1
|
Sidibé B, Agniwo P, Diakité A, Savassi BAEOS, Doumbo SN, Akplogan A, Guindo H, Ibikounlé M, Dembélé L, Djimde A, Boissier J, Dabo A. Human-water interactions associated to cercarial emergence pattern and their influences on urinary schistosomiasis transmission in two endemic areas in Mali. Infect Dis Poverty 2024; 13:62. [PMID: 39198901 PMCID: PMC11360301 DOI: 10.1186/s40249-024-01229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Mali is known to be a schistosomiasis-endemic country with a limited supply of clean water. This has forced many communities to rely on open freshwater bodies for many human-water contact (HWC) activities. However, the relationship between contact with these water systems and the level of schistosome infection is currently receiving limited attention. This study assessed human-water interactions including cercarial emergence pattern and their influences on urinary schistosomiasis transmission in two communities in the Kayes district of Mali. METHODS We carried out a parasitological study first in children in September 2021, then a cross-sectional study of quantitative observations of human-water contact activities in the population, and finally a study of snail infectivity at contact points in September 2022. The study took place in two communities, Fangouné Bamanan and Diakalèl in the Kayes region of western Mali. The chronobiological study focused on cercarial release from naturally infected snails. Released cercariae were molecularly genotyped by targeting the cox1 region, and the ITS and 18S ribosmal DNA gene (18S rDNA) regions of the DNA. Links between sociodemographic parameters, human water-contact points and hematuria were established using multivariate statistical analysis or the logistic regression model. RESULTS The main factor predisposing the 97 participants to water contact was domestic activity (62.9%). Of the 378 snails collected at 14 sampling sites, 27 (7.1%) excreted schistosome cercariae, with 15.0% (19/126) at Fangouné Bamanan and 3.3% (8/252) at Diakalel. The release of Schistosoma cercariae shows three different patterns in Fangouné Bamanan: (i) an early release peak (6:00-8:00 AM), (ii) a mid-day release peak (10:00 AM-12:00 PM) and (iii) a double peak: (6:00-8:00 AM) and (6:00-8:00 PM) cercariae release; and two release patterns in Diakalel: early release (6:00-8:00 AM) and (ii) mid-day release (12:00-2:00 PM). All cercariae released during early diurnal (6:00-8:00 AM) or nocturnal emission patterns (6:00-8:00 PM) were hybrids parasite having an cox1 S. bovis or S. curassoni associated with an ITS and 18S rDNA of S. haematobium while the cercariae released during diurnal, or mid-day patterns (8:00 AM-6:00 PM) were pure S. haematobium. CONCLUSIONS Our study showed that domestic activity is the main source of exposure in the Kayes region. Two and three cercariae emission patterns were observed at Diakalel and Fangouné Bamanan respectively. These results suggest that the parasite adapts to the human-water contact period in order to increase its infectivity.
Collapse
Affiliation(s)
- Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali.
| | - Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
- Centre de Recherche Pour La Lutte Contre Les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Boris Agossou Eyaton-Olodji Sègnito Savassi
- Centre de Recherche Pour La Lutte Contre Les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Safiatou Niaré Doumbo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Moudachirou Ibikounlé
- Centre de Recherche Pour La Lutte Contre Les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Abdoulaye Djimde
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, IRL 3189, Bamako, Mali
| |
Collapse
|
2
|
Mathieu-Bégné E, Kincaid-Smith J, Chaparro C, Allienne JF, Rey O, Boissier J, Toulza E. Schistosoma haematobium and Schistosoma bovis first generation hybrids undergo gene expressions changes consistent with species compatibility and heterosis. PLoS Negl Trop Dis 2024; 18:e0012267. [PMID: 38954732 PMCID: PMC11249247 DOI: 10.1371/journal.pntd.0012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
When two species hybridize, the two parental genomes are brought together and some alleles might interact for the first time. To date, the extent of the transcriptomic changes in first hybrid generations, along with their functional outcome constitute an important knowledge gap, especially in parasite species. Here we explored the molecular and functional outcomes of hybridization in first-generation hybrids between the blood fluke parasites Schistosoma haematobium and S. bovis. Through a transcriptomic approach, we measured gene expression in both parental species and hybrids. We described and quantified expression profiles encountered in hybrids along with the main biological processes impacted. Up to 7,100 genes fell into a particular hybrid expression profile (intermediate between the parental expression levels, over-expressed, under-expressed, or expressed like one of the parental lines). Most of these genes were different depending on the direction of the parental cross (S. bovis mother and S. haematobium father or the reverse) and depending on the sex. For a given sex and cross direction, the vast majority of genes were hence unassigned to a hybrid expression profile: either they were differentially expressed genes but not typical of any hybrid expression profiles or they were not differentially expressed neither between hybrids and parental lines nor between parental lines. The most prevalent profile of gene expression in hybrids was the intermediate one (24% of investigated genes). These results suggest that transcriptomic compatibility between S. haematobium and S. bovis remains quite high. We also found support for an over-dominance model (over- and under-expressed genes in hybrids compared to parental lines) potentially associated with heterosis. In females in particular, processes such as reproductive processes, metabolism and cell interactions as well as signaling pathways were indeed affected. Our study hence provides new insight on the biology of Schistosoma hybrids with evidences supporting compatibility and heterosis.
