morin on aldolase 2 from Eimeria tenella. Int J Parasitol Drugs Drug Resist 2022; 20:1-10. [PMID: 35952522 PMCID: PMC9385451 DOI: 10.1016/j.ijpddr.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Eimeria tenella (E. tenella) is a protozoal parasite that can cause severe cecal lesions and death in chickens, seriously harming the chicken industry. Conventional control strategies mainly rely on anticoccidial drugs. However, the emerging problems of anticoccidial resistance and drug residues necessitate exploring potential drug targets for developing new anticoccidial drugs. Fructose-1,6-bisphosphate aldolase (ALD) is an essential enzyme for parasite energy metabolism that has been considered a potential drug target. In this study, we analyzed the molecular and biochemical properties of E. tenella ALD2 (EtALD2). EtALD2 mRNA expression was highest in second-generation merozoites, whereas the protein level was highest in unsporulated oocysts. Indirect immunofluorescence showed that EtALD2 was mainly distributed in sporozoite' cytoplasm. The natural product inhibitor (morin) was screened by computer-aided drug screening. Enzyme kinetic and inhibition kinetic assays showed that morin had a good inhibitory effect on EtALD2 activity (IC50 = 10.37 μM, Ki = 48.97 μM). In vitro inhibition assay demonstrated that morin had an inhibitory effect on E. tenella development, with an IC50 value of 3.98 μM and drug selection index of 177.49. In vivo, morin significantly improved cecal lesions (p < 0.05) and reduced oocyst excretion (p < 0.05) in E. tenella-infected chickens compared with the untreated group. The anticoccidial index of the group receiving 450 mg morin per kg feed was 162, showing a good anticoccidial effect. These findings suggest that EtALD2 could be a novel drug target for E. tenella treatment, and morin should be further evaluated as a therapeutic candidate for chicken coccidiosis.
Collapse
Affiliation(s)
- Junjing Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Mingfei Sun
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Nanshan Qi
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Asmaa M.I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Juan Li
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Haiming Cai
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Minna Lv
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Xuhui Lin
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Shenquan Liao
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China,Corresponding author.
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Corresponding author.
| |
Collapse
|
7
|
Paul-Odeniran KF, Odeniran PO, Ademola IO, Kumalo H. "Mango in all her majesty"-the potential of mangiferin and its analogues in the inhibition of Eimeria tenella hexokinase-a computational approach. J Biomol Struct Dyn 2022:1-14. [PMID: 35694819 DOI: 10.1080/07391102.2022.2085173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The potential of natural products in mitigating infections and diseases are being considered lately. Herein, via in silico methods, we report the possible molecular mechanism of mangiferin (isolated from the fruit, peel, bark and leaves of mango tree) and its derivatives in inhibiting Eimeria tenella hexokinase. We evaluated the binding affinity of these inhibitors to the glucose binding site of EtHK and thereafter proceeded to molecular dynamics simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) reveals that three of the derivatives (CPAMM, MxPAMM and NAMM) had better total binding free energy than mangiferin. The ADMET and physicochemical properties assessed shows that inhibitors also hold a potential to be drug-likely. Finally, in mediating their inhibitory potentials, the ligands stabilize both the global and local structures of the protein. This study provides a theoretical premise on which the anti-coccidial propensities of mangiferin most especially its derivatives can be investigate in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kehinde F Paul-Odeniran
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Oyo State, Nigeria
| | - Paul O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaiah O Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hezekiel Kumalo
- School of Laboratory and Medical Sciences, Department of medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Silvestre A, Shintre SS, Rachidi N. Released Parasite-Derived Kinases as Novel Targets for Antiparasitic Therapies. Front Cell Infect Microbiol 2022; 12:825458. [PMID: 35252034 PMCID: PMC8893276 DOI: 10.3389/fcimb.2022.825458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The efficient manipulation of their host cell is an essential feature of intracellular parasites. Most molecular mechanisms governing the subversion of host cell by protozoan parasites involve the release of parasite-derived molecules into the host cell cytoplasm and direct interaction with host proteins. Among these released proteins, kinases are particularly important as they govern the subversion of important host pathways, such as signalling or metabolic pathways. These enzymes, which catalyse the transfer of a phosphate group from ATP onto serine, threonine, tyrosine or histidine residues to covalently modify proteins, are involved in numerous essential biological processes such as cell cycle or transport. Although little is known about the role of most of the released parasite-derived kinases in the host cell, they are examples of kinases hijacking host cellular pathways such as signal transduction or apoptosis, which are essential for immune response evasion as well as parasite survival and development. Here we present the current knowledge on released protozoan kinases and their involvement in host-pathogen interactions. We also highlight the knowledge gaps remaining before considering those kinases - involved in host signalling subversion - as antiparasitic drug targets.
