1
|
Hosseinnezhad H, Sharifdini M, Ashrafi K, Atrkar Roushan Z, Mirjalali H, Rahmati B. Trichostrongyloid nematodes in ruminants of northern Iran: prevalence and molecular analysis. BMC Vet Res 2021; 17:371. [PMID: 34863161 PMCID: PMC8642945 DOI: 10.1186/s12917-021-03086-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND This study was carried out to investigate the prevalence and analyze the molecular characteristics based on the internal transcribed spacer (ITS) 2 region of the ribosomal RNA (RNA) gene of trichostrongylid nematodes in different ruminants from Guilan province, northern of Iran. METHODS The gastrointestinal tracts of 144 ruminants including 72 cattle, 59 sheep, and 13 goats were collected from an abattoir in Guilan province during July to September 2018. After isolation the helminths, male specimens were identified based on morphological parameters. PCR and partial sequencing of the ITS2 fragment were conducted. After phylogenetic analysis, the intraspecific and interspecific differences were calculated. RESULTS The prevalence of total infections with the nematodes was 38.9, 74.6 and 84.6% among cattle, sheep and goats, respectively. Eleven species of trichostrongylid nematodes including Haemonchus contortus, Marshallagia marshalli, Trichostrongylus axei, T. colubriformis, T. vitrinus, Ostertagia trifurcata, Teladorsagia circumcincta, Marshallagia occidentalis, O. lyrata, O. ostertagi, and Cooperia punctate were recovered from the ruminants. The most prevalent trichostrongyloid nematodes in cattle, sheep and goats were O. ostertagi (26.4%), M. marshalli (64.4%) and T. circumcincta (69.2%), respectively. Phylogenetic tree was discriminative for Trichostrongylidae family, while phylogenetic analysis of the ITS2 gene represented low variations and no species identification of Haemonchidae and Cooperiidae families. CONCLUSIONS This study suggests the high prevalence and species diversity of trichostrongyloid nematodes in different ruminants, indicating the importance of implement antiparasitic strategies in north regions of Iran. As well, this study showed that the ITS2 fragment is not a discriminative marker for Haemonchidae and Cooperiidae families, and investigation of other genetic markers such as mitochondrial genes would be more valuable for better understanding of their phylogenetic relationships.
Collapse
Affiliation(s)
- Hedayat Hosseinnezhad
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Meysam Sharifdini
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Keyhan Ashrafi
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Atrkar Roushan
- Department of Biostatistics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Rahmati
- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
First next-generation sequencing data for Haploporidae (Digenea: Haploporata): characterization of complete mitochondrial genome and ribosomal operon for Parasaccocoelium mugili Zhukov, 1971. Parasitol Res 2021; 120:2037-2046. [PMID: 33893550 DOI: 10.1007/s00436-021-07159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
The first data on a whole mitochondrial genome of Haploporidae, Parasaccocoelium mugili (Digenea: Haploporata: Haploporidae) was generated using the next-generation sequencing (NGS) approach. We sequenced the complete mitochondrial DNA (mtDNA) and ribosomal operon of Parasaccocoelium mugili, intestine parasite of mullet fish. The mtDNA of P. mugili contained 14,021 bp, including 12 protein-coding genes, two ribosomal genes, 22 tRNA genes, and non-coding region. The ribosomal operon of P. mugili was 8308 bp in length, including 18S rRNA gene (1981 bp), ITS1 rDNA (955 bp), 5.8S rRNA gene (157 bp), ITS2 rDNA (268 bp), 28S rRNA gene (4180 bp), and ETS (767 bp). We used the mtDNA protein-coding regions to make phylogenetic reconstructions of Haploporidae. Additionally, we performed the sequence cluster analysis based on codon usage bias of most of currently available mitochondrial genome data for trematodes. The observed gene arrangement in mtDNA sequence of P. mugili is identical to those of Plagiorchis maculosus (Rudolphi, 1802). Results of maximum likelihood (ML) phylogenetic analysis showed that P. mugili was closely related to Paragonimus species from the suborder Xiphidiata. The results of sequence cluster analysis based on codon usage bias showed that P. mugili has the highest similarity with Plagiorchis maculosus (Xiphidiata). Our results do not contradict to proposing a new suborder for Haploporoidea-Haploporata. On the basis of obtained results, the relationship between mitochondrial protein-coding gene rearrangements and synonymous nucleotide substitutions in mitochondrial genomes has been suggested.