Collapse
Affiliation(s)
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Cristian Chaparro
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Olivier Rey
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Université de Montpellier, CNRS, Ifremer, Université Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
3
|
Polack B, Mathieu-Bégné E, Vallée I, Rognon A, Fontaine JJ, Toulza E, Thomas M, Boissier J. Experimental Infections Reveal Acquired Zoonotic Capacity of Human Schistosomiasis Trough Hybridization. J Infect Dis 2024; 229:1904-1908. [PMID: 38669235 DOI: 10.1093/infdis/jiae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 04/28/2024] Open
Abstract
We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Bruno Polack
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Isabelle Vallée
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anne Rognon
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Jean-Jacques Fontaine
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Eve Toulza
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | - Myriam Thomas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jérôme Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
4
|
Mudavanhu A, Schols R, Goossens E, Nhiwatiwa T, Manyangadze T, Brendonck L, Huyse T. One Health monitoring reveals invasive freshwater snail species, new records, and undescribed parasite diversity in Zimbabwe. Parasit Vectors 2024; 17:234. [PMID: 38773521 PMCID: PMC11110352 DOI: 10.1186/s13071-024-06307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.
Collapse
Affiliation(s)
- Aspire Mudavanhu
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe.
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium
| | - Emilie Goossens
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Tamuka Nhiwatiwa
- Department of Fisheries and Ocean Sciences, School of Agriculture and Fisheries, University of Namibia, Henties Bay, Namibia
| | - Tawanda Manyangadze
- Department of Geosciences, School of Geosciences, Disaster and Development, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
5
|
Ajakaye OG, Enabulele EE, Balogun JB, Oyeyemi OT, Grigg ME. Extant interspecific hybridization among trematodes within the Schistosoma haematobium species complex in Nigeria. PLoS Negl Trop Dis 2024; 18:e0011472. [PMID: 38620029 PMCID: PMC11045100 DOI: 10.1371/journal.pntd.0011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/25/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.
Collapse
Affiliation(s)
- Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Elisha E. Enabulele
- Disease Intervention and Prevention Program, Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Joshua B. Balogun
- Department of Biological Sciences Federal University, Dutse, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
| |
Collapse
|
6
|
Giovanoli Evack J, Kouadio JN, Achi LY, Bonfoh B, N'Goran EK, Zinsstag J, Utzinger J, Balmer O. Genetic characterization of schistosome species from cattle in Côte d'Ivoire. Parasit Vectors 2024; 17:122. [PMID: 38475876 DOI: 10.1186/s13071-024-06221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Schistosomiasis is a water-based parasitic disease that affects humans, livestock and wild animals. While considerable resources are dedicated to the surveillance, disease mapping, control and elimination of human schistosomiasis, this is not the case for livestock schistosomiasis. Indeed, there are important data and knowledge gaps concerning the species present, population genetic diversity, infection prevalence, morbidity and economic impact. This study aimed to identify circulating schistosome species in cattle across Côte d'Ivoire and to investigate their population diversity and structuring. METHODS Overall, 400 adult schistosomes were collected from slaughtered cattle at six sites across Côte d'Ivoire. Additionally, 114 miracidia were collected from live cattle at one site: Ferkessédougou, in the northern part of Côte d'Ivoire. DNA from all specimens was extracted and the cox1 and ITS1/2 regions amplified and analysed to confirm species. The genetic diversity and structuring of the schistosome populations were investigated using 12 microsatellite markers. RESULTS All adult schistosomes and miracidia presented Schistosoma bovis mitochondrial cox1 profile. Nuclear ITS1/2 data were obtained from 101 adult schistosomes and four miracidia, all of which presented an S. bovis profile. Genetic diversity indices revealed a deficiency of heterozygotes and signals of inbreeding across all sites, while structure analyses displayed little geographic structuring and differentiation. Cattle in Côte d'Ivoire thus appear to be mono-species infected with S. bovis. Hybrids of Schistosoma haematobium × S. bovis have not been identified in this study. Cattle schistosomes appear to be panmictic across the country. CONCLUSIONS Our results contribute to a deeper understanding of schistosome populations in Ivorian cattle and emphasize a One Health approach of joint human and animal surveillance and prevention and control programmes for schistosomiasis.
Collapse
Affiliation(s)
- Jennifer Giovanoli Evack
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
| | - Jules N Kouadio
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Louise Y Achi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- École de Spécialisation en Elevage et Métiers de la Viande de Bingerville, Abidjan, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Horák P, Bulantová J, Mikeš L. Other Schistosomatoidea and Diplostomoidea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:107-155. [PMID: 39008265 DOI: 10.1007/978-3-031-60121-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
9
|
Agniwo P, Boissier J, Sidibé B, Dembélé L, Diakité A, Niaré DS, Akplogan A, Guindo H, Blin M, Dametto S, Ibikounlé M, Spangenberg T, Dabo A. Genetic profiles of Schistosoma haematobium parasites from Malian transmission hotspot areas. Parasit Vectors 2023; 16:263. [PMID: 37542265 PMCID: PMC10403946 DOI: 10.1186/s13071-023-05860-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Although schistosomiasis is a public health issue in Mali, little is known about the parasite genetic profile. The purpose of this study was to analyze the genetic profile of the schistosomes of Schistosoma haematobium group in school-aged children in various sites in Mali. METHODS Urine samples were collected from 7 to 21 November 2021 and subjected to a filtration method for the presence S. haematobium eggs. The study took place in two schistosomiasis endemic villages (Fangouné Bamanan and Diakalèl), qualified as hotspots according to the World Health Organization (WHO) definition. Molecular genotyping on both Cox1 and ITS2/18S was used for eggs' taxonomic assignation. RESULTS A total of 970 miracidia were individually collected from 63 school-aged children and stored on Whatman FTA cards for molecular analysis. After genotyping 42.0% (353/840) and 58.0% (487/840) of miracidia revealed Schistosoma bovis and S. haematobium Cox1 profiles, respectively; 95.7 (885/925) and 4.3% (40/925) revealed S. haematobium and S. haematobium/S. curassoni profiles for ITS/18S genes, respectively. There was a significant difference in the Cox1 and ITS2/18S profile distribution according to the village (P < 0.0001). Overall, 45.6% (360/789) were hybrids, of which 72.0% (322/447) were from Diakalèl. Three hybrids' profiles (Sb/Sc_ShxSc with 2.3%; Sb/Sc_ShxSh with 40.5%; Sh_ShxSc with 2.8%) and one pure profile (Sh_ShxSh with 54.4%) were identified. CONCLUSION Our findings show, for the first time to our knowledge, high prevalence of hybrid schistosomes in Mali. More studies are needed on population genetics of schistosomes at the human and animal interface to evaluate the parasite's gene flow and its consequences on epidemiology of the disease as well as the transmission to humans.
Collapse
Affiliation(s)
- Privat Agniwo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Jérôme Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Bakary Sidibé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Laurent Dembélé
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Assitan Diakité
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Doumbo Safiatou Niaré
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Ahristode Akplogan
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Hassim Guindo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali
| | - Manon Blin
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Sarah Dametto
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Perpignan, France
| | - Moudachirou Ibikounlé
- Centre de Recherche pour la lutte contre les Maladies Infectieuses Tropicales (CReMIT/TIDRC), Université d'Abomey-Calavi, Abomey-Calavi, Bénin
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Route de Crassier 1, 1262, Eysins, Switzerland
| | - Abdoulaye Dabo
- Department of Epidemiology of Infectious Diseases, Faculty of Pharmacy, Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Environnement, Santé, Sociétés (USTTB/UCAD/UGB/CNRST/CNRS), BP 1805, IRL 3189, Bamako, Mali.
| |
Collapse
|
10
|
Huguenin A, Kincaid-Smith J, Depaquit J, Boissier J, Ferté H. MALDI-TOF: A new tool for the identification of Schistosoma cercariae and detection of hybrids. PLoS Negl Trop Dis 2023; 17:e0010577. [PMID: 36976804 PMCID: PMC10081743 DOI: 10.1371/journal.pntd.0010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/07/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Schistosomiasis is a neglected water-born parasitic disease caused by Schistosoma affecting more than 200 million people. Introgressive hybridization is common among these parasites and raises issues concerning their zoonotic transmission. Morphological identification of Schistosoma cercariae is difficult and does not permit hybrids detection. Our objective was to assess the performance of MALDI-TOF (Matrix Assistated Laser Desorption-Ionization–Time Of Flight) mass spectrometry for the specific identification of cercariae in human and non-human Schistosoma and for the detection of hybridization between S. bovis and S. haematobium. Spectra were collected from laboratory reared molluscs infested with strains of S. haematobium, S. mansoni, S. bovis, S. rodhaini and S. bovis x S. haematobium natural (Corsican hybrid) and artificial hybrids. Cluster analysis showed a clear separation between S. haematobium, S. bovis, S. mansoni and S. rodhaini. Corsican hybrids are classified with those of the parental strain of S. haematobium whereas other hybrids formed a distinct cluster. In blind test analysis the developed MALDI-TOF spectral database permits identification of Schistosoma cercariae with high accuracy (94%) and good specificity (S. bovis: 99.59%, S. haematobium 99.56%, S. mansoni and S. rodhaini: 100%). Most misidentifications were between S. haematobium and the Corsican hybrids. The use of machine learning permits to improve the discrimination between these last two taxa, with accuracy, F1 score and Sensitivity/Specificity > 97%. In multivariate analysis the factors associated with obtaining a valid identification score (> 1.7) were absence of ethanol preservation (p < 0.001) and a number of 2–3 cercariae deposited per well (p < 0.001). Also, spectra acquired from S. mansoni cercariae are more likely to obtain a valid identification score than those acquired from S. haematobium (p<0.001). MALDI-TOF is a reliable technique for high-throughput identification of Schistosoma cercariae of medical and veterinary importance and could be useful for field survey in endemic areas.
Collapse
Affiliation(s)
- Antoine Huguenin
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
- * E-mail:
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Jérôme Depaquit
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
| | - Hubert Ferté
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
| |
Collapse
|
11
|
Morphometric analysis of schistosome eggs recovered from human urines in communities along the shoreline of Oyan River Dam in Ogun State, Nigeria. J Helminthol 2023; 96:e89. [PMID: 36621866 DOI: 10.1017/s0022149x22000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are growing concerns that communities characterized with surface water, where both humans and livestock interact for agricultural, domestic, cultural and recreational purposes, are likely to support hybridization between schistosome species infecting humans and livestock. This study therefore investigated the morphometrics of schistosome eggs recovered from human urine samples in four schistosomiasis endemic communities (Imala-Odo, Abule-Titun, Apojula and Ibaro-Oyan) along the banks of Oyan River Dam in Ogun State, Nigeria. Recovered eggs were counted, photographed, and measured with IC Measure™ for total length, maximum width and a ratio of egg shape. A total of 1984 Schistosoma eggs were analysed. Two major egg morphotypes were identified: the first represented 67.8% of the eggs, with the typical round to oval shape and mean length and width of 166 μm, 66.8 μm, respectively; the second represented 32.2% of the eggs and are more elongated, with a mean length of 198 μm, and width of 71.3 μm. Our results revealed significant variations in sizes of the schistosome eggs recovered (length: t = -35.374, degrees of freedom (df) = 1982, P = 0.000; weight: t = -10.431, df = 1982, P = 0.000), with the atypical shaped eggs appearing more elongated than expected. These eggs might represent individuals with some degree of contribution from Schistosoma bovis or possibly other Schistosoma species known to be present in Nigeria. Hence, this observation calls for further molecular studies to establish the genetic information about the miracidia from both atypical and typical eggs. It is also important to establish the presence of bona fide S. bovis infection in cattle and vector snails in the presumptive areas of hybridization.
Collapse
|
12
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
13
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
14
|
Mating Interactions between Schistosoma bovis and S. mansoni and Compatibility of Their F1 Progeny with Biomphalaria glabrata and Bulinus truncatus. Microorganisms 2022; 10:microorganisms10061251. [PMID: 35744769 PMCID: PMC9227498 DOI: 10.3390/microorganisms10061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
Contrary to the majority of other Trematoda, Schistosoma species are gonochoric. Consequently, in endemic areas where several schistosome species overlap and can co-infect the same definitive host, there may be frequent opportunities for interspecific pairing. Our experimental study provides novel insight on the pairing behavior between Schistosoma bovis and S. mansoni in mixed infections in mice. We used six mate choice experiments to assess mating interactions between the two schistosome species. We show that mating between the two Schistosoma species is not random and that S. mansoni exhibits greater mate recognition compared to S. bovis. We also performed reciprocal crosses (male S. mansoni × female S. bovis) and (female S. mansoni × male S. bovis) that produce active swimming miracidia. These miracidia were genotyped by ITS2 sequencing and proposed for mollusc infection. Molecular analyses show that all the miracidia are parthenogenetically produced (i.e., their harbor the mother ITS2 genotype) and as a consequence can only infect the mollusc of the maternal species. Offspring produced by male S. mansoni × female S. bovis pairing can only infect Bulinus truncatus whereas offspring produced by female S. mansoni × male S. bovis can only infect Biomphalaria glabrata snails. Evolutionary and epidemiological consequences are discussed.
Collapse
|
15
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
16
|
Onyekwere AM, Rey O, Allienne JF, Nwanchor MC, Alo M, Uwa C, Boissier J. Population Genetic Structure and Hybridization of Schistosoma haematobium in Nigeria. Pathogens 2022; 11:425. [PMID: 35456103 PMCID: PMC9026724 DOI: 10.3390/pathogens11040425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Schistosomiasis is a major poverty-related disease caused by dioecious parasitic flatworms of the genus Schistosoma with a health impact on both humans and animals. Hybrids of human urogenital schistosome and bovine intestinal schistosome have been reported in humans in several of Nigeria’s neighboring West African countries. No empirical studies have been carried out on the genomic diversity of Schistosoma haematobium in Nigeria. Here, we present novel data on the presence and prevalence of hybrids and the population genetic structure of S. haematobium. Methods: 165 Schistosoma-positive urine samples were obtained from 12 sampling sites in Nigeria. Schistosoma haematobium eggs from each sample were hatched and each individual miracidium was picked and preserved in Whatman® FTA cards for genomic analysis. Approximately 1364 parasites were molecularly characterized by rapid diagnostic multiplex polymerase chain reaction (RD-PCR) for mitochondrial DNA gene (Cox1 mtDNA) and a subset of 1136 miracidia were genotyped using a panel of 18 microsatellite markers. Results: No significant difference was observed in the population genetic diversity (p > 0.05), though a significant difference was observed in the allelic richness of the sites except sites 7, 8, and 9 (p < 0.05). Moreover, we observed two clusters of populations: west (populations 1−4) and east (populations 7−12). Of the 1364 miracidia genotyped, 1212 (89%) showed an S. bovis Cox1 profile and 152 (11%) showed an S. haematobium cox1 profile. All parasites showed an S. bovis Cox1 profile except for some at sites 3 and 4. Schistosoma miracidia full genotyping showed 59.3% of the S. bovis ITS2 allele. Conclusions: This study provides novel insight into hybridization and population genetic structure of S. haematobium in Nigeria. Our findings suggest that S. haematobium x S. bovis hybrids are common in Nigeria. More genomic studies on both human- and animal-infecting parasites are needed to ascertain the role of animals in schistosome transmission.
Collapse
Affiliation(s)
- Amos Mathias Onyekwere
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Olivier Rey
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | - Jean-François Allienne
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| | | | - Moses Alo
- Department of Microbiology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria;
| | - Clementina Uwa
- Department of Biology, Alex Ekwueme Federal University, Ndufu-Alike, Abakaliki PMB 1010, Nigeria; (A.M.O.); (C.U.)
| | - Jerome Boissier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, F-66000 Perpignan, France; (O.R.); (J.-F.A.)
| |
Collapse
|
17
|
Comparative mitogenomics of freshwater snails of the genus Bulinus, obligatory vectors of Schistosoma haematobium, causative agent of human urogenital schistosomiasis. Sci Rep 2022; 12:5357. [PMID: 35354876 PMCID: PMC8967911 DOI: 10.1038/s41598-022-09305-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
AbstractAmong the snail genera most responsible for vectoring human-infecting schistosomes, Bulinus, Biomphalaria, and Oncomelania, the former is in many respects the most important. Bulinid snails host the most common human blood fluke, Schistosoma haematobium, responsible for approximately two-thirds of the estimated 237 million cases of schistosomiasis. They also support transmission of schistosomes to millions of domestic and wild animals. Nonetheless, our basic knowledge of the 37 Bulinus species remains incomplete, especially with respect to genome information, even including mitogenome sequences. We determined complete mitogenome sequences for Bulinus truncatus, B. nasutus, and B. ugandae, and three representatives of B. globosus from eastern, central, and western Kenya. A difference of the location of tRNA-Asp was found between mitogenomes from the three species of the Bulinus africanus group and B. truncatus. Phylogenetic analysis using partial cox1 sequences suggests that B. globosus is a complex comprised of multiple species. We also highlight the status of B. ugandae as a distinct species with unusual interactions with the S. haematobium group parasites deserving of additional investigation. We provide sequence data for potential development of genetic markers for specific or intraspecific Bulinus studies, help elucidate the relationships among Bulinus species, and suggest ways in which mitogenomes may help understand the complex interactions between Schistosoma and Bulinus snails and their relatives.
Collapse
|
18
|
Morphological and genomic characterisation of the Schistosoma hybrid infecting humans in Europe reveals admixture between Schistosoma haematobium and Schistosoma bovis. PLoS Negl Trop Dis 2021; 15:e0010062. [PMID: 34941866 PMCID: PMC8741037 DOI: 10.1371/journal.pntd.0010062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/07/2022] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes cause schistosomiasis, the world's second most important parasitic disease after malaria in terms of public health and social-economic impacts. A peculiar feature of these dioecious parasites is their ability to produce viable and fertile hybrid offspring. Originally only present in the tropics, schistosomiasis is now also endemic in southern Europe. Based on the analysis of two genetic markers the European schistosomes had previously been identified as hybrids between the livestock- and the human-infective species Schistosoma bovis and Schistosoma haematobium, respectively. Here, using PacBio long-read sequencing technology we performed genome assembly improvement and annotation of S. bovis, one of the parental species for which no satisfactory genome assembly was available. We then describe the whole genome introgression levels of the hybrid schistosomes, their morphometric parameters (eggs and adult worms) and their compatibility with two European snail strains used as vectors (Bulinus truncatus and Planorbarius metidjensis). Schistosome-snail compatibility is a key parameter for the parasites life cycle progression, and thus the capability of the parasite to establish in a given area. Our results show that this Schistosoma hybrid is strongly introgressed genetically, composed of 77% S. haematobium and 23% S. bovis origin. This genomic admixture suggests an ancient hybridization event and subsequent backcrosses with the human-specific species, S. haematobium, before its introduction in Corsica. We also show that egg morphology (commonly used as a species diagnostic) does not allow for accurate hybrid identification while genetic tests do.