Collapse
Affiliation(s)
- Anne Silvestre
- INRAE, Université de Tours, ISP, Nouzilly, France
- *Correspondence: Anne Silvestre, ; Najma Rachidi,
| | - Sharvani Shrinivas Shintre
- INRAE, Université de Tours, ISP, Nouzilly, France
- Institut Pasteur, Université de Paris and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur, Université de Paris and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- *Correspondence: Anne Silvestre, ; Najma Rachidi,
| |
Collapse
|
9
|
Fecal metabolomic analysis of rabbits infected with Eimeria intestinalis and Eimeria magna based on LC-MS/MS technique. Microb Pathog 2021; 162:105357. [PMID: 34896546 DOI: 10.1016/j.micpath.2021.105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
Abstract
Rabbit coccidiosis is a common parasitic disease leading to economic losses in the rabbit industry. The intestinal flora plays a key role in pathogenesis of coccidiosis, and fecal metabolome mediates host-microbiome interactions as a functional readout of the gut microbiome. In this study, the E. intestinalis-infected and E. magna-infected rabbit models were established to investigate metabolic alterations and metabolic pathways based on LC-MS/MS technique for the first time. Multivariate OPLS-DA analysis was performed to explore differential metabolites. In total, 288 metabolites were detected from infected and uninfected rabbits. The level of 33 metabolites increased and 4 decreased in rabbits infected with E. intestinalis. Eight pathways were significantly perturbed during E. intestinalis infection including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, etc. After rabbits infected with E. magna, 13 metabolites were altered and 7 metabolic pathways were dysregulated. These metabolites and metabolic pathways were mainly involved in tuberculosis, parathyroid hormone synthesis, etc. Besides, 25 metabolites differed in abundance between E. intestinalis infection group and E. magna infection group, the major perturbed metabolic pathways were lipid metabolism and endocrine system, respectively. In general, it is confirmed that E. intestinalis and E. magna infection destroyed the intestinal flora, which caused corresponding changes in metabolites, and provide novel insights into the molecular mechanisms of rabbit-parasite interactions.
Collapse
|
10
|
Qi N, Liao S, Li J, Wu C, Lv M, Liu Y, Mohiuddin M, Lin X, Hu J, Cai H, Yu L, Xiao W, Sun M, Li G. Identification and Characterization of the ATG8, a Marker of Eimeria tenella Autophagy. ACTA ACUST UNITED AC 2021; 30:e017020. [PMID: 33729312 DOI: 10.1590/s1984-29612021002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022]
Abstract
Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.
Collapse
Affiliation(s)
- Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Caiyan Wu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Yunqiu Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P R China
| | - Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Linzeng Yu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Wenwan Xiao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P R China
| |
Collapse
|
11
|
Xie Y, Huang B, Xu L, Zhao Q, Zhu S, Zhao H, Dong H, Han H. Comparative Transcriptome Analyses of Drug-sensitive and Drug-resistant Strains of Eimeria tenella by RNA-sequencing. J Eukaryot Microbiol 2020; 67:406-416. [PMID: 32027445 DOI: 10.1111/jeu.12790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Avian coccidiosis is a widespread and economically significant disease in poultry. At present, treatment of coccidiosis mainly relies on drugs. Anticoccidial drugs can be divided into two categories: ionophorous compounds and synthetic drugs. However, the emergence of drug-resistant strains has become a challenge for coccidiosis control with anticoccidial drugs. To gain insights into the molecular mechanism governing the drug resistance of Eimeria tenella, two drug-resistant strains of E. tenella, one maduramicin-resistant (MRR) strain and one diclazuril-resistant (DZR) strain, were generated. We carried out comparative transcriptome analyses of a drug-sensitive strain (DS) and two drug-resistant MRR and DZR strains of E. tenella using RNA-sequencing. A total of 1,070 differentially expressed genes (DEGs), 672 upregulated and 398 downregulated, were identified in MRR vs. DS, and 379 DEGs, 330 upregulated and 49 downregulated, were detected in DZR vs. DS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. In the comparison of DZR vs. DS, some DEGs were involved in peroxisome, biosynthesis of unsaturated fatty acids, and fatty acid metabolism. In the comparison of MRR vs. DS, some DEGs were involved in glycolysis/gluconeogenesis, regulation of actin cytoskeleton, and DNA replication. In addition, some DEGs coded for surface antigens that were downregulated in two drug-resistant strains involved invasion, pathogenesis, and host-parasite interactions. These results provided suggestions for further research toward unraveling the molecular mechanisms of drug resistance in Eimeria species and contribute to developing rapid molecular methods to detect resistance to these drugs in Eimeria species in poultry.
Collapse
Affiliation(s)
- Yuxiang Xie
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100193, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Huanzhi Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
12
|
Dolgikh VV, Tsarev AA, Timofeev SA, Zhuravlyov VS. Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitol Res 2019; 118:1511-1518. [DOI: 10.1007/s00436-019-06279-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 01/10/2023]
|
13
|
Aguilera-Alvarado GP, Guevara-García ÁA, Estrada-Antolín SA, Sánchez-Nieto S. Biochemical properties and subcellular localization of six members of the HXK family in maize and its metabolic contribution to embryo germination. BMC PLANT BIOLOGY 2019; 19:27. [PMID: 30646852 PMCID: PMC6332545 DOI: 10.1186/s12870-018-1605-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seed germination is a crucial process in the plant life cycle when a dramatic variation of type and sugar content occurs just as the seed is hydrated. The production of hexose 6 phosphate is a key node in different pathways that are required for a successful germination. Hexokinase (HXK) is the only plant enzyme that phosphorylates glucose (Glc), so it is key to fueling several metabolic pathways depending on their substrate specificity, metabolite regulatory responses and subcellular localization. In maize, the HXK family is composed of nine genes, but only six of them (ZmHXK4-9) putatively encode catalytically active enzymes. Here, we cloned and functionally characterized putative catalytic enzymes to analyze their metabolic contribution during germination process. RESULTS From the six HXKs analyzed here, only ZmHXK9 has minimal hexose phosphorylating activity even though enzymatic function of all isoforms (ZmHXK4-9) was confirmed using a yeast complementation approach. The kinetic parameters of recombinant proteins showed that ZmHXK4-7 have high catalytic efficiency for Glc, fructose (Fru) and mannose (Man), ZmHXK7 has a lower Km for ATP, and together with ZmHXK8 they have lower sensitivity to inhibition by ADP, G6P and N-acetylglucosamine than ZmHXK4-6 and ZmHXK9. Additionally, we demonstrated that ZmHXK4-6 and ZmHXK9 are located in the mitochondria and their location relies on the first 30 amino acids of the N-terminal domain. Otherwise, ZmHXK7-8 are constitutively located in the cytosol. HXK activity was detected in cytosolic and mitochondrial fractions and high Glc and Fru phosphorylating activities were found in imbibed embryos. CONCLUSIONS Considering the biochemical characteristics, location and the expression of ZmHXK4 at onset of germination, we suggest that it is the main contributor to mitochondrial activity at early germination times, at 24 h other ZmHXKs also contribute to the total activity. While in the cytosol, ZmHXK7 could be responsible for the activity at the onset of germination, although later, ZmHXK8 also contributes to the total HXK activity. Our observations suggest that the HXKs may be redundant proteins with specific roles depending on carbon and ATP availability, metabolic needs, or sensor requirements. Further investigation is necessary to understand their specific or redundant physiological roles.
Collapse
Affiliation(s)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E., Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|