1
|
Toledo R, Cociancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Immunology and pathology of echinostomes and other intestinal trematodes. ADVANCES IN PARASITOLOGY 2024; 124:1-55. [PMID: 38754926 DOI: 10.1016/bs.apar.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.
Collapse
Affiliation(s)
- Rafael Toledo
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain.
| | - Paola Cociancic
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Emma Fiallos
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - J Guillermo Esteban
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carla Muñoz-Antoli
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Toledo R, Conciancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Echinostomes and Other Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:285-322. [PMID: 39008269 DOI: 10.1007/978-3-031-60121-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.
Collapse
Affiliation(s)
- Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Paola Conciancic
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Emma Fiallos
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite 2022; 29:51. [PMID: 36350193 PMCID: PMC9645230 DOI: 10.1051/parasite/2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - F. Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| |
Collapse
|
4
|
Dahal S, Gour P, Raghuvanshi S, Prasad YK, Saikia D, Ghatani S. Multi-stage transcriptome profiling of the neglected food-borne echinostome Artyfechinostomum sufrartyfex reveal potential diagnostic and drug targets. Acta Trop 2022; 233:106564. [PMID: 35716764 DOI: 10.1016/j.actatropica.2022.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Lack of effective surveillance and control methods for neglected helminth diseases particularly in context of rural areas in India is a serious concern in terms of public health. With regard to the emerging food-borne echinostomid Artyfechinostomum sufrartyfex infection in the country, the current study is an in silico attempt to screen for plausible diagnostic and drug targets against the trematode. Transcriptome of adult, encysted and excysted metacercaria stages of the parasite was generated using Illumina sequencing platform. A de-novo assembly strategy utilizing transcriptome data generated from the three lifecycle stages was followed to generate the representative transcripts. Longest open reading frames identified for the transcripts were further conceptually translated into their respective protein sequences. Detailed analysis of this dataset through various bioinformatics pipelines and tools eventually identified 14 credible diagnostic and 10 drug targets along with their FDA-approved and ZINC molecules. Some of the important diagnostic candidates include thioredoxin peroxidase, haemoglobinase, cathepsin L, cathepsin L-like and B-like cysteine proteases. Among the drug targets, uncharacterized sodium dependent transporter and bifunctional protein Aas were identified as top targets exhibiting significant interaction with Rifamycin and ZINC02820058 molecule, respectively. Further, B-cell epitope analysis of the diagnostic targets revealed unique epitopes for 10 of them thus indicating their potential role in specific diagnosis of the parasite. The diagnostic candidates along with a number of lesser known drug targets and their ligand molecules identified in this study provides a reasonable basis for evaluation and development of future intervention strategies against A. sufrartyfex.
Collapse
Affiliation(s)
- Suman Dahal
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India
| | - Pratibha Gour
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | | | - Dipshikha Saikia
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India
| | - Sudeep Ghatani
- Department of Zoology, School of Life sciences, Sikkim University, Gangtok, Sikkim, India.
| |
Collapse
|
5
|
Abstract
In the present paper, we review two of the most neglected intestinal food-borne trematodiases: echinostomiasis, caused by members of the family Echinostomatidae, and gastrodiscoidiasis produced by the amphistome Gastrodiscoides hominis. Both parasitic infections are important intestinal food-borne diseases. Humans become infected after ingestion of raw or insufficiently cooked molluscs, fish, crustaceans, amphibians or aquatic vegetables. Thus, eating habits are essential to determine the distribution of these parasitic diseases and, traditionally, they have been considered as minor diseases confined to low-income areas, mainly in Asia. However, this scenario is changing and the population at risk are currently expanding in relation to factors such as new eating habits in developed countries, growing international markets, improved transportation systems and demographic changes. These aspects determine the necessity of a better understanding of these parasitic diseases. Herein, we review the main features of human echinostomiasis and gastrodiscoidiasis in relation to their biology, epidemiology, immunology, clinical aspects, diagnosis and treatment.
Collapse
|
6
|
Caña-Bozada V, Chapa-López M, Díaz-Martín RD, García-Gasca A, Huerta-Ocampo JÁ, de Anda-Jáuregui G, Morales-Serna FN. In silico identification of excretory/secretory proteins and drug targets in monogenean parasites. INFECTION GENETICS AND EVOLUTION 2021; 93:104931. [PMID: 34023509 DOI: 10.1016/j.meegid.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The Excretory/Secretory (ES) proteins of parasites are involved in invasion and colonization of their hosts. In addition, since ES proteins circulate in the extracellular space, they can be more accessible to drugs than other proteins, which makes ES proteins optimal targets for the development of new and better pharmacological strategies. Monogeneans are a group of parasitic Platyhelminthes that includes some pathogenic species problematic for finfish aquaculture. In the present study, 8297 putative ES proteins from four monogenean species which genomic resources are publicly available were identified and functionally annotated by bioinformatic tools. Additionally, for comparative purposes, ES proteins in other parasitic and free-living platyhelminths were identified. Based on data from the monogenean Gyrodactylus salaris, 15 ES proteins are considered potential drug targets. One of them showed homology to 10 cathepsins with known 3D structure. A docking molecular analysis uncovered that the anthelmintic emodepside shows good affinity to these cathepsins suggesting that emodepside can be experimentally tested as a monogenean's cathepsin inhibitor.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Martha Chapa-López
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | | | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| |
Collapse
|
7
|
Li S, Chen X, Zhou J, Xie Z, Shang M, He L, Liang P, Chen T, Mao Q, Liang C, Li X, Huang Y, Yu X. Amino acids serve as an important energy source for adult flukes of Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008287. [PMID: 32352979 PMCID: PMC7217481 DOI: 10.1371/journal.pntd.0008287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Clonorchiasis, caused by chronic infection with Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease that seriously afflicts more than 35 million people globally, resulting in a socioeconomic burden in endemic regions. C. sinensis adults long-term inhabit the microaerobic and limited-glucose environment of the bile ducts. Energy metabolism plays a key role in facilitating the adaptation of adult flukes to crowded habitat and hostile environment. To understand energy source for adult flukes, we compared the component and content of free amino acids between C. sinensis-infected and uninfected bile. The results showed that the concentrations of free amino acids, including aspartic acid, serine, glycine, alanine, histidine, asparagine, threonine, lysine, hydroxylysine, and urea, were significantly higher in C. sinensis-infected bile than those in uninfected bile. Furthermore, exogenous amino acids could be utilized by adult flukes via the gluconeogenesis pathway regardless of the absence or presence of exogenous glucose, and the rate-limiting enzymes, such as C. sinensis glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and pyruvate carboxylase, exhibited high expression levels by quantitative real-time PCR analysis. Interestingly, no matter whether exogenous glucose was present, inhibition of gluconeogenesis reduced the glucose and glycogen levels as well as the viability and survival time of adult flukes. These results suggest that gluconeogenesis might play a vital role in energy metabolism of C. sinensis and exogenous amino acids probably serve as an important energy source that benefits the continued survival of adult flukes in the host. Our study will be a cornerstone for illuminating the biological characteristics of C. sinensis and the host-parasite interactions. Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.
Collapse
Affiliation(s)
- Shan Li
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xueqing Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory for Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhizhi Xie
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Mei Shang
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| |
Collapse
|