Collapse
|
19
|
Panzner U, Boissier J. Natural Intra- and Interclade Human Hybrid Schistosomes in Africa with Considerations on Prevention through Vaccination. Microorganisms 2021; 9:microorganisms9071465. [PMID: 34361901 PMCID: PMC8305539 DOI: 10.3390/microorganisms9071465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/04/2022] Open
Abstract
Causal agents of schistosomiasis are dioecious, digenean schistosomes affecting mankind in 76 countries. Preventive measures are manifold but need to be complemented by vaccination for long-term protection; vaccine candidates in advanced pre-clinical/clinical stages include Sm14, Sm-TSP-2/Sm-TSP-2Al®, Smp80/SchistoShield®, and Sh28GST/Bilhvax®. Natural and anthropogenic changes impact on breaking species isolation barriers favoring introgressive hybridization, i.e., allelic exchange among gene pools of sympatric, interbreeding species leading to instant large genetic diversity. Phylogenetic distance matters, thus the less species differ phylogenetically the more likely they hybridize. PubMed and Embase databases were searched for publications limited to hybridale confirmation by mitochondrial cytochrome c oxidase (COX) and/or nuclear ribosomal internal transcribed spacer (ITS). Human schistosomal hybrids are predominantly reported from West Africa with clustering in the Senegal River Basin, and scattering to Europe, Central and Eastern Africa. Noteworthy is the dominance of Schistosoma haematobium interbreeding with human and veterinary species leading due to hybrid vigor to extinction and homogenization as seen for S. guineensis in Cameroon and S. haematobium in Niger, respectively. Heterosis seems to advantage S. haematobium/S. bovis interbreeds with dominant S. haematobium-ITS/S. bovis-COX1 profile to spread from West to East Africa and reoccur in France. S. haematobium/S. mansoni interactions seen among Senegalese and Côte d’Ivoirian children are unexpected due to their high phylogenetic distance. Detecting pure S. bovis and S. bovis/S. curassoni crosses capable of infecting humans observed in Corsica and Côte d’Ivoire, and Niger, respectively, is worrisome. Taken together, species hybridization urges control and preventive measures targeting human and veterinary sectors in line with the One-Health concept to be complemented by vaccination protecting against transmission, infection, and disease recurrence. Functional and structural diversity of naturally occurring human schistosomal hybrids may impact current vaccine candidates requiring further research including natural history studies in endemic areas targeted for clinical trials.
Collapse
Affiliation(s)
- Ursula Panzner
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany
- Swiss Tropical and Public Health Institute, University of Basel, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +49-176-6657-2910
| | - Jerome Boissier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan, 66860 Perpignan, France;
| |
Collapse
|
20
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Cable J, Webster BL. The detection of Schistosoma bovis in livestock on Pemba Island, Zanzibar: A preliminary study. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100056. [PMID: 35284855 PMCID: PMC8906095 DOI: 10.1016/j.crpvbd.2021.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Schistosoma bovis is a parasitic trematode of ungulates transmitted by freshwater snails in Sub-Saharan Africa causing bovine intestinal schistosomiasis that leads to chronic morbidity and significant agricultural economic losses. The recently reported occurrence of Bulinus globosus infected with S. bovis for the first time on Pemba Island (Zanzibar, United Republic of Tanzania) is a cause of concern for livestock/wildlife health and complicates the surveillance of Schistosoma haematobium. To confirm that local cattle are infected with S. bovis, fresh faecal samples were collected from six adult cows surrounding two schistosomiasis transmission sites in Kinyasini, Pemba Island. Schistosome eggs were concentrated, egg hatching stimulated and miracidia were individually captured and identified by analysis of the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) and the partial nuclear internal transcribed spacer region (ITS1+5.8S+ITS2). Two S. bovis miracidia were collected from one faecal sample with two cox1 haplotypes, one matching cox1 data obtained from S. bovis cercariae, collected previously at the same site in Pemba, the other matching S. bovis cox1 data originating from coastal Tanzania. The findings conclude that S. bovis transmission has been established on Pemba Island and is likely to have been imported through livestock trade with East Africa. Increasing the sensitivity of non-invasive diagnostics for bovine schistosomiasis, together with wider sampling, will enable a better assessment on the epidemiology of S. bovis on Pemba Island. The bovine schistosome Schistosoma bovis is detected for the first time from cattle in Zanzibar. Local transmission of S. bovis is confirmed on Pemba Island. Bovine schistosomes complicate the xenomonitoring and surveillance of human urogenital schistosomiasis. Bovine schistosomiasis could lead to chronic morbidity of cattle and agricultural economic losses.
Collapse
|