Collapse
|
3
|
Kuchboev A, Sobirova K, Karimova R, Amirov O, von Samson-Himmelstjerna G, Krücken J. Molecular analysis of polymorphic species of the genus Marshallagia (Nematoda: Ostertagiinae). Parasit Vectors 2020; 13:411. [PMID: 32787940 PMCID: PMC7425555 DOI: 10.1186/s13071-020-04265-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/29/2020] [Indexed: 12/05/2022] Open
Abstract
Background The genus Marshallagia (Family Haemonchidae, subfamily Ostertagiinae) contains multiple species of nematodes parasitising the abomasum (or duodenum) of ruminants, in particular of Caprinae. Male specimens have been described to be polymorphic with the frequent/major morphotype initially described in the genus Marshallagia while the minor/rare morphotype was initially often placed in the genus Grossospicularia. Due to common morphological features, certain pairs of morphotypes were suggested to belong to the same species such as Marshallagia marshalli/M. occidentalis. However, molecular evidence to confirm these pairs of morphotypes belonging to the same species is missing. Methods In the present study, Marshallagia sp. were collected from domestic sheep in Uzbekistan. Male specimens were morphologically described with particular emphasis on the structure of the bursa copulatrix. After DNA isolation from morphologically identified specimens, PCRs targeting the ribosomal internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) regions were conducted. After Sanger sequencing, maximum likelihood phylogenetic analyses and pairwise identities between sequences were calculated. Results The major morphotypes of M. marshalli, M. schumakovitschi and M. uzbekistanica and the minor morphotypes M. occidentalis, M. trifida and M. sogdiana were identified and their morphology was documented in detail. ITS2 sequences showed little variation and did not allow diagnosing species. In contrast, phylogenetic analysis of cox1 sequences identified highly supported clusters and verified that M. marshalli, M. occidentalis and M. uzbekistanica are different morphotypes of the species M. marshalli while M. schumakovitschi and M. trifida represent distinct morphotypes of M. trifida. For M. sogdiana no corresponding major morphotype could be identified in the present study. Due to a large barcoding gap, comparison of cox1 sequences in terms of percent identity was sufficient to reliably assign the sequences to a particular species without phylogenetic analysis. Conclusions The data presented here create a framework that will allow the classification of other members of the genus in the future and underline that parallel morphological and molecular analysis of specimens is crucial to improve the taxonomy of polymorphic species.![]()
Collapse
Affiliation(s)
- Abdurakhim Kuchboev
- Institute of Zoology, Uzbekistan Academy of Sciences, Bogishamol str. 232B, Tashkent, 100053, Uzbekistan
| | - Khanifakhon Sobirova
- Institute of Zoology, Uzbekistan Academy of Sciences, Bogishamol str. 232B, Tashkent, 100053, Uzbekistan
| | - Rokhatoy Karimova
- Institute of Zoology, Uzbekistan Academy of Sciences, Bogishamol str. 232B, Tashkent, 100053, Uzbekistan
| | - Oybek Amirov
- Institute of Zoology, Uzbekistan Academy of Sciences, Bogishamol str. 232B, Tashkent, 100053, Uzbekistan
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| |
Collapse
|
4
|
Barghandan T, Hajialilo E, Sharifdini M, Javadi A. Prevalence and phylogenetic analysis of gastrointestinal helminths (Nematoda: Trichostrongylidae) in ruminant livestock of northwest Iran. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2019. [DOI: 10.33988/auvfd.588539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Sun MM, Han L, Zhou CY, Liu GH, Zhu XQ, Ma J. Mitochondrial genome evidence suggests Cooperia sp. from China may represent a distinct species from Cooperia oncophora from Australia. Parasitol Int 2019; 75:102001. [PMID: 31678435 DOI: 10.1016/j.parint.2019.102001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Cooperia spp. are parasitic nematodes parasitizing in small intestine of ruminants with a worldwide distribution. Infection of ruminants with Cooperia species can cause severe enteritis, causing significant socio-economic losses to the livestock industry. However, it is yet to know whether there is genetic diversity in mitochondrial (mt) DNA sequences of Cooperia nematodes from different geographic regions. The objective of the present study was to examine sequence difference in mt genomes between Cooperia sp. from China and other Cooperia species. We determined the sequences of the internal transcribed spacer (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) of 11 Cooperia specimens collected from the small intestine of a Tianzhu White yak in Gansu Province, northwestern China, which had 99% similarity with that of C. oncophora from Brazil (GenBank accession Number: AJ544290) in ITS-1, and 99% similarity with those from Denmark (AB245040), Scotland and Australia (AJ000032) in ITS-2, indicating that specimens used in the present study should at least represent parasites in Cooperia. We then determined the complete mt genome sequences of one representative specimen of Cooperia sp. from China (CspC), compared the mt DNA sequences with that of C. oncophora from Australia (COA, GQ888713), and conducted phylogenetic analysis with selected nematodes using both maximum likelihood (ML) and Bayesian inference (BI) methods based on both concatenated 12 PCGs, rrnL and rrnS sequences and partial cox2 sequences. The complete mt genome sequence of CspC (KY769271) is 13, 583 bp in length, which is 91 bp shorter than that from COA. The sequence difference over the entire mt genome between CspC and COA was 12.2% in nucleotide and 6.3% in inferred amino acids, with nad4L and nad1 being the most variable and the most conserved PCGs, respectively. Phylogenetic analysis indicated that CspC and COA were closely-related but distinct taxa. The determination of mt genome sequences for Cooperia sp. from China also provides novel resources for further studies of taxonomy, systematics and population genetics of Cooperia from different geographical locations.
Collapse
Affiliation(s)
- Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Liang Han
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Cheng-Yan Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | - Guo-Hua Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province 225009, PR China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| |
Collapse
|
6
|
Ahmad AA, Yang X, Zhang T, Wang C, Zhou C, Yan X, Hassan M, Ikram M, Hu M. Characterization of the Complete Mitochondrial Genome of Ostertagia trifurcata of Small Ruminants and its Phylogenetic Associations for the Trichostrongyloidea Superfamily. Genes (Basel) 2019; 10:genes10020107. [PMID: 30709051 PMCID: PMC6410049 DOI: 10.3390/genes10020107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
The complete mitochondrial (mt) genome of Ostertagia trifurcata, a parasitic nematode of small ruminants, has been sequenced and its phylogenetic relationship with selected members from the superfamily Trichostrongyloidea was investigated on the basis of deduced datasets of mt amino acid sequences. The entire mt genome of Ostertagia trifurcata is circular and 14,151 bp in length. It consists of a total of 36 genes comprising 12 genes coding for proteins (PCGs), 2 genes for ribosomal RNA (rRNA), 22 transfer RNA (tRNA) genes and 2 non-coding regions, since all genes are transcribed in the same direction. The phylogenetic analysis based on the concatenated datasets of predicted amino acid sequences of the 12 protein coding genes supported monophylies of the Haemonchidae, Dictyocaulidae and Molineidae families, but rejected monophylies of the Trichostrongylidae family. The complete characterization and provision of the mtDNA sequence of Ostertagia trifurcata provides novel genetic markers for molecular epidemiological investigations, systematics, diagnostics and population genetics of Ostertagia trifurcata and its correspondents.
Collapse
Affiliation(s)
- Awais Ali Ahmad
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingrun Yan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mubashar Hassan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Ikram
